Seasonal and interannual variability of cladoceran communities in two peri-alpine lakes: uncoupled response to the 2003 heat wave.

Orlane Anneville* 1, Juan Carlos Molinero 1,2, Sami Souissi 3,4,5 and Daniel Gerdeaux 1

1 INRA, UMR CARRTEL, F-74203 Thonon Les Bains, France.
2 Leibniz Institute of Marine Sciences, Marine Ecology / Experimental Ecology, Düsternbrooker Weg 20, D-24105 Kiel, Germany
3 Université Lille Nord de France, F-59000 Lille, France.
4 USTL, LOG, F-62930 Wimereux, France
5 CNRS, UMR 8187, F-62930 Wimereux, France

Key words: climate, heat wave, population dynamics, zooplankton, long-term changes

* Corresponding author: phone: 00 33 450 26 78 04 – Fax: 00 33 450 26 78 00 – e-mail: orlane.anneville@thonon.inra.fr
Abstract

Seasonal and interannual dynamics of cladoceran species were analyzed during the period 1995-2003 in two deep peri-alpine lakes morphologically different but subjected to similar regional climatic forcing. The seasonal succession of cladoceran species was characterized and the impact of extreme climatic events on the annual pattern of species succession was assessed. Using a multivariate method, we show that the cladoceran species display marked seasonality patterns that differ in the two lakes. The differences observed between the lakes were driven by their trophic state, the plankton species composition and abundance of predators. We show that the sensitivity of the annual pattern of species succession to extreme weather changes, illustrated by the 2003 heat wave, differs markedly in these two lakes. In Lake Annecy, the annual pattern of cladoceran succession observed in 2003 is not different from the one usually observed. In contrast, in Lake Geneva, the annual pattern recorded in 2003, is unusual and characterized by the maintenance of herbivorous cladoceran during summer. These findings underline the need to consider the morphology of lakes and trophic state in the assessment of ecological responses to global warming. Our results contribute to the debate about the predictability of the impacts of climate change on aquatic ecosystems, and their extrapolation from one site to another.
Introduction

The composition of plankton communities displays marked seasonality that has been documented in both phytoplankton and zooplankton taxa for different types of lake morphology and trophic states (Sommer et al., 1986; Hart, 2004; Abrantes et al., 2005). This pattern of plankton species succession is driven by interacting forces leaded by physical changes, resource availability and interactions between the species present (Sommer et al., 1986; Hart, 2004; Abrantes et al., 2005). From this, water temperature is one of the main factors affecting the seasonality in species composition of lakes. Thermal changes may affect plankton both indirectly, through environmental changes (e.g. stratification), and directly, through their physiology (e.g. growth rate) and behavior. This may result in population size changes that can be large enough to be detected over prolonged time scales. Thermal forcing has also been shown to drive the timing of the spring proliferation of cladocerans, which in turn can be used as a proxy for climate-driven changes in pelagic ecosystems (Straile et al., 2003). Despite the existence of species-specific responses and adaptations to water temperature (Gerten and Adrian, 2002), regional-wide climate variations can synchronize the dynamics of some taxa in different lakes leading to consistent regional changes in freshwater ecosystems over a prolonged time scale (Rusak et al., 1999; Straile and Adrian, 2000). This has been shown in European lakes for Daphnia, and subsequent studies in different lakes have also found that the abundances of other cladoceran species are related to the North Atlantic Oscillation (Straile et al., 2003).

In recent years, growing evidence has shown that climate variations significantly affect plankton phenology, trophic interactions, food-web structure and possible ecosystem-level changes (Gerten and Adrian, 2002, Straile et al., 2003, Winder and Schindler, 2004; Edwards and Richardson, 2004). These observations have been supported by experimental studies (McKee et al., 2002, McKee et al., 2003). However, most of the investigations have focused on keystone species, and the impact of climate variability on the patterns of annual cladoceran succession remains poorly documented. It is against this background that we report here an investigation of the phenology of the cladoceran community in two neighboring deep lakes that differ in their size and trophic state (Table 1). These two lakes have both been subjected to similar meteorological forcing (Molinero et al., unpublished data). The analysis covers a 7-year period, which included the exceptional weather conditions of 2003 associated with the exceptional heat wave in Central Europe (Schär et al., 2004).

In this paper, we aim to characterize the annual dynamics and potential synchrony between variations in the cladocerans in Lakes Geneva and Annecy, and to assess the effect of the 2003 summer heat-wave on the annual pattern of cladoceran succession. The results are discussed with regard to the potential consequences of extreme weather events on limnic ecosystems.
Method

Study site and sampling - Lakes Geneva and Annecy are large and deep peri-alpine lakes about 80 km apart. They differ in their size and trophic state (Table I). According to the Organisation for Economic Co-operation and Development (OECD) criteria, based on phosphorus concentrations, Lake Geneva can be classified as a eutrophic/mesotrophic lake, whereas Lake Annecy is oligotrophic. The long-term survey program for these lakes includes bimonthly or monthly sampling to determine physical and chemical parameters and plankton abundance. One sampling station is located in the middle of each lake, where they are deepest. As a consequence, spatial variability within each lake cannot be taken into account. The long-term survey in Lake Geneva started in the 1970s, and that in Lake Annecy started in the mid-1990s. In this study we focused on the period 1995-2003, when both lakes were being sampled. The zooplankton data for 2001 was not available for Lake Geneva, and so data for this year has been excluded from the analysis for both lakes.

Daily air temperatures were obtained from the long-term monitoring program database “ORELacsAlpins” of the French National Institute for Agricultural Research (INRA). Temperatures were measured at the INRA’s meteorological station located by Lake Geneva. Medians of air temperature were computed for each month and monthly values were averaged by season. For the analysis, only winter season (from January to March) was considered.

Biological data – The sampling protocol was the same in the two lakes. Zooplankton was sampled in the first 50 m using a plankton net (mesh-size 200 µm). This sample was preserved in a 5% buffered formaldehyde solution. Zooplankton identification and counting was carried out in one sub-sample, using a dissecting microscope. Zooplankton taxa present were identified to species level and quantified. The most abundant cladoceran species found in both lakes were taken into consideration for the analysis. Individuals of Daphnia galeata and D. hyalina, were pooled, as were those of Eubosmina longispina and E. mixta, due to the difficulty of differentiating reliably between these pairs of species. The analyses were therefore performed on the following 5 groups: Daphnia longispina, D. galeata + hyalina, E. longispina + mixta, Leptodora and Bythotrephes.

Phytoplankton data was available from 1995 for Lake Geneva, and from 1997 for Lake Annecy. Phytoplankton was sampled using a Pelletier integrating apparatus (developed by J.P. Pelletier at the INRA station of Thonon Les Bains, INRA patent, 1978). Details of the phytoplankton sampling procedure have been published elsewhere (Anneville and Pelletier, 2000). A water sample for species identification and biomass estimation was taken from the 0-10m depth
layer from 1995 to 2001, and from the 0-18m layer in 2002 and 2003. Similar techniques were used in the earlier and later phytoplankton samples. The sample was fixed with Lugol’s iodine, and the species present were identified and counted under an inverted microscope. The laboratory procedure followed the standardized Utermöhl technique (1958; AFNOR, 2006). Species biovolumes were derived from cell numbers and mean cell volumes using geometrical models (Lohmann, 1908). The total biomass was then estimated by adding the biovolumes for each species, assuming a fresh weight of 1g.cm\(^{-3}\). The phytoplankton species were divided into two groups according to size: nanoplankton (length of the cell or colony <50 µm and volume <10 000 µm\(^3\)), microplankton (length of the cell or colony >50 µm and volume >10 000 µm\(^3\)).

Physical and phosphorus data - Temperatures were measured every meter along a vertical profile from the surface to a depth of 50m using a multiparameter probe ME (Standart-ECO-Probe Version II) up to 2001 and then by a CTD 90 multiparameter probe Sea-Sun Tech. A stratification index was computed for each sampling date. This is equal to the maximum difference in water-temperature per meter. Two temperature time-series data were used for the analysis, each of them corresponding to the phytoplankton and zooplankton found in the sampled depth-layers of 0-10 m and 0-50m, respectively. Water samples for the measure of phosphorus concentrations were collected at discrete depths ranging from the surface to the bottom of the lake. The water was sampled using home made Van Dorn kind bottles. The total phosphorus concentration was measured by spectrophotometric method with Amonium Molybdate according to AFNOR 1982, NF EN 1189 (Murphy and Riley, 1962). The annual mean for Lake Geneva was taken from the CIPEL (International Commission for the Protection of Lake Geneva) reports, and was calculated over the entire water column (Lazzaroto et al., 2005).

Statistical analysis – Temporal maps were used to represent the seasonal patterns of cladoceran abundances. These maps were created using MatLab software (The MathWorks Inc. Version 7.4.0) by interpolating values between two successive sampling dates. This representation gave an overview of the annual and inter-annual patterns of the abundances of each species. To identify the annual pattern of zooplankton succession, and to evaluate any deviations from this pattern, we used the multivariate method, STATIS. It allows synthesizing the annual fluctuations of the different species into average annual patterns of species successions that can be compared to one another. Briefly, STATIS is an ordination method designed to analyze several subsets of quantitative data simultaneously. The method can be used to identify the common structure, “the compromise”, shared by the subsets. A detailed description of the mathematical formulation can be found in Escoufier (1973) and Lavit et al. (1994). This method has proved useful in aquatic sciences.
for the spatial and temporal analysis of plankton (see Licandro and Ibanez, 2000; Anneville et al., 2002b) and fish communities (Gaertner et al., 1998).

In this study, the multivariate statistical analyses were run using ADE-4 free software (Thiou Louise et al., 1997). STATIS was run on a multi-table data set, which is represented by a matrix containing the sampling dates, as objects, and the 5 zooplankton taxon groups, as variables. Taxon abundances were expressed as logarithms (log (x+1)) in order to diminish variations of cladoceran abundances. A total number of 156 and 113 samples for Lake Geneva and Annecy respectively, were taken into consideration in the analysis. Sampling dates were organized into subsets, each corresponding to a “Lake dataset/Year”. The matrix was therefore subdivided into 16 subsets Lake/Year (2 lakes x 8 years). This means that looking for the compromise was equivalent to looking for common temporal trajectories between successive years in both lakes. Overall, the method provided information about the similarity between the annual trajectories, the pattern of the common annual trajectory, and the inter-year variability of the annual trajectories of cladoceran communities. Test for detecting departures from normality (Shapiro-Wilk W-statistic), Pearson correlation and Mann-Whitney Wilcoxon tests for sample comparisons were performed with S-PLUS version 6.1 (Insightful Corp., Seattle, Washington, USA).

Results

Environmental characteristics of the lakes and specific features of 2003: In winter, the average temperatures measured in the first 10 meters of the two lakes were similar. Differences between the temperatures in the two lakes began in April, and became significant (Wilcoxon test, p-value<0.05) in May. From May to August, Lake Annecy was on average 2 °C warmer than Lake Geneva. In September, the temperature decreased in both lakes, and the differences between them were no longer statistically significant. In contrast, average temperatures measured in the first 50m of water followed differing patterns. According to these average values, Lake Geneva was warmer except from April to July when the temperatures were not significantly (Wilcoxon test, p-value>0.05) different from those recorded in Lake Annecy.

In 2003, from June to August, the temperatures measured in the first 10 meters of water were higher than usual in both lakes (Fig. 1). In Lake Geneva, the water temperatures rose only in the 0-10m layer while extremely high air temperatures recorded during the summer of 2003. Over the whole 0-50m layer, lower than usual average water temperatures were actually recorded (Fig. 1), indicating marked stratification within this layer.
Lakes Geneva and Annecy have very different total phosphorus contents. The annual averages of the total phosphorus concentrations were around 38 µP.L⁻¹ in Lake Geneva, versus 6 µP.L⁻¹ in Lake Annecy. There were also differences between these two lakes with regard to their phytoplankton communities. Significant differences in the total abundance of phytoplankton were observed from May to August. Phytoplankton was more abundant in Lake Geneva except in May. In Lake Geneva, the average proportion of nanophytoplankton was high in spring (on average 55% from March to May); this dropped to 20% in June, and then remained below 20% throughout the summer (Fig. 1). However, during the exceptional year 2003, the contribution of nanophytoplankton to the total phytoplankton biomass was higher than usual in summer (Fig. 1). In Lake Annecy, nanophytoplankton species make up on average 56% of the total phytoplankton biomass and were dominant throughout the year (Fig. 1). The absolute nanophytoplankton abundances were normally higher in Lake Annecy than in Lake Geneva in summer (Fig. 1), but during the year 2003, nanophytoplankton was exceptionally more abundant than usual in July in Lake Geneva and in August in Lake Annecy.

Annual dynamics of the cladoceran genus: The cladoceran taxa retained for the analysis accounted for 98% and 77% of the total cladoceran abundance in Lakes Geneva and Annecy, respectively. Temporal maps of their abundances in successive years revealed seasonal patterns (Fig. 2), which remain fairly stable for some taxa, but which differ in the two lakes. In Lake Geneva, the abundance of *Daphnia* peaked in May, and then decreased. In Lake Annecy, in contrast, the population peak occurred in June and persisted till September. Higher abundances of *Eubosmina* were recorded in the spring in Lake Geneva, whereas they occurred in late summer or autumn in Lake Annecy. The invertebrate cladoceran predators *Leptodora* and *Bythotrephes* were less abundant in Lake Annecy than Lake Geneva, their abundances being significantly different in the two lakes from May to August (Wilcoxon test, p-value<0.005). The seasonal population pattern of *Leptodora* was similar in the two lakes, with a maximum during July and August. The peak levels of *Bythotrephes* were reached in June in Lake Geneva, whereas in Lake Annecy the highest biomass for this species was recorded from the end of summer till December.

Identification of the compromise model: STATIS indicates that cladocerans were mostly absent during winter in both lakes. In Lakes Geneva and Annecy, summer was mainly characterized by *D. galeata/hyalina* and the large carnivorous species *Leptodora* – *Bythotrephes*, which follow on from the spring species, such as *Eubosmina* - *D. longispina* (Fig. 3). The contributions of the different species to this model were expressed as the correlations between species abundance and
the factorial coordinates (Table II). All the species contributed to the formation of axis I, the main
contributor being *D. galeata/hyalina* (Pearson, t-test, p-value<0.01). Axis II separates the species
that predominate in spring (“*Eubosmina - D. longispina*”) from those that predominate in summer
(“*Leptodora – Bythotrephes*”) (Pearson, t-test, p-value<0.05).

All the subsets “Lake/Year” made strong and homogenous contribution to this annual pattern
(Table III). However, the scores on the second eigenvector of the Euclidean space indicated a
segregation between the lakes (Table III). They indicated differences in the annual succession
pattern of zooplankton in the two lakes, and suggested that there were two main alternative annual
patterns, each of which was characteristic of one of the lakes. However, in 2003, the annual pattern
recorded in Lakes Geneva and Annecy both resembled the one usually reported for Lake Annecy.

Analysis of the variability in the annual trajectories: Individual projections of the samples
for the successive subsets “Lake/Year” on the plane of the compromise confirm inter-lake
differences in the seasonal patterns of cladoceran communities. Compromises for Lake Geneva and
Lake Annecy were represented separately on Axis I and II (Fig. 4A-C)). Comparing the distribution
of the samples along axes I and II allowed us to interpret differences between the seasonal patterns
of taxa succession in the two lakes.

On axis I, the scores of the Lake Geneva samples became negative in May, one month earlier
than those of Lake Annecy (Fig. 4A). This indicated that the spring increase in cladoceran
abundances occurred earlier and was more pronounced in Lake Geneva than in Lake Annecy (Fig
4B).

Axis II separated the dates characterized by high abundances of *Eubosmina or D. longispina*
from those with low abundances of these species combined with high abundances of the
carnivorous *Leptodora or Bythotrephes*, which were characteristic of the summer community (Fig.
3). In Lake Geneva, *Eubosmina or D. longispina* were abundant till June, with maximum
abundances recorded in May (Fig. 4D). In July, the scores for the samples switched to positive
values (Fig. 4C), indicating a change towards low abundances of *Eubosmina or D. longispina*, and
high abundances of *Leptodora or Bythotrephes* (Fig. 4D). In Lake Annecy, the scores of the
samples became positive in May, and reverted to negative values in September (Fig. 4C). The
summer community was therefore observed on average two months earlier than in Lake Geneva,
but this was not maintained for long. Furthermore, maximum abundances in *Eubosmina or D.
longispina* were not restricted to the spring season, as was the case in Lake Geneva. Indeed, after a
slight dip in July, their abundance subsequently began to increase again, to peak in September (Fig.
4D).
Variability in the timing of the transition between seasonal communities was strongly linked to water-temperature. As can be seen in Fig. 3, differences between the growing period and the period of low plankton activity were highlighted on axis I. The start of cladoceran growth can thus be assigned to the first date when scores become positive on axis I. As we have already pointed out, spring zooplankton growth usually started earlier in Lake Geneva, with a difference of 22 to 70 days observed between the two lakes. The amplitude of the inter-annual fluctuations in the timing of the beginning of cladoceran growth was around one month in Lake Geneva, and two months in Lake Annecy. For both lakes, the date of zooplankton development was correlated with April water-temperatures measured within the 0-50m depth layer (Pearson, t-test, p-value<0.05). These temperatures were also significantly correlated with winter air temperatures (Pearson, t-test, p-value<0.05) and significant correlation (Pearson, t-test, p-value<0.05) between date of zooplankton development and winter air temperatures was recorded in Lake Geneva. The switch to a summer community was taken to occur on the date when the scores on axis II became positive. These dates displayed marked inter-annual variability, but no significant correlation with water-temperature (Pearson, t-test, p-value>0.05).

In 2003, the pattern observed in Lake Geneva (Fig. 5) fitted the usual model for Lake Geneva along axis I ($R^2=0.94$, p-value<0.001), but not along axis II ($R^2=0.001$; p-value=0.93). Residuals from the model were highest in August and September, when the score along axis II became negative, indicating an increase in *Eubosmina* or *D. longispina* and a decrease in *Leptodora* or *Bythotrephes* (Fig. 4D). Abundances of *Eubosmina* were indeed higher than usual (Fig. 6). In contrast, *Leptodora* and *Bythotrephes* were less abundant in August and September in 2003 than in the other years (Fig. 6). Water temperature (T0-10) and water stratification were the main environmental parameters that distinguished the year 2003 (Fig. 7), higher values than usual being recorded for both.

Discussion

We have investigated the seasonal variability in zooplankton composition in the Lakes Geneva and Annecy, and identified differences in zooplankton responses in the two neighbouring lakes when exposed to the same exceptional heat wave in 2003.

The usual overall seasonal pattern identified in both lakes by the method STATIS was characterized by low cladoceran densities in winter. The population of cladoceran herbivore increased and then decreased in parallel with the abundance of nanophytoplankton species. The decline in abundance was probably mainly induced by food-limitation and fish predation as
suggested by the PEG model (Sommer et al., 1986), and according to Gawler et al. (1988) by predation by carnivorous cladocerans (i.e. *Leptodora* and *Bythotrephes*), which reach their greatest abundance at the end of spring and in summer.

Lake specificity: The seasonal pattern exhibited by cladocerans varies in their timing of development as well as in the pattern of taxon succession in summer, in the two lakes. It has been shown that the rate of zooplankton development in the spring depends on the trophic state of the lake, and is generally slower in oligotrophic lakes than in eutrophic lakes (Sommer et al., 1986). Accordingly, the development of cladocerans usually started earlier in Lake Geneva (eutrophic-mesotrophic) than in Lake Annecy (oligotrophic). The divergence in the timing of cladoceran development may also be attributable to discrepancies in the dynamics of the water column warming. For instance, despite the greater vernal increase of warmer temperatures in the first 0-10m of water in Lake Annecy, the average temperatures within the 0-50m layer were usually higher in Lake Geneva until April. Temperature modulates the duration of egg development and, this, together with the availability of food, can control the abundance of zooplankton in winter and spring (Saunders et al., 1999). The differences in late-winter and early spring water temperatures could also affect the rate of development of the cladocerans in spring, as revealed by the inter-annual variability in *Daphnia* in other European lakes (Straile et al., 2003).

In Lake Geneva, spring was characterized by a rapid increase in herbivorous cladocerans, the subsequent increase in grazing pressure coincided with the decline of the spring phytoplankton community which was dominated by small edible algae, as shown in figure 1. The phytoplankton community then changed into a community dominated by large algae (Anneville et al., 2002a,b), resulting in low filtration efficiency. As a result of the effects of temperature-influenced clearance rates, the interference-capability, the herbivorous species then decline to reach low levels in winter (Sommer et al., 1986). In contrast, in Lake Annecy, the continued high proportion of nanophytoplankton in the total phytoplankton biomass throughout the summer might favour herbivorous species and could explain the presence of *Eubosmina* and *D. longispina* during this season. Differences in the abundances of herbivorous cladoceran species during the summer in Lake Annecy and in Lake Geneva were therefore probably attributable to the seasonal dynamics of phytoplankton, which in turn have been linked to the trophic-state of the lakes (Sommer et al., 1986). Furthermore, invertebrate predators are recognized regulators of the succession of smaller herbivorous species (Sommer et al., 1986; Manca et al., 2000; Chang and Hanazato, 2003; Uusitalo et al., 2003). In Lake Geneva, the growth of the large, thermophilic raptorial zooplankton *Leptodora* and *Bythotrephes*, was known to control the densities of herbivorous species (Gawler et
al., 1988), and consequently explained the limited abundance of herbivorous species during the summer season. In contrast, in Lake Annecy the high density of zooplanktivorous fish (i.e. perch and whitefish) exerted high predation pressure on *Leptodora* and *Bythotrephes* (Palmer et al., 2001; Gerdeaux et al., 2002; Uusitalo et al., 2003), and this might control the abundance of these large predaceous cladocerans in summer, as suggested by the low abundance of *Leptodora* and *Bythotrephes* in Lake Annecy. The predation pressure they exerted on herbivorous zooplankton was therefore probably lower in Lake Annecy and so may not prevent the occurrence of small herbivorous species during the summer. Bottom-up and top-down controls may both be responsible for the differences between the two Lakes with regard to the seasonal succession of cladoceran species.

Inter-annual changes in the seasonal dynamics of cladoceran communities and impact of the heat-wave 2003:

We have shown that the variations in the seasonal pattern in different years take two main forms. The first concerned the timing of cladoceran development and the presence of carnivorous invertebrates. The second concerned the taxon succession pattern in summer. The timing of the herbivorous peak varied according to temperature, and this confirmed the findings of earlier studies run over a longer time-span that have shown that temperature controls phenology and synchronous annual events in different lakes (Straile, 2002). The development of zooplankton in the spring occurred on average approximately two weeks earlier in Lake Geneva, and has been in phase with the North Atlantic Oscillation for the last 30-years (Anneville et al., 2002a). In lakes Geneva and Annecy, the variability of water-temperature was not enough to explain the fluctuation in the timing of occurrence of *Leptodora-Bythotrephes* and the decline of *Eubosmina* and *D. longispina*. However, improvement of biomass in temperatures above 15 °C and a positive correlation between water temperature and *Leptodora* abundance have been recorded elsewhere (Herzig, 1995). It was thus plausible that other parameters, such as food abundance or predation by fish, superimposed over the effects of temperature, might actually have had more influence in determining the timing of these carnivorous groups during the years studied.

The results showed 2003 to be an exceptional year for the cladoceran succession pattern in Lake Geneva, but not in Lake Annecy. The pattern in 2003 was driven by marked changes in water temperatures that were supposed to be the main cause of deviations from the usual seasonal patterns. In both lakes, the surface layer (0-10m) appeared to be markedly affected by this major heat wave, leading to increased stratification as predicted by models (Jankowski et al., 2006). In Lake Geneva, surface water temperatures reached exceptionally high values in spring, which could
explain the earlier-than-usual development of the carnivorous cladocerans (*Leptodora* and *Bythotrephes*) in June. After this, increased stratification most probably impacted on nutrient vertical profiles and on the regeneration of the eutrophic layer in late-spring and summer. We speculate that this has affected phytoplankton development and composition, as suggested by the fact that the summer biomass was lower than in the previous years (Druart et al., 2004) despite higher-than-usual abundances of nanophytoplankton. The marked stratification, together with a higher percentage of nanophytoplankton, led to unusual environmental conditions in summer that were similar to those observed in Lake Annecy. Probably related to this, unusual high abundances of *Eubosmina* in Lake Geneva were observed in summer, and resulted in an annual pattern quite similar to that usually observed in Lake Annecy.

Many studies underline synchrony between climate and plankton. Some of them underline spatial coherence in the response of plankton (Straile, 2002). The results presented here suggest that for extreme conditions which are likely to become more frequent in the second half of this century (IPCC, 2007), there is no coherence and therefore the response of plankton to extreme climatic events may be unpredictable.

In conclusion, we have shown that the timing of the spring development of cladocerans is sensitive to the late-winter water temperature, and can therefore be indicative of climate changes. In contrast, the consequences of inter-annual meteorological variability and extreme events on the seasonal pattern of cladoceran communities were not the same in both lakes. This may be attributable to their morphometry that results in subtle differences in their hydrodynamic properties and thus dynamic of thermal stratification (intensity and duration). The differences found in the lakes’ responses may also be due to differences in food web structures i.e. predator abundance and phytoplankton species involved in the seasonal succession, which are in turn strongly influenced by the trophic status of the lake. This means that, the consequences of physical forcing on the phenology of similar zooplankton taxa, located in the same region with similar weather conditions, can differ depending on the biotic properties or hydrodynamics of the lakes concerned. Superimposed over the large scale forcing factors, the local variability can lead to different effects on the thermal structure of the water column in lakes, and consequently on the seasonal pattern of phytoplankton, and the rate of development of zooplankton. Consequently, by highlighting the complexity of the relationships between climate and limnic ecosystems, and warning on the extrapolation of ecological responses to climate, these findings contribute to the debate on the predictability of climate change impacts on aquatic ecosystems.
Acknowledgments

JCM was funded by the French Institute of Biodiversity under the project “Effects of global changes on marine and freshwater ecosystems in Western Europe using plankton indicators”. The authors are grateful to the CIPEL (Commission Internationale pour la Protection des Eaux du Léman) and the SILA (Syndicat Mixte du Lac d’Annecy) that fund the monitoring program for Lakes Geneva and Annecy. This work would not have been possible without the collaboration of Gerard Balvay and Leslie Lainé, who identified and counted the zooplankton taxa.

References

Table and Figure legends

Table I. Morphological and trophic properties of the lakes studied.

Table II. Correlation between species abundance (D.long: *D. longispina*, D. gal/hy: *D. galeata* and *D. hyalina*, E.lo/mi: *Eubosmina*, Lepto: *Leptodora*, Bytho: *Bythotrephes*) and factorial coordinates on the two first axes. ** and * indicate that correlation is significant at p<0.01 and 0.05 respectively.

Table III. Description of the annual structure defined for each subset “Lake/Year”, which are named by a letter (A or G) and a number. The G stands for Lake Geneva and the A for Lake Annecy, the number indicates the year. The Weight: contribution of each subset in the construction of the compromise. Cos²: fit of each subset to the compromise. Axis II: Scores on the second eigenvector on the Euclidean space showing the similarities between the subsets “Lake/Year”.

Fig.1. Box-plot representing the seasonal pattern of: water-temperature in the 0-10m layer, water-temperature in the 0-50m layer, contribution of nanophytoplankton (%) to the total abundance of phytoplankton, abundance of nanophytoplankton (log+1). ● indicate the values recorded in 2003. The horizontal line in the box is the median, the bottom and the top of the box correspond to the first and third quartiles respectively. The “whiskers” are drawn to the nearest value not beyond a standard span from the quartiles which is 1.5*(Inter-quartile Range).

Fig. 2. Temporal maps showing the seasonal patterns and inter-annual changes in the abundance of the different cladoceran groups considered in Lakes Geneva (a: *D. longispina*, b: *D. galeata* and *D. hyalina*, c: *Eubosmina*, d: *Leptodora*, e: *Bythotrephes*) and Annecy (f: *D. longispina*, g: *D. galeata* and *D. hyalina*, h: *Eubosmina*, i: *Leptodora*, j: *Bythotrephes*).

Fig. 3. Compromise for both lakes: A) Projection of all the samples (dots) and barycentres of the months on the space of axes I-II. Barycentres of months are represented by numbers from 1 (for January) to 12 (for December). B) The contribution of the taxa to the formation of the axes is represented by their projection in the corresponding plane of the compromise: Lepto: *Leptodora*, Bytho: *Bythotrephes*, D. gal/hy: *D. galeata* and *D. hyalina*, D.long: *D. longispina*, E.lo/mi: *Eubosmina*.

Eubosmina.
Fig. 4. A-C: Box-plot describing the annual patterns of the cladoceran community observed in Lakes Geneva and Annecy on axis I (A) and II (C) of the compromise. The main species contributing to the formation of the axis (D. gal/hy: D. galeata and D. hyalina, Lepto: Leptodora, Bytho: Bythotrephes, D.long: D. longispina, E.lo/mi: Eubosmina.) are specified for each axis respectively. The dot through the box is the median, the bottom and the top of the box correspond to the first and third quartiles respectively. The “whiskers” are drawn to the nearest value not beyond a standard span from the quartiles which is 1.5*(Inter-quartile Range). B-D: Annual dynamics of the abundance of the cladoceran species that contribute to the formation of axis I (B) and axis II (D).

Fig. 5. Comparison of the exceptional year 2003 and the usual annual patterns of cladoceran succession observed in Lake Geneva.

Fig. 6. Abundance (log+1) of Eubosmina, D. longispina, Leptodora and Bythotrephes during August and September in 2003 (▲) compared to the other years (box-plot) in Lake Geneva. The dot through the box is the median, the bottom and the top of the box correspond to the first and third quartiles respectively. The “whiskers” are drawn to the nearest value not beyond a standard span from the quartiles which is 1.5*(Inter-quartile Range).

Fig. 7. Normalized values of summer averages (May to September) of environmental parameters observed from 1995 to 2002 (box-plot), and in 2003 (▲) in Lake Geneva. The dot through the box is the median, the bottom and the top of the box correspond to the first and third quartiles respectively. The “whiskers” are drawn to the nearest value not beyond a standard span from the quartiles which is 1.5*(Inter-quartile Range). Nano: abundance in nanophytoplankton, Nano%: contribution of nanophytoplankton (%) to the total abundance of phytoplankton, Carn: abundance of carnivorous cladocerans, T0-50: water-temperature in the 0-50m layer, T0-10: water-temperature in the 0-10m layer, Strat: Index of stratification.
Table I.

<table>
<thead>
<tr>
<th></th>
<th>Lake Geneva</th>
<th>Lake Annecy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface (km²)</td>
<td>582</td>
<td>28</td>
</tr>
<tr>
<td>Maximum depth</td>
<td>309</td>
<td>65</td>
</tr>
<tr>
<td>Volume (Km³)</td>
<td>89</td>
<td>1.1</td>
</tr>
<tr>
<td>Mixis regime</td>
<td>Warm monomictic</td>
<td>Warm monomictic</td>
</tr>
<tr>
<td>Trophic state</td>
<td>Eutro-mesotrophic</td>
<td>Oligotrophic</td>
</tr>
<tr>
<td>Country</td>
<td>France/Switzerland</td>
<td>France</td>
</tr>
</tbody>
</table>
Table II

<table>
<thead>
<tr>
<th>Abrev.</th>
<th>Axis I</th>
<th>Axis II</th>
</tr>
</thead>
<tbody>
<tr>
<td>D longispina</td>
<td>D.long</td>
<td>-0.39 **</td>
</tr>
<tr>
<td>D galeata & D hyalina</td>
<td>D.gal/hy</td>
<td>-0.82 **</td>
</tr>
<tr>
<td>E longispina & E mixta</td>
<td>E.lo/mi</td>
<td>-0.22 **</td>
</tr>
<tr>
<td>Leptodora</td>
<td>Lepto</td>
<td>-0.71 **</td>
</tr>
<tr>
<td>Bythotrophes</td>
<td>Bytho</td>
<td>-0.50 **</td>
</tr>
</tbody>
</table>
Table III

<table>
<thead>
<tr>
<th>Subsets</th>
<th>Lakes</th>
<th>Years</th>
<th>Weights</th>
<th>Cos2</th>
<th>Axis2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G95</td>
<td>Geneva</td>
<td>1995</td>
<td>0.27</td>
<td>0.94</td>
<td>0.021</td>
</tr>
<tr>
<td>G96</td>
<td>Geneva</td>
<td>1996</td>
<td>0.26</td>
<td>0.86</td>
<td>0.162</td>
</tr>
<tr>
<td>G97</td>
<td>Geneva</td>
<td>1997</td>
<td>0.25</td>
<td>0.81</td>
<td>0.331</td>
</tr>
<tr>
<td>G98</td>
<td>Geneva</td>
<td>1998</td>
<td>0.24</td>
<td>0.70</td>
<td>0.231</td>
</tr>
<tr>
<td>G99</td>
<td>Geneva</td>
<td>1999</td>
<td>0.25</td>
<td>0.75</td>
<td>0.373</td>
</tr>
<tr>
<td>G00</td>
<td>Geneva</td>
<td>2000</td>
<td>0.27</td>
<td>0.94</td>
<td>0.016</td>
</tr>
<tr>
<td>G02</td>
<td>Geneva</td>
<td>2002</td>
<td>0.26</td>
<td>0.83</td>
<td>0.046</td>
</tr>
<tr>
<td>G03</td>
<td>Geneva</td>
<td>2003</td>
<td>0.23</td>
<td>0.63</td>
<td>-0.405</td>
</tr>
<tr>
<td>A95</td>
<td>Annecy</td>
<td>1995</td>
<td>0.25</td>
<td>0.80</td>
<td>-0.117</td>
</tr>
<tr>
<td>A96</td>
<td>Annecy</td>
<td>1996</td>
<td>0.26</td>
<td>0.83</td>
<td>-0.160</td>
</tr>
<tr>
<td>A97</td>
<td>Annecy</td>
<td>1997</td>
<td>0.26</td>
<td>0.84</td>
<td>-0.041</td>
</tr>
<tr>
<td>A98</td>
<td>Annecy</td>
<td>1998</td>
<td>0.22</td>
<td>0.60</td>
<td>0.384</td>
</tr>
<tr>
<td>A99</td>
<td>Annecy</td>
<td>1999</td>
<td>0.23</td>
<td>0.58</td>
<td>0.006</td>
</tr>
<tr>
<td>A00</td>
<td>Annecy</td>
<td>2000</td>
<td>0.26</td>
<td>0.84</td>
<td>-0.008</td>
</tr>
<tr>
<td>A02</td>
<td>Annecy</td>
<td>2002</td>
<td>0.24</td>
<td>0.76</td>
<td>-0.341</td>
</tr>
<tr>
<td>A03</td>
<td>Annecy</td>
<td>2003</td>
<td>0.23</td>
<td>0.66</td>
<td>-0.524</td>
</tr>
</tbody>
</table>
O. Anneville, J. C. Molinero, S. Souissi and D. Gerdeaux - Figure 2
O. Anneville, J. C. Molinero, S. Souissi and D. Gerdeaux - Figure 3
O. Anneville, J. C. Molinero, S. Souissi and D. Gerdeaux - Figure 4
Figure 5
O. Anneville, J. C. Molinero, S. Souissi and D. Gerdeaux - Figure 6

![Box plots of species distribution](chart.png)