Planning and Execution of System Adaptations in Cloud-Based Environments

Master’s Thesis
Lars Erik Blümke
Motivation
Motivation
Motivation

Sun, 17.00: Germany vs. Mexico

Sun, 17.45 TV-ad during halftime
Motivation

Sun, 17.00: Germany vs. Mexico
Sun, 17.35: Scale up system
Sun, 17.45 TV-ad during halftime
Motivation

Sun, 17.00: Germany vs. Mexico
Sun, 17.35: Scale up system
Sun, 17.45 TV-ad during halftime
Sun, 17.46 System scales up automatically
Motivation

Sun, 17.00: Germany vs. Mexico
Sun, 17.35: Scale up system
Sun, 17.45 TV-ad during halftime
Sun, 17.46 System scales up automatically
iObserve

Image from: https://github.com/research-iobserve

iObserve Overview [Hasselbring et al. 2013]
iObserve Overview [Hasselbring et al. 2013]
Goals

G1: Architectural Integration of an Existing Architecture Optimization Approach

G2: Improvement of an Existing Computation Method for Execution Plans to Address the Availability of the Observed System During Execution

G3: Evaluation of the Approach
The Palladio Component Model (PCM)

- 5 submodels representing different system domains:
 - Repository Model
 - System Model
 - Resource Environment Model
 - Allocation Model
 - Usage Model
- Used in iObserve to represent the observed system
- Implemented with Eclipse Modeling Framework (EMF)
- Serializable

Image from: https://sdqweb.ipd.kit.edu/wiki/File:Pcm-logo-stilisiert.png
Planning
1st Phase of Planning

We have:

- Present-architecture-model (PAM)
- Optimization goals (e.g. better response times, lower operating cost, ...)

We want:

- Candidate-architecture-model (CAM) which improves with respect to the specified goals
PerOpteryx

- Eclipse plug-in
- Evolutionary algorithm
- Uses PCM models
 - Inputs:
 - Present architecture model
 - Optimization goals (degrees of freedom)
 - Output:
 - Candidate architecture model

Using PerOpteryx with iObserve

1st Attempt: Integration as a Dependency

- As an Eclipse plug-in PerOpteryx consists of JARs
- Reference these JARs from iObserve

2nd Attempt: Creating a Standalone RCP-Application

- Export executables manually from Eclipse
 or
- Use Goomph Gradle plugin for automatized export
Architecture Overview
Pipe-and-Filter Architecture of iObserve’s Planning Service
2nd Phase of Planning

We have:

- Present-architecture-model (PAM)
- Candidate-architecture-model (CAM) which improves with respect to the specified goals

We want:

- **Execution plan**
 - consisting of adaptation actions
 - actions transform the real system from its current state (represented by PAM) to its intended state (represented by CAM)
Rule Based Detection of Adaptation Actions

- Drools Business Rule Management System
 - Can be embedded into Java Code
 - Java Objects act as facts
 - Rules are defined in their own language in a separate file
- Define rules to detect adaptation actions from model difference
- Insert PAM and CAM into working memory
- Receive adaptation actions
Allocation and Deallocation

For resource container r:

$\neg r \in PAM \land r \in CAM \rightarrow \text{Allocation of } r$

$r \in PAM \land \neg r \in CAM \rightarrow \text{Deallocation of } r$
Replication and Dereplication

For allocation context c:

\[\neg c \in \text{PAM} \land c \in \text{CAM} \rightarrow \text{Replication of } c \]

\[c \in \text{PAM} \land \neg c \in \text{CAM} \rightarrow \text{Dereplication of } c \]
For allocation context c, c':

$c \in \text{PAM} \land c' \in \text{CAM} \land c = c'$

$\land c\.getRC \neq c'\.getRC \rightarrow \text{Migration of } c \text{ to } c'\.getRC$
Atomic Adaptation Actions

- The detected adaptation actions are composed
- Example: Dereplication
 - Block requests
 - Finish running tasks
 - Disconnect
 - Undeploy
- Replace each composed action by atomic actions
- Add atomic actions to execution plan
Architecture Overview
P&F Architecture of iObserve’s Adaptation Service
Execution
Execution

We have:

- Execution plan

We want:

- Apply the execution plan to the real system
 - Technology dependent implementations needed
 - Kubernetes in our case
Architecture Overview
P&F Architecture of iObserve’s Execution Service
Evaluation

We evaluate three tasks in a feasibility study:

T1: Creation of execution plan

T2: Application of execution plan to the observed system

T3: Expected behavior of the service based architecture
Evaluation Scenarios

We evaluate three adaptation scenarios

S1: Replication of the account component to an existing resource container

S2: Dereplication of the account component

S3:
- Allocation of a new resource container
- Migration of the account component onto this resource container
- Deallocation of the old resource container
Results

Did we receive the expected results?

<table>
<thead>
<tr>
<th>Task/Scenario</th>
<th>S1 (Replication)</th>
<th>S2 (Dereplication)</th>
<th>S3 (De-/Allocation + Migration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (Executionplan)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>T2 (Execution)</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>T3 (iObserve service)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Migration Problem

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>account-546cddf8f-4fjlp</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>56s</td>
</tr>
<tr>
<td>catalog-67c66d6c6f-ss7s4</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>56s</td>
</tr>
<tr>
<td>frontend-69b8d9c7f6-268Br</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>56s</td>
</tr>
<tr>
<td>order-59d6d9bdf4-z42l5</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>56s</td>
</tr>
<tr>
<td>account-546cddf8f-4fjlp</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>57s</td>
</tr>
<tr>
<td>account-59f54677b-qdvf6</td>
<td>0/1</td>
<td>ContainerCreating</td>
<td>0</td>
<td>8s</td>
</tr>
<tr>
<td>catalog-67c66d6c6f-ss7s4</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>57s</td>
</tr>
<tr>
<td>frontend-69b8d9c7f6-268Br</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>57s</td>
</tr>
<tr>
<td>order-59d6d9bdf4-z42l5</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>57s</td>
</tr>
<tr>
<td>account-546cddf8f-4fjlp</td>
<td>1/1</td>
<td>Terminating</td>
<td>0</td>
<td>58s</td>
</tr>
<tr>
<td>account-59f54677b-qdvf6</td>
<td>0/1</td>
<td>ContainerCreating</td>
<td>0</td>
<td>1s</td>
</tr>
<tr>
<td>catalog-67c66d6c6f-ss7s4</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>58s</td>
</tr>
<tr>
<td>frontend-69b8d9c7f6-268Br</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>58s</td>
</tr>
<tr>
<td>order-59d6d9bdf4-z42l5</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>58s</td>
</tr>
<tr>
<td>account-546cddf8f-4fjlp</td>
<td>1/1</td>
<td>Terminating</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>account-59f54677b-qdvf6</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>3s</td>
</tr>
<tr>
<td>catalog-67c66d6c6f-ss7s4</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>frontend-69b8d9c7f6-268Br</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>order-59d6d9bdf4-z42l5</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>account-59f54677b-qdvf6</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>33s</td>
</tr>
<tr>
<td>catalog-67c66d6c6f-ss7s4</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>frontend-69b8d9c7f6-268Br</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>order-59d6d9bdf4-z42l5</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
</tbody>
</table>
Migration Problem

<table>
<thead>
<tr>
<th>NAME</th>
<th>READY</th>
<th>STATUS</th>
<th>RESTARTS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>account-546cdddf8f-4fjlp</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>56s</td>
</tr>
<tr>
<td>catalog-67c6d6c6f-ss7s4</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>56s</td>
</tr>
<tr>
<td>frontend-69b8d9cfc76-26h8r</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>56s</td>
</tr>
<tr>
<td>order-59d6d9bd4f-42264</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>56s</td>
</tr>
<tr>
<td>account-546cdddf8f-4fjlp</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>57s</td>
</tr>
<tr>
<td>account2-59f54f677b-qdfv6</td>
<td>0/1</td>
<td>ContainerCreating</td>
<td>0</td>
<td>6s</td>
</tr>
<tr>
<td>catalog-67c6d6c6f-ss7s4</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>57s</td>
</tr>
<tr>
<td>frontend-69b8d9cfc76-26h8r</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>57s</td>
</tr>
<tr>
<td>order-59d6d9bd4f-42264</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>57s</td>
</tr>
<tr>
<td>account-546cdddf8f-4fjlp</td>
<td>1/1</td>
<td>Terminating</td>
<td>0</td>
<td>58s</td>
</tr>
<tr>
<td>account2-59f54f677b-qdfv6</td>
<td>0/1</td>
<td>ContainerCreating</td>
<td>0</td>
<td>1s</td>
</tr>
<tr>
<td>catalog-67c6d6c6f-ss7s4</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>58s</td>
</tr>
<tr>
<td>frontend-69b8d9cfc76-26h8r</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>58s</td>
</tr>
<tr>
<td>order-59d6d9bd4f-42264</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>58s</td>
</tr>
<tr>
<td>account-546cdddf8f-4fjlp</td>
<td>1/1</td>
<td>Terminating</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>account2-59f54f677b-qdfv6</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>3s</td>
</tr>
<tr>
<td>catalog-67c6d6c6f-ss7s4</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>frontend-69b8d9cfc76-26h8r</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>order-59d6d9bd4f-42264</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>account2-59f54f677b-qdfv6</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>33s</td>
</tr>
<tr>
<td>catalog-67c6d6c6f-ss7s4</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>frontend-69b8d9cfc76-26h8r</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
<tr>
<td>order-59d6d9bd4f-42264</td>
<td>1/1</td>
<td>Running</td>
<td>0</td>
<td>1m</td>
</tr>
</tbody>
</table>

- Pod **account** already terminates before pod **account2** is running
- Account component unavailable for at least 2 seconds

Fix: Deployment action has to wait until the deployed component has actually become available
Conclusions

- We failed to integrate PerOpteryx into iObserve
- We succeeded in providing
 - a rule-based approach for the computation of composed adaptation actions
 - a refinement into atomic adaptation actions to address component dependencies
 - an execution mechanism for system adaptations on Kubernetes cluster
 - a service-based architecture for iObserve
Future Work

- PerOpteryx integration
 - with Goomph
 - on a code basis

- Runtime evaluation of execution results
 - no feedback on success of execution so far
 - conformance between CAM and observed system after execution

- Additional rules for specific scenarios
 - e.g. migrate closely coupled components closer after each other

- Compatibility to different cloud infrastructures
Sources