Biome changes in Asia since the mid-Holocene – an analysis of different transient Earth system model simulations

Dallmeyer, Anne, Claussen, Martin, Ni, Jian, Cao, Xianyong, Wang, Yongbo, Fischer, Nils, Pfeiffer, Madlene, Jin, Liya, Khon, Vyacheslav, Wagner, Sebastian, Haberkorn, Kerstin and Herzschuh, Ulrike (2017) Biome changes in Asia since the mid-Holocene – an analysis of different transient Earth system model simulations Climate of the Past, 13 (2). pp. 107-134. DOI 10.5194/cp-13-107-2017.

Full text not available from this repository.

Supplementary data:

Abstract

The large variety of atmospheric circulation systems affecting the eastern Asian climate is reflected by the complex Asian vegetation distribution. Particularly in the transition zones of these circulation systems, vegetation is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change and to obtain an ensemble of potential mid-Holocene biome distributions for eastern Asia, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient Holocene climate simulations performed in coupled atmosphere–ocean(–vegetation) models. The simulated biome changes are compared with pollen-based biome records for different key regions.

In all simulations, substantial biome shifts during the last 6000 years are confined to the high northern latitudes and the monsoon–westerly wind transition zone, but the temporal evolution and amplitude of change strongly depend on the climate forcing. Large parts of the southern tundra are replaced by taiga during the mid-Holocene due to a warmer growing season and the boreal treeline in northern Asia is shifted northward by approx. 4° in the ensemble mean, ranging from 1.5 to 6° in the individual simulations, respectively. This simulated treeline shift is in agreement with pollen-based reconstructions from northern Siberia. The desert fraction in the transition zone is reduced by 21 % during the mid-Holocene compared to pre-industrial due to enhanced precipitation. The desert–steppe margin is shifted westward by 5° (1–9° in the individual simulations). The forest biomes are expanded north-westward by 2°, ranging from 0 to 4° in the single simulations. These results corroborate pollen-based reconstructions indicating an extended forest area in north-central China during the mid-Holocene. According to the model, the forest-to-non-forest and steppe-to-desert changes in the climate transition zones are spatially not uniform and not linear since the mid-Holocene.

Document Type: Article
Research affiliation: Kiel University > Kiel Marine Science
OceanRep > The Future Ocean - Cluster of Excellence
Kiel University
Refereed: Yes
DOI etc.: 10.5194/cp-13-107-2017
ISSN: 1814-9332
Date Deposited: 10 Jan 2018 13:56
Last Modified: 01 Feb 2019 15:14
URI: http://eprints.uni-kiel.de/id/eprint/41384

Actions (login required)

View Item View Item