Observations of deep-sea fishes and mobile scavengers from the abyssal DISCOL experimental mining area

Jeffrey C. Drazen¹*, Astrid Leitner¹, Sage Morningstar¹, Yann Marcon²,³, Jens Greinert⁴, and Autun Purser²

¹ Department of Oceanography, University of Hawaii, 1000 Pope Rd, Honolulu, HI 96821, USA
² Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
³ MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany.
⁴ GEOMAR, Helmholtz Centre for Ocean Research, Kiel Germany

* corresponding author, jdrazen@hawaii.edu

Keywords – DISCOL; manganese nodule; teleost; scavenger; Macrouridae, Ipnopidae, Ophidiidae, Zoarcidae, crustacea

Abstract

Industrial interest in deep-sea mineral extraction began decades ago and today it is at an all-time high, accelerated by global demand for metals. Several seafloor ecosystem disturbance experiments were performed beginning in the 1970’s, including the DISturbance and reCOlonization experiment (DISCOL) conducted in the Peru Basin in 1989. A large seafloor disturbance was created by repeatedly plowing the seafloor over an area of ~10.8 km². Though a number of studies in abyssal mining regions have evaluated megafaunal biodiversity and ecosystem responses, few have included quantitative and detailed data on fishes or scavengers despite their ecological importance as top predators. We used towed camera transects and baited camera data to evaluate the fish community at the DISCOL site. The abyssal fish community was relatively diverse with 16 taxa dominated by Ipnops meadi. Fish density was lower in ploughed habitat during the several years following disturbance but thereafter increased over time in part due to changes in regional environmental conditions. 26 years post disturbance there were no...
differences in overall total fish densities between reference and experimental areas, but the
dominant fish, *I. meadi*, still exhibited much lower densities in ploughed habitat suggesting only
partial fish community recovery. The scavenging community was dominated by eelpouts
(*Pachycara* spp), hermit crabs (*Probeebei mirabilis*) and shrimp. The large contribution of
hermit crabs appears unique amongst abyssal scavenger studies worldwide. The abyssal fish
community at DISCOL was similar to that in the more northerly Clarion Clipperton Zone,
though some species have only been observed at DISCOL thus far. Also, further species level
identifications are required to refine this assessment. Additional studies across the polymetallic
nodule provinces of the Pacific are required to further evaluate the environmental drivers of fish
density and diversity and species biogeographies, which will be important for the development of
appropriate management plans aimed at minimizing human impact from deep-sea mining.
1. Introduction

The world’s oceans are becoming increasingly exploited for their resources, and anthropogenic effects now reach the farthest corners and depths of ocean ecosystems (Ramirez-Llodra et al., 2011). New uses of our oceans are emerging. Industrial interest in deep-sea mineral extraction is at an all-time high, accelerated by global demand for minerals such as cobalt, zinc, copper, nickel, and rare-earth elements, which are enriched in seamount crusts as well as manganese nodules and deposited at hydrothermal vents. Currently, the International Seabed Authority has granted 29 exploration contracts to companies to explore for metals and rare-earth minerals in areas totaling >1,200,000 km² of seafloor in the Pacific, Atlantic, and Indian Oceans (www.isa.org.jm). Though the current intensity of commercial interest combined with technological innovations will soon lead to exploitation, this idea has a long history. Thus several seafloor ecosystem disturbance experiments were performed beginning in the 1970’s (reviewed in Jones et al., 2017).

One of these, the DISturbance and reCOLonization experiment (DISCOL) was conducted in the Peru Basin in 1989. A large experimental seafloor disturbance was created by repeatedly plowing the seafloor. Biological surveys were conducted prior to the disturbance and several times thereafter to monitor seafloor ecosystem recovery (Thiel et al., 2001). Studies of the site seven years after disturbance showed only partial recovery (Thiel et al., 2001; Bluhm, 2001).

Similar studies carried out in the north Pacific have also given indications that seafloor communities have not recovered or only partially recovered in periods of 26-37 years following disturbance (Miljutin et al., 2011; Jones et al., 2017; Gollner et al., 2017). This is not surprising given low rates of recruitment and growth common in these ecosystems, and the removal of the hard substrate upon which a large portion of the fauna depends (Amon et al., 2016; Vanreusel et al., 2016; Purser et al., 2017).

Though a number of studies in abyssal mining regions have evaluated megafaunal biodiversity and ecosystem responses, few have included quantitative and detailed data on fishes or scavengers (Leitner et al., 2017). However, many fishes are top predators that can have important influences on communities and ecosystems (Estes et al., 2011; Drazen and Sutton, 2017). Though fishes are mobile and may not suffer immediate mortality from mining, they will be affected by the large sediment plumes created (Oebius et al., 2001) and by the loss of foraging habitat, so they may suffer regionally from local mining activities. Also, top predators can
bioaccumulate metals and other contaminants (Chouvelon et al., 2012; Choy et al., 2009; Bonito et al., 2016) that may be released from the activities of mining. Thus, it is important to characterize the fish community in regions that will likely experience mining in the near future and to begin constructing a biogeography, so that scientists and managers can evaluate potential mining impacts and appropriately locate protected no-mining zones (Wedding et al., 2013).

In 2015 a survey was performed of the DISCOL area using photo and video transecting techniques in a similar manner to the historical surveys of the area conducted into the late 1990s. In addition, archived analogue baited camera images collected shortly after the 1989 disturbance (1989-1992) were digitized and analyzed for fishes and other mobile scavengers, some of which may avoid transecting vehicles (Trenkel et al., 2004; Colton and Swearer, 2010). Our goal was to a) describe the fish and scavenger community in detail for the first time, b) evaluate the fish community response to disturbance and potential recovery, and c) compare the fish and scavenger community to that observed to the north of the equator in the Clarion Clipperton Zone (CCZ) where the majority of abyssal mining exploration licenses have been thus far granted, and where initial pilot mining activities are likely to commence.

2. Methods

In 1989 a ~10.8 km² circular region of the Peru basin in the Pacific, the DISCOL experimental area (the DEA), was artificially ploughed, in an effort to simulate the effects of deep-sea mining (Thiel et al., 2001). The study site (7° 04.4’ S, 88° 27.60’ W) ranges in depth from 4120-4200 m. Sediments are fine grained clays overlain with heterogeneous cover of manganese nodules, sometimes in high density. The plough-harrow device was 8 m wide and when deployed, overturned the first 10-15cm of seafloor sediment, ploughing the nodules into the seafloor and removing this hard substrate from the sediment / water interface. The plough was towed in 78 radial transects through the disturbance area with ~20% of the seafloor directly disturbed by the plough. The most central region of the DEA was the most highly disturbed area crosscut by the majority of plough tows (Fig. 1; Foell et al., 1992).

In 2015 the DISCOL site was revisited and sampled twice (cruises SO242-1 and 2). The initial cruise was conducted in the summer and primarily conducted detailed acoustic and image-based mapping of the plough tracks using Autonomous Underwater Vehicles and ship based sensors. This initial cruise also towed an epibenthic sled (EBS) several times across the seafloor,
removing the top 20 cm of seafloor in trenches of ~2m x 500 m. These sled deployments were conducted to more accurately simulate the upper sediment removal envisioned as a likely consequence of mining. The second of these cruises focused on the detailed photographic study of the historic and recent disturbances mapped during the first cruise.

For investigation of megafauna, including fishes, the Alfred Wegner Institute (AWI) OFOS LAUNCHER towed camera system was used to conduct photographic transects of the seafloor. The OFOS LAUNCHER is identical to the OFOBS system described in Purser et al. (2018), with the exceptions that the OFOS was not equipped with INS, side scan or forward facing sonar systems. OFOS was flown at a height of ~1.7m above the seafloor and used a 23 megapixel downward looking still camera to take images every 15 seconds, each of which also captured the laser points projected by a tri-laser (50 cm spacing) sizing device. Ship speed was maintained at 0.2-0.4 knots.

Given the high heterogeneity of the seafloor area studied, each image was manually assessed to represent one of a range of disturbance categories. These were 1) ‘Reference’ areas, not directly within the target circle of seafloor ploughed in 1989 (DEA), 2) ‘Undisturbed’ areas within the central DEA circle, but not actually impacted by the plough harrow directly, 3) ‘Transition’ images, within which both the edge of a plough track was visible as well as surrounding seafloor, 4) ‘Ploughed’ images within which only ploughed seafloor was visible and 5) ‘EBS’ areas, disturbed a month prior to SO242-2 by the towed epibenthic sled deployed by SO242-1. These five disturbance categories represent increasing levels of physical disturbance.

Image area captured within each image was determined by measuring the spacing of the laser points in a subset of 3663 images using the PAPARA(ZZ)I software application (Marcon and Purser, 2017). The image area of all remaining images was calculated from the camera altitude (distance to seafloor) using a second order polynomial regression of the laser-based measurements. The average seafloor image area was 5.71 m². In some instances, the camera was manually triggered to capture images of fishes that would have been missed in between timed images, or to capture a fish at a more suitable angle for identification. Images were manually annotated for fishes (for octopi see Purser et al., 2017) and for all invertebrates and benthic fauna see Marcon et al. submitted) using a variety of published keys. Fish density was estimated by dividing the number of fish viewed in regular timed images by the area photographed. Manually triggered images were not included in density estimates as these would present a
positive bias towards images with fish in them. Diversity was evaluated using rarefaction curves (on all images, timed and manually triggered, because this approach only requires positive occurrences) to enable comparisons between habitat types that were not sampled at the same intensity.

OFOS transects often crossed several habitat types, so for fish density estimates, the images from each transect were divided into habitat type subsets. Fish density was estimated for each of these by dividing the number of fish viewed in the regularly timed images by the area photographed. For some habitat categories, there were very few images collected during a transect. In this case, we eliminated all the subsets/samples that were unlikely to have seen at least one fish based on the mean density of both large and small samples of 30.6 fish ha\(^{-1}\), translating to a threshold sample area of 330 m\(^2\). If used in the analysis, these small image sets would either bias the results towards zero estimates if no fish present in the small image set, or towards incorrectly high estimates if a few fish happened to be in the small set of collected images. Fish density was compared between habitat types using a permutational ANOVA on a Euclidean distance matrix to account for uneven sample sizes and non-normal data distribution.

Baited cameras are now a widely used tool to census marine fishes (Bailey et al., 2007) because they can attract often sparsely distributed animals to within the census view, including some that might avoid active camera survey tools. Thus, for fully describing diversity and species abundances within a regional fish assemblage, they are indispensable. However, in contrast to transect methods, they are more difficult to use for estimations of accurate animal densities (Priede and Merrett, 1998; Yeh and Drazen, 2011).

During the first post disturbance cruise in 1989 and three years later in 1992 (Sonne cruises 61 and 77), free fall baited cameras (freefall baited observing systems - FBOS) were deployed (Brandt et al., 2004). These utilized a Benthos 35mm survey camera and strobe. Bait was attached to a rod or placed in a small clear plastic tube ~1m from the camera, resting on the seafloor. Oblique images of ~1.7m\(^2\) of the seafloor were taken every 2 to 5.5 min for ~24 to 55 hours, averaging 725 images per deployment. Animals were counted in each image. Metrics extracted from the imagery include the maximum number of each taxa visible in any one image over the camera deployment (MaxN), the time of first arrival for each taxa (\(T_{\text{arr}}\)), and the proportion of images in which a taxa was present for a camera deployment (Yeh and Drazen, 2011; Linley et al., 2017; Leitner et al., 2017). Only species that were clearly attracted to the bait
were enumerated. This eliminated species that were photographed as they were simply drifting or crawling through the field of view. Further, many small amphipods were often present at the bait but could not be reliably counted and so are not included. Deployments in 1989 were made within both the reference and disturbance areas, and an analysis of similarity test (ANOSIM) was used to compare community compositions.

3. Results

3.1 Photographic transects

20 OFOS transects samples were performed resulting in 46 habitat samples (Fig. 1). From these a total of 16733 images were examined with 306 fishes observed in 300 images (Table 1). Fishes were represented by 14 taxa (not including the category “unidentified fishes”; Fig. 2). Several groups were distinct but could not be identified to species whereas others were only identifiable to genus or family. The most common species observed was the benthic Ipnops cf meadi representing 61% of the fish observations. The Ophidiids were the most speciose family observed with 6 operational taxonomic units (OTU), some of which were distinct but could not be identified conclusively.

Across the five different habitat types, sampling effort was very uneven. Within the full data set, images taken of reference area and in unploughed habitat within the experimental area were most abundant (Table 1). Seafloor images showing the disturbed habitat types (transient, ploughed and epibenthic sled (EBS) tracks) were less numerous. For all the data combined, as well as for the unploughed habitat type alone, rarefaction curves suggested adequate sampling as an asymptote was beginning to be reached in both cases (Fig. 3). However, within the other habitat types, rarefaction curves suggested more sampling was required to fully capture the fish diversity. Thus, the use of estimated species richness was needed for diversity comparisons. Interestingly, the disturbed habitat types had higher rarified diversity (ES 26) than the reference area or neighboring unploughed habitat (Fig. 3).

Fish densities were highly variable. Across all sample areas surveyed, seafloor areas imaged ranged from 355 to 7798 m² and fish density ranged from 0 to 71.4 fish ha⁻¹. Across all samples average fish density was 30.2 ± 18.2 fish ha⁻¹ (Fig. 4). Across the habitat types, density did not vary significantly (PERMANOVA, p>0.05). The density of the most common fish, I. meadi, could also be estimated and ranged from 0 to 68 fish ha⁻¹, averaging 18.4 ± 17.5 fish ha⁻¹.
across all samples (Fig. 4). Its density was significantly lower in the ploughed habitat type compared to undisturbed and reference habitats. Only a single *I. meadi* was found in the EBS habitat type (Table 1), but this individual did not occur in a habitat sample of sufficient length for density estimation. *Ipnops meadi* density in the two samples available for analysis was zero.

Our fish density estimates can be compared to those published in Bluhm (2001). Bluhm’s time series of densities suggests that there were no fish observed 6 months post disturbance, then fish density increased at year 3 and had returned to pre-disturbance density levels after 7 years (Fig. 5). At this time, ophiuroids, holothurians, fish and hermit crabs were observed in the plough tracks. We examined this data and the 2015 data for the reference, ploughed and unploughed habitat types, in addition to those presented in Bluhm’s original work using a two factor PERMANOVA. Habitat type and time were significant predictors of fish density with lower fish densities in the ploughed habitat (p<0.01). Also, the densities of fish across the three habitat types changed significantly with time since the disturbance (habitat x time, p<0.05). Fish density was significantly (p<0.05) lower than the other habitat types right after the disturbance, at 3 years post disturbance, and marginally lower at 6 months post disturbance (p=0.057). At 7 years the undisturbed habitat type in the DEA had higher fish density than the reference area. At 26 years, as already mentioned, there was no difference between habitats. Fish densities were similar to levels found in the undisturbed habitats and the reference area at 3 years post disturbance but higher than other times (Fig. 5). It was not possible to evaluate the times series data for *I. meadi* as Bluhm (2001) did not publish species specific results.

3.2 Baited camera observations

Six baited camera deployments were conducted, 5 in 1989 and 1 in 1992 (Table 2). Six taxa of fishes were identified (Fig. 6). The most abundant (MaxN) in the deployments was the eelpout *Pachycara nazca*. This species occurred in all 6 deployments, reached a MaxN of 9 in two of the deployments and on average was present in 55% of the images. Individuals of the rattail *Coryphaenoides* sp. were either *C. armatus* or *C. yaquinae*, or both were present but, we could not differentiate them in the photographs. This taxa was present in all of the deployments but was observed on average in only 2.1% of images, and MaxN was never more than 2. Several ophidiids and a synaphobranchid eel were also observed.
The baited camera also attracted 9 taxa of invertebrates (Table 2). The small shrimp *Hymenopeneus nereus* was present in all of the deployments in relatively large numbers (average MaxN = 9), with up to 15 visible at one time and was present on average in 63% of the images. The hermit crab *Probeebei mirabilis*, was also observed in every deployment but in varying numbers (from 1 to 9) and in 29% of the images. Penaeid shrimp were also observed in every deployment and were the third most abundant and common scavenging species. Two species were identified, *Cerataspis monstrosus* (identified as *Plesiopeneus armatus* in earlier papers; Leitner et al 2017) and *Benthiscymus* sp. Frequently, these could not be distinguished as they differ in the shape of the antennal scale and rostrum which were not always clearly visible. Large Munnopsid isopods were seen in all but one deployment but did not remain in the field of view for long. Ophiuroids were not abundant or common, being observed in three deployments as single individuals, but they stayed in the field of view for a long time (high persistence values).

Two of the camera deployments in 1989 were made in the disturbance area 6 months post event. In one of these deployments there was no obvious sign of disturbance in the limited field of view. In the other, a plough harrow track was clearly visible (FBOS006; Table 2). Low numbers of the benthic eelpout, *P. nazca*, were observed during this deployment. This deployment also had the lowest numbers of the benthic shrimp, *H. nereus*. However, the community composition did not vary significantly between the 1989 deployments in disturbed and reference areas (ANOSIM, p>0.05).

Overall, the diversity observed with the small number of camera deployments was fairly uniform, as evident from the plateau reached in both rarefaction and species accumulation curves (Fig. 7). This was the case for all scavengers and for the fishes alone. The baited cameras observed fewer taxa of fishes compared to the photo transects (Table 1, 2). Many of the fishes observed in the photo transects included less mobile benthic species such as members of the Ipnopidae, Bathysauridae and numerous unidentified ophidiids. However, the baited camera deployments identified two fish species that were not observed in the photo transects, *Barathrites iris* and a Synaphobranchid eel, both mobile scavengers.

4. Discussion

4.1 A description of the fish and scavenging community and relationship to past DISCOL studies
We present some of the first detailed fish assemblage information for the abyssal eastern Pacific where seafloor mining will likely occur. Earlier studies at the DISCOL site presented limited fish assemblage results from the first few years of the experiment and report finding 8 fish taxa with *Ipnops* sp. being the most abundant (Bluhm, 1994). All of the taxa that were observed in these initial investigations were also present in our 2015 survey results, with the exception of *Halosaurus* sp. Moreover, we observed 6 additional taxa in 2015, and together with analysis of the 1989-1992 baited camera deployments, we have observed a total of 16 taxa. Interestingly the earlier camera transect surveys flew the camera system higher off the bottom (3-3.5m vs 1.7m) which is perhaps more appropriate for the survey of larger, mobile fishes.

Advances in photographic identification of abyssal fishes across the Pacific and improvements in photographic quality have resulted in the greater detail in the present analysis.

The baited camera deployments provided additional information on the DISCOL fish community and also provided data on scavenging invertebrate fauna. Past taxonomic works have used trapped specimens to document the presence of the eelpouts *P. nasca* and *P. bulbiceps* (Anderson and Bluhm, 1997) and the ophidiid *B. iris* (specimen deposited at the Senckenberg Museum). The physical specimens provide some vouchers for taxa that were identified from photographs. Two taxonomic studies used the baited camera imagery to tentatively identify the ophidiid *Bassozetus nasus* (Nielsen and Merrett, 2000) and large Munnopsid isopods which were thought to belong to the genus *Paropsurus* (Brandt et al., 2004). Bluhm et al (1995) briefly states that *P. mirabilis* and ophiuroids were commonly seen in the baited camera photos, but these results were not given in any detail. We show the eelpouts, the shrimp *H. nereus*, and hermit crabs are indeed common and regular bait attending fauna at this site (see below for comparisons to other abyssal regions).

4.2 Evaluation of the fish community response to disturbance and potential recovery

Our results 26 years post disturbance, when compared to earlier sampling, provide some insight into the recovery potential of the fish fauna. The striking result found by Bluhm (2001) was that no fishes were observed in the disturbance area within 6 months of the disturbance; however, we show the presence of fish and scavenging invertebrates at this time from baited camera deployments. Samples sizes were low, but the community seems comparable to that in the reference areas at the same time. It seems likely that the scavengers were attracted from the
larger neighborhood, some possibly from proximate reference or undisturbed areas. This could occur even if these animals were not commonly residing in the disturbance area due to habitat or prey community alteration.

Only partial recovery of the fish community has occurred 26 years post disturbance. Total fish density in the ploughed habitat of the DEA increased over time and in relation to the reference and undisturbed habitat suggesting recovery. It should be noted that large interannual changes were evident at the reference site with fish densities peaking 3 years post disturbance and at high levels again at 26 years (Fig. 5). An increase in megafaunal density over the first 7 years of the experiment was already documented and hypothesized to be the result of increased phytodetrital food flux and growing populations regionally (Bluhm, 2001). Such variation in megafaunal abundance is a regular feature of abyssal communities (Kuhnz et al., 2014; Ruhl and Smith, 2004). Comparisons between habitats at a point in time can provide a more robust means to assess recovery after plough disturbance (Miljutin et al., 2011). We found no differences in total fish density between the disturbed and undisturbed habitats at 26 years. Further, diversity (ES 26) was slightly higher in the disturbed habitat areas, although with relatively small sample sizes. However, the most common fish *I. meadi*, that makes up more than half of all the fish observations, had only a third of the density in 26-year-old plough tracks compared to undisturbed and reference areas, and only one individual was seen in the fresh EBS tracks (Fig. 4). The avoidance of *I. meadi* over plough tracks, shows that even the mobile fish community has not fully recovered from the disturbance after more than two decades. This species’ response likely relates to its biology as a rather sedentary, small benthic fish that, based on limited data, feeds on polychaetes, small bivalves, and crustaceans (Nielsen, 1966; Crabtree et al., 1991). Its prey may not have recovered in the tracks (Jones et al., 2017; Borowski, 2001). Most of the other fishes observed are benthopelagic and when swimming across a habitat mosaic might as easily be seen over an old plough track as over other habitat. Even if benthopelagic species tend to favor undisturbed habitat, this would be difficult to see in the data. Our other benthic species include the lizardfish *B. mollis* which preys on mobile fishes and shrimps and *B. sewelli*, which is a larger member of the Ipnopidae, but was too infrequently observed to assess habitat preferences (Table 1).

Conclusions about fish community recovery over time must be taken with caution. With a sparsely distributed fauna and the high variability in density, there are limits on statistical power...
and thus our confidence. The earlier DISCOL surveys differed in methodology to the current surveys including average altitude of the camera above bottom, image quality, and attention to the fishes. Our diversity estimates may well be higher as a result. Density estimates could also be affected by these same factors. The most common fish in the surveys, *I. meadi*, is relatively small and despite reflective eyes (Fig. 2) may have been more visible in our 2015 surveys in closer proximity to the seafloor. The influence many of these parameters have had on abundance estimations of fauna in the DISCOL region has been investigated in detail for a region of the DEA which was surveyed several times during the initial 7-year period and again in 2015. In 2015, the OFOS was deployed at 1.7 and 4 m in this region, and additionally an AUV was flown at 5 m to image the same region of seafloor. The results from these comparative studies (Purser et al. submitted for this special issue) show the sensitivity of density and diversity indices in the DISCOL area to changes in flight height, illumination, and camera type. Larger megafauna, such as fish, were clearly visible in images collected from higher altitudes, therefore resulting in both higher diversity and abundance estimates for a given transect length than achieved with lower flying camera systems. Certainly, methodology plays a very important role in determining the accuracy of sampling strategies in this ecosystem for determination of these parameters.

Our results add to a growing body of literature that generally finds little or partial recovery of faunal communities, even decades after simulated mining disturbances. Epifaunal megafauna density was considerably lower in disturbance tracks made 20 and 37 years prior to re-survey during the OMCO experiment in the CCZ (Vanreusel et al., 2016). Meta-analyses of abyssal disturbance experiments in the CCZ suggest that recovery of density and diversity is faster in mobile than sedentary fauna (Gollner et al., 2017; Jones et al., 2017). For instance, the mobile holothurian community appears to have recovered from disturbance in terms of density and community composition at the DISCOL site after 26 years (Stratmann et al., 2018). Most holothurians are detrital deposit feeders and their food source settling from above may not be greatly affected by the plough disturbance, whereas some fishes, such as *I. meadi*, likely rely upon epifaunal and infaunal macrofauna for food. The meiofauna and macrofauna have not recovered completely after 26 years in the CCZ (Miljutin et al., 2011), or after 7 years at the DISCOL site (Borowski, 2001). Some of the variation in the recovery potential observed between studies is undoubtedly derived from the variation in disturbance type and intensity. The direct benthic scale of actual nodule mining activities is suggested to be from 300-600 km² y⁻¹...
for a single mining license (Oebius et al., 2001; Levin et al., 2016). Plumes of sediment from collectors or from discharge of the ore dewatering plume (Rolinski et al., 2001) will greatly expand this area of effect. Therefore, it seems unlikely that the small-scale disturbance experiments, such as DISCOL (~10.8 km²), will be adequate for evaluating the potential effects of full scale nodule mining. Further, the physical disturbance made in all experimental studies to date have not been directly reminiscent of the impacts actual mining will make in terms of volumes of surface sediment removed or displaced, subsequent sediment compaction, or generation of the high resolution topographical changes associated with the ridges and troughs likely to result from tracked mining vehicle movement (Jones et al., 2017; Doya et al., 2017; Jones et al., 2018).

4.3 Comparison of the DISCOL fish and scavenger communities to those within the CCZ

Nodule mining is likely to affect very large areas of the seafloor over decades (Wedding et al., 2015). Mobile fishes and other scavengers likely have the greatest ability to migrate away from mining disturbances, but they may be affected regionally through the redistribution of prey resources and sublethal effects from toxic metals or sediment plumes. Consequently, the biogeographies of taxa, even mobile species, are an important input to spatial management approaches (Watling et al., 2013). The scale of species distributions will help determine where and how large reserve areas should be in order to protect species. Comparison of the present findings in the south Pacific to those in the CCZ polymetallic nodule province to the north, across the equatorial upwelling, provide some insight into the ranges of abyssal fishes and scavengers in this mining relevant region. Past studies frequently combined fish and scavenger taxa into larger functional groups such as megafauna (Jones et al., 2017), but some studies have presented lists of species, which are the focus of the comparison here.

A number of the fish taxa observed with camera transects in the CCZ have also been identified in the DISCOL area suggesting large species distributions (Table 3). 10 of the 14 taxa in the DISCOL region are shared with the CCZ. Four taxa were identified from DISCOL that were not previously identified from the CCZ region, none of which were abundant. Four fishes were observed in the various CCZ studies but not at the DISCOL site. A number of abyssal species have pan-Pacific and even global distributions (Priede, 2017). However, we are not suggesting that there is only a single community of fishes and scavengers integrated over 1000’s
of kilometers. The overlap between the two areas may be artificially high due to the difficulty in identifying species from photographs, particularly those taken from high altitudes, and hence the use of genera and higher taxonomic categories. Further there are some taxa which can easily be confused depending upon image quality. For instance in the DISCOL site we identified the ophidiid, *Porogadus* sp. which has a long whip like tail and narrow body similar to Halosaurs which have been observed in the CCZ (Amon et al., 2017) and in an earlier study at the DISCOL site (Bluhm, 1994). We suspect that with increasing camera resolution and better taxonomic experience, photographic data and its analysis will improve greatly. Also, taxa are much more easily identified in oblique imagery. For instance, Halosaurs have prominent high pectoral fins and a single short dorsal whereas *Porogadus* has a long low dorsal fin all of which are seen in oblique imagery. We suggest the use of both oblique and vertical cameras on the same platforms in future studies. There has been some suggestion that oblique imagery would also alleviate avoidance issues with mobile taxa, but in the one abyssal study that used both oblique and vertical cameras, greater fish density was found in the vertical imagery (Milligan et al., 2016).

Finally, collecting physical specimens and genetic data would be a great complement to the camera-based approach. Trawling for fish samples in mining claim areas will be challenging due to the great depth and the abundance of nodules, which can break nets and greatly damage specimens. Baited traps are effective for some of the fauna (Leitner et al., 2017; Linley et al., 2016).

The scavenging communities exhibit some interesting differences to those described from the eastern CCZ region and other abyssal Pacific locations. The dominant DISCOL scavengers were the shrimp *H. nereus*, eelpouts *Pachycara* spp., and the hermit crab *P. mirabilis*. The presence of large numbers of hermit crabs at the DISCOL site has been noted in earlier transect studies (Bluhm, 2001), and their large contribution to the scavenging community seems unique amongst abyssal scavenger studies. The most similar finding was a few hermit crabs (*Sympagurus birkenroadi*, MaxN= 2) attending bait from 2000 – 3000m depths off Hawaii (Yeh and Drazen, 2009). The large numbers of *H. nereus* is similar to the community in the eastern CCZ (Leitner et al., 2017). However, the eastern CCZ fishes were dominated by *Coryphaenoides* spp., which were not abundant at the DISCOL site. Overall the DISCOL scavenging community appears more similar to that observed in the western CCZ, which hosted lower numbers of *Coryphaenoides* spp. and greater numbers of ophidiids and shrimp (Leitner et
al., 2017). The differences from east to west in the CCZ have been postulated to be related to the lower surface productivity in the west. Indeed, more oligotrophic regions have been shown to shift the dominance of the scavenging fishes from Macrourids to Ophidiids (Linley et al., 2017; Fleury and Drazen, 2013). However, the average long term chlorophyll concentration at the DISCOL site estimated from the MODIS satellite (30x30km box from 2006-2016) is about 1.5 times higher (0.22 mg chl-a m⁻³) than that reported by Leitner et al (2017) in the eastern CCZ. Whether the community differences observed between the DISCOL and CCZ regions are the result of variations in overlying productivity, species distributions, or other habitat factors cannot be discerned until a greater number of baited camera studies are conducted across the region.

In conclusion, the DISCOL site has a relatively diverse abyssal fish community dominated by *Ipnops meadi*. Fish density increased in the ploughed habitat type over time and became similar to undisturbed habitat types at 26 years post disturbance, but the density of *I. meadi* is still only a third of the undisturbed habitat types indicating only partial recovery of the fish fauna. The abyssal fish communities observed in the central eastern Pacific at DISCOL and the more northerly CCZ are similar with many shared taxa. However, further species level identifications are required which requires the collection of physical specimens through trawling or baited traps. The scavenging community in the DISCOL site is unique in the prevalence of the hermit crab, *P. mirabilis*, which does not appear in the CCZ in either camera transects or baited camera deployments. Not surprisingly, fishes and mobile scavengers appear generally to have large ranges but also large shifts in community composition across the CCZ (Leitner et al., 2017) and across the equator. As commercial mining of polymetallic nodule provinces rapidly progresses, with commercial field trials commencing in the Belgian and German claim areas of the CCZ in the first months of 2019, gaining a better understanding of these remote ecosystems is of paramount importance. Until key fauna, such as the various benthic fish species utilizing these habitats are better known, ensuring that appropriate management plans are developed to best minimize human impact during mining will be extremely problematic.

5. Author Contributions
JCD and ABL analyzed the data and wrote the manuscript. SM annotated the baited camera images and assembled the data. AP and YM designed and conducted the camera transect experiments, quantified image coverage, helped write the manuscript, and generated the map figure. JG digitized and archived the original baited camera images. All authors read and commented on the manuscript.

6. Competing interests
The authors declare that they have no conflict of interest.

7. Acknowledgements
We thank the many DISCOL participants past and present who worked diligently to collect data over a 26-year study. The Moore foundation provided funding for JCD, SM, and ABL to participate in this study. The SO242 cruises and accompanying work was funded by the German Ministry of Education and Science BMBF (grant number 03F0707A-G) through the project Mining Impact of the Joint Programming Initiative Healthy and Productive Seas and Oceans (JPIO).
8. References

Amon, D., Ziegler, A. F., Drazen, J. C., Grisschenko, A. V., Leitner, A. B., Lindsay, D. J., Wicksten, M. K.,
Voight, J. R., Young, C. M., and Smith, C. R.: Megafauna of the UKSRL exploration contract area and
eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata,

Smith, C. R.: Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule
region in the eastern Clarion-Clipperton Zone, Scientific Reports, 6, 30492, 10.1038/srep30492

Anderson, M. E., and Bluhm, H.: Description of a new species of Pachycara Zugmayer, 1911 from the
abyssal south-eastern Pacific and redescription of P. thermophilum Geistdoerfer, 1994, with a new

Bluhm, H.: Monitoring megabenthic communities in abyssal manganese nodule sites of the East Pacific
Ocean in association with commercial deep-sea mining, Aquatic Conservation, 4, 187-201,

Bluhm, H., Schriever, G., and Thiel, H.: Megabenthic recolonization in an experimentally disturbed
abyssal manganese nodule area, Marine Georesources & Geotechnology, 13, 393-416,

Bluhm, H.: Re-establishment of an abyssal megabenthic community after experimental physical
disturbance of the seafloor, Deep Sea Research Part II: Topical Studies in Oceanography, 48, 3841-

persistent, bioaccumulative and toxic pollutants in marine fish, PeerJ, 4, e1573, 10.7717/peerj.1573,
2016.

years after the experimental impact, Deep Sea Research Part II: Topical Studies in Oceanography, 48,

Brandt, A., Malyutina, M., Borowski, C., Schriever, G., and Thiel, H.: Munnopsidid isopod attracted to

Table 1. Numbers of photo transect observations (all images/ timed images only) for fishes in the DISCOL area by habitat type. The percent of images with fishes are calculated from the timed images only.

<table>
<thead>
<tr>
<th>OTU</th>
<th>Family</th>
<th>OTU</th>
<th>Family</th>
<th>total</th>
<th>reference</th>
<th>undisturbed</th>
<th>transition</th>
<th>ploughed</th>
<th>ebs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathysaurus mollis</td>
<td>Bathysauridae</td>
<td>Bathytephlops cf sewelli</td>
<td>Ipnopidae</td>
<td>5</td>
<td>3/3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ipnops cf meadi</td>
<td>Ipnopidae</td>
<td>Liparidae</td>
<td>Liparidae</td>
<td>4/3</td>
<td>1</td>
<td>3/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coryphaenoides armatus/yaquinae</td>
<td></td>
<td>Coryphaenoides leptolepis?</td>
<td>Macruridae</td>
<td>6/5</td>
<td>3/3</td>
<td>3/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bassozetus cf nasus</td>
<td>Macruridae</td>
<td>Bassozetus sp. B</td>
<td>Ophiidiidae</td>
<td>6</td>
<td>3/2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bassozetus sp. B</td>
<td>Ophiidiidae</td>
<td>Bathyonus caudalis</td>
<td>Ophiidiidae</td>
<td>30/26</td>
<td>8</td>
<td>15/12</td>
<td>2</td>
<td>3/2</td>
<td>2</td>
</tr>
<tr>
<td>Leucicorus sp.</td>
<td>Ophiidiidae</td>
<td>Ophiidiidae</td>
<td>Ophiidiidae</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophiidiidae unied</td>
<td>Ophiidiidae</td>
<td>Porogadus sp.</td>
<td>Ophiidiidae</td>
<td>16/14</td>
<td>2</td>
<td>8/6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophiidiidae</td>
<td>Ophiidiidae</td>
<td>Pachycara spp.</td>
<td>Ophiidiidae</td>
<td>11</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unied fish</td>
<td>Zoarcidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#fish 306/281 97/89 148/133 26/25 29/28 6
OTUs 14 10 13/12 9 8 3
images 16733 5964 7155 1209 2055 350
images with fish 300/275 97/89 145/130 23/22 29/28 6
% images with fish 1.6% 1.5% 1.8% 1.8% 1.4% 1.7%
Table 2. Deployment MaxN, persistence (pers.) and Tarr for each bait-attending species by camera deployment. *deployment filmed a plough harrow track.

<table>
<thead>
<tr>
<th>Deployment</th>
<th>FBOS003</th>
<th>FBOS004</th>
<th>FBOS005</th>
<th>FBOS006*</th>
<th>FBOS007</th>
<th>FBOS013</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image interval (min)</td>
<td>5.5</td>
<td>3.5</td>
<td>5</td>
<td>2</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td># images</td>
<td>729</td>
<td>791</td>
<td>681</td>
<td>683</td>
<td>718</td>
<td>734</td>
<td>723</td>
</tr>
<tr>
<td>Latitude</td>
<td>7° 2.12' S</td>
<td>7° 1.97' S</td>
<td>7° 4.83' S</td>
<td>7° 4.53' S</td>
<td>7° 4.55' S</td>
<td>7° 4.72' S</td>
<td></td>
</tr>
<tr>
<td>Longitude</td>
<td>88° 26.53' W</td>
<td>88° 28.57' W</td>
<td>88° 21.33' W</td>
<td>88° 26.25' W</td>
<td>88° 27.92' W</td>
<td>88° 27.63' W</td>
<td></td>
</tr>
<tr>
<td>General location</td>
<td>Reference area</td>
<td>Reference area</td>
<td>Reference area</td>
<td>Disturbance area</td>
<td>Disturbance area</td>
<td>Disturbance area</td>
<td></td>
</tr>
<tr>
<td>Depth (m)</td>
<td>4057</td>
<td>4167</td>
<td>4076</td>
<td>4220</td>
<td>4159</td>
<td>4170</td>
<td></td>
</tr>
</tbody>
</table>

Fishes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Barathrites iris</td>
<td>1</td>
<td>0.4%</td>
<td>5.38</td>
<td>1</td>
<td>3.0%</td>
<td>4.54</td>
<td>1</td>
<td>0.6%</td>
<td>9.34</td>
<td>1</td>
<td>0.3%</td>
<td>15.38</td>
</tr>
<tr>
<td>Barathrites floridanus</td>
<td>2</td>
<td>13%</td>
<td>39.20</td>
<td>1</td>
<td>4.9%</td>
<td>10.48</td>
<td>1</td>
<td>1.3%</td>
<td>18.16</td>
<td>1</td>
<td>21%</td>
<td>2.31</td>
</tr>
<tr>
<td>Coryphaenoides armatus/Yaquinae</td>
<td>1</td>
<td>1.0%</td>
<td>10.11</td>
<td>2</td>
<td>7.4%</td>
<td>1.49</td>
<td>2</td>
<td>2.3%</td>
<td>8.05</td>
<td>1</td>
<td>1.2%</td>
<td>12.40</td>
</tr>
<tr>
<td>Hermatides loricifer</td>
<td>1</td>
<td>0.4%</td>
<td>41.40</td>
<td>1</td>
<td>0.4%</td>
<td>41.40</td>
<td>1</td>
<td>0.4%</td>
<td>41.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pachycara spp.</td>
<td>9</td>
<td>87%</td>
<td>2.07</td>
<td>3</td>
<td>21%</td>
<td>4.23</td>
<td>5</td>
<td>35%</td>
<td>11.55</td>
<td>3</td>
<td>32%</td>
<td>3.00</td>
</tr>
<tr>
<td>Synaphobranchus</td>
<td>1</td>
<td>2.5%</td>
<td>37.02</td>
<td>1</td>
<td>2.9%</td>
<td>3.37</td>
<td>2</td>
<td>11%</td>
<td>23.15</td>
<td>1</td>
<td>0.1%</td>
<td>17.23</td>
</tr>
</tbody>
</table>

Crustaceans

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hymenocera merisa</td>
<td>8</td>
<td>65%</td>
<td>1.23</td>
<td>10</td>
<td>85%</td>
<td>1.07</td>
<td>8</td>
<td>40%</td>
<td>4.00</td>
<td>5</td>
<td>62%</td>
<td>0.34</td>
</tr>
<tr>
<td>Hymenocera antennata</td>
<td>3</td>
<td>69%</td>
<td>0.11</td>
<td>4</td>
<td>20%</td>
<td>1.35</td>
<td>2</td>
<td>60%</td>
<td>5.55</td>
<td>3</td>
<td>21%</td>
<td>1.28</td>
</tr>
<tr>
<td>Hymenocera squamata</td>
<td>1</td>
<td>0.7%</td>
<td>4.57</td>
<td>1</td>
<td>0.4%</td>
<td>15.38</td>
<td>1</td>
<td>1.0%</td>
<td>1.28</td>
<td>1</td>
<td>0.4%</td>
<td>40.01</td>
</tr>
<tr>
<td>Hymenocera americana</td>
<td>2</td>
<td>2.2%</td>
<td>15.02</td>
<td>2</td>
<td>3.3%</td>
<td>2.17</td>
<td>1</td>
<td>0.7%</td>
<td>8.00</td>
<td>2</td>
<td>4.4%</td>
<td>6.16</td>
</tr>
<tr>
<td>Hymenocera bimaculata</td>
<td>2</td>
<td>11%</td>
<td>10.16</td>
<td>1</td>
<td>9.4%</td>
<td>35.50</td>
<td>1</td>
<td>7.2%</td>
<td>36.35</td>
<td>1</td>
<td>9.3%</td>
<td>36.35</td>
</tr>
<tr>
<td>Hymenocera quadrimaculata</td>
<td>2</td>
<td>4.4%</td>
<td>11.44</td>
<td>1</td>
<td>1.6%</td>
<td>39.02</td>
<td>2</td>
<td>4.4%</td>
<td>4.05</td>
<td>1</td>
<td>0.4%</td>
<td>12.12</td>
</tr>
<tr>
<td>Hymenocera longispina</td>
<td>1</td>
<td>0.4%</td>
<td>3.41</td>
<td>2</td>
<td>1.9%</td>
<td>10.55</td>
<td>1</td>
<td>0.3%</td>
<td>19.46</td>
<td>1</td>
<td>0.6%</td>
<td>10.55</td>
</tr>
<tr>
<td>Hymenocera robusta</td>
<td>1</td>
<td>1.8%</td>
<td>0.22</td>
<td>9</td>
<td>32%</td>
<td>0.00</td>
<td>4</td>
<td>27%</td>
<td>2.20</td>
<td>3</td>
<td>12%</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Other taxa

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oostrea</td>
<td>1</td>
<td>0.3%</td>
<td>10.55</td>
<td>1</td>
<td>2.3%</td>
<td>23.25</td>
<td>1</td>
<td>47%</td>
<td>4.37</td>
<td>1</td>
<td>7.8%</td>
<td>1.31</td>
</tr>
<tr>
<td>Ophiura</td>
<td>1</td>
<td>0.7%</td>
<td>21.55</td>
<td>1</td>
<td>2.3%</td>
<td>23.25</td>
<td>1</td>
<td>47%</td>
<td>4.37</td>
<td>1</td>
<td>7.8%</td>
<td>1.31</td>
</tr>
</tbody>
</table>
Table 3. Fish taxa occurrences from DISCOL and abyssal sites of the CCZ. * listed in Bluhm (1994), bc – observed by baited camera only, # only these taxa out of 17 are given in the original reference

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Family</th>
<th>This study</th>
<th>(Amon et al., 2017; Amon et al., 2016)</th>
<th>(Pawson and Foell, 1983)</th>
<th>(Radziejewska and Stoyanova, 2000)</th>
<th>(Tilot, 2006)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathysaurus mollis</td>
<td>Bathysauridae</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Halosauridae</td>
<td>Halosauridae</td>
<td>*</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathytrophlops sewelli</td>
<td>Ipnopidae</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipnops meadi</td>
<td>Ipnopidae</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Liparidae</td>
<td>Liparidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coryphaenoides armatus/yaquinae</td>
<td>Macouridae</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Coryphaenoides leptolepis?</td>
<td>Macouridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barathrites iris</td>
<td>Ophidiidae</td>
<td>bc</td>
<td>bc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bassozetus sp.</td>
<td>Ophidiidae</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bassozetus sp. B (sp 4 in Amon et al 2017)</td>
<td>Ophidiidae</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathyonus caudalis (sp 5 in Amon et al 2017)</td>
<td>Ophidiidae</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucicorus sp.</td>
<td>Ophidiidae</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophidiid sp. 1</td>
<td>Ophidiidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophidiid sp. 2</td>
<td>Ophidiidae</td>
<td>bc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophidiid sp. 3</td>
<td>Ophidiidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophidiid sp. 4</td>
<td>Ophidiidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophidiid sp. 5</td>
<td>Ophidiidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophidiid sp. 6</td>
<td>Ophidiidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porogadus sp.</td>
<td>Ophidiidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhlonus nasus</td>
<td>Ophidiidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histiobranchus bathybicus</td>
<td>Synaphobranchidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synaphobranchidae</td>
<td>Synaphobranchidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pachyura spp.</td>
<td>Zoarcidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoarcidae</td>
<td>Zoarcidae</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Map of the DISCOL study site showing the distribution of OFOS camera transects (colors indicate the 5 habitat types), the OFOS-based fish observations (white circles), and the location of the baited camera deployments (red squares). The white circular pattern and spokes shows the location and extent of the DEA.
Figure 2. Representative images of OTUs identified in the DISCOL region during the 2015 survey. A) Bassozetus cf. nasus b) Bathysaurus mollis c) Bathyonus cf. caudalis d) Bathytyphlops cf. sewelli e) Coryphaenoides armatus/yaquinae f) Coryphaenoides leptolepis g)
Ipnops cf. meadi h) Leucicorus sp. i) Liparidae grey morphotype h) Liparidae bicolor morphotype k) Bassozetus sp. B l) Ophidiid sp. 3 m) Porogadus sp. n) Pachycara cf. nazca.
Figure 3. Rarefaction curves, estimated species richness as a function of the number of fish observations, for OFOS transects across habitat types.

Figure 4. Total fish (light grey) and I. meadi (dark gray) density (mean and standard deviation) from the 2015 OFOS transects by habitat type (timed images only) and for the entire dataset.
The number of separate transects for each habitat type is given under its name. Letter symbols for each habitat indicate significant differences in *I. meadi* density (p<0.05).

Figure 5. Fish density (mean and standard deviation) from predisturbance (1989) to 26 years post disturbance (2015) in the reference area and in the ploughed and unploughed habitats of the DEA. Data from predisturbance to 7 years post disturbance are from Bluhm (2001). Letter symbols for each time indicate significant differences between habitat types (p<0.05). At 0.5 yrs the asterisk indicates a marginal significant difference (p = 0.057).
Figure 6. Representative images of OTUs identified using baited cameras in the DISCOL region. A) *Illypohis* sp. B) Synaphobranchidae C) *Pachycara nazca* D) *Barathrites iris* E) *Leucicorus* sp. F) Large amphipod likely *Eurythenes* sp. G) Munnopsidae H) *Coryphaenoides* sp. I) *Bassozetus c.f. nasus* J) Ophiuroidea K) *Hymenopeneus nereus* L) Octopoda (*Vulcanoctopus* sp.) M) *Benthiscymus* sp. N) *Probebei mirabilis* O) *Munnidopsis* sp P) *Cerataspis monstrosus*

Figure 7. a) Rarefaction and b) species accumulation curves for baited camera observations. Solid lines represent all data and dashed lines are fishes only (both based on MaxN data).