
Runtime Information Integration into System
Dependency Graphs

Alexander Barbie

Kiel University
Department of Computer Science

24098 Kiel, Germany

Abstract. Within the last decade, the importance of multi-core proces-
sors increased, due to a leak in performance improvement of single-core
processors. As a consequence, software engineers need knowledge about
concurrency issues. They must be qualified to meet performance require-
ments and to find bugs in concurrent programs.
We enhance a semi-automatic, pattern based approach to support soft-
ware engineers in the parallelization process of sequential Java programs,
by adding runtime information to the system dependence graph in a
graph database. Therefore, we use an extension of Soot to find system
dependencies and save them in a Neo4J graph database. The runtime
information is gathered by Kieker. Further, we propose a tool, based on
a pipe and filter architecture realized with TeeTime, to add these run-
time information via Cypher queries to the Neo4J database. All gathered
information can be visualized via the browser. This tool adds runtime
information correctly to the graph database. However, the tool’s correct-
ness depends on the applications we utilize. If the system dependence
graph contains errors, a possible relationship will not get the supposed
runtime information.

1 Introduction

Since a decade the performance of single-core processors cannot be noticeably
improved by increasing the clock frequency. [14] Therefore, multi-core proces-
sors provide a way out of the performance stagnation. They allow to compute
processes concurrently. Since most of the applications we use are coded sequen-
tially, the multi-core processors do not compute all assignments parallel. Hence,
many parallelization approaches have been proposed [14], e.g, parallel compilers
[2] or recommendation systems [7]. All these approaches have a leak of perfor-
mance increase for many different applications, since they do not restructure the
original source code. However, often performance improvements can be achieved
by breaking dependencies to exploit further parallelization potential [11] . Fully
automatic approaches inherit the issue that they need to over-approximate de-
pendencies that are unknown or indeterminable at compile-time. All well known
parallelization approaches have in common they need experts in concurrency
issues of computer programs. [14]



In [14] the author proposes a semi-automatic parallelization approach for non-
expert software engineers that provides solutions to the problems described
above. The approach allows to iteratively introduce parallelization by applying
a pattern-matching restructuring technique on the system dependency graph of
the given software system. Due to the missing implementation of the runtime
information in the system dependence graph, we enhance this approach and pro-
pose a tool to add runtime information to the system dependence graph.
Structure of this paper: Section 2 presents the foundations one must to know to
follow our approach. We present our approach in Section 3 and evaluate it in
Section 4. The conclusions and future work follow in Section 5.

2 Foundations

This enhanced approach utilized different Java APIs. In the following, these
APIs are presented with a short description.

2.1 The Kieker Framework

Kieker is a monitoring framework that provides methods for dynamic analy-
sis, i.e., for monitoring and analyzing a software system’s runtime behaviour. It
allows application performance monitoring and architecture discovery [5]. Fur-
thermore, Kieker gathers and analyses monitoring data on different abstraction
levels. It also records operation response times and traces of a software run
[12]. A trace is an hierarchical data structure that combines single method calls
to a tree of calls. Each method call knows the parent method in which it was
called and its execution duration. Thus, a trace represents a sequence in which
the methods were called. The monitored trace of an HelloWorld application is
shown in Figure 1.

|-> main(..)
|-> println(..)

Fig. 1. A reconstructed trace of an HelloWorld application.

2.2 The Neo4J Graph Database

Neo4j is an open-source graph database implemented in Java. The database offers
a stand-alone server or is accessible as embedded database in Java applications.
Further, software written in other languages can access Neo4J by using the
Cypher query language through a REST interface. Information is stored in form
of either a relationship, a node, or a property. Nodes and relationships allow any
number of properties. Also, both the nodes and relationships can be labelled.



Labels can be used to narrow searches. New nodes, relationships and properties
can be added at runtime by Cypher queries [8].
The example in Figure 2 illustrates a Neo4J database with three nodes and
relationships. Each node is of type Person. Relationships can be of the types
loves or knows. Cypher queries (see Section 2.6) can retrieve these nodes and
relationships, manipulate them, or create new ones.

Fig. 2. Schematic graph database in Neo4J.

2.3 The Dataflow Analysis Framework Soot

Soot is a framework transforming and analysing Java applications. Since Soot is,
at its core, a compiler, users can develop static analysis tools for Java programs
[10]. There are many extensions that implement additional compiler phases,
which analyse or transform Soot intermediate representations. Some key features
are a simplified three-address intermediate representation of Java byte-code, a
number of pointer analysis and call graph construction algorithms. Furthermore,
it can produce executable Java byte-code as output [6].

2.4 The Pipe and Filter Framework TeeTime

TeeTime is a Pipe-and-Filter Framework for Java and was developed at the Uni-
versity of Kiel. It allows all users to create an analyses or filter (stage) in an
easy way and contains many primitive and composite ready-to-use stages. Some
of the contained stages already interact with Kieker logs (Section 2.1), like re-
constructing traces from monitoring logs.
Teetime supports the possible performance improvement of pipe-and-filter archi-
tectures, since it allows a single-threaded, with no overhead, or a multi-threaded,
with minimal overhead, execution [17]. The clean architecture of the abstract fil-
ters makes it easy to implement your own stages and connect them with other
filters, on a type-safe way.

2.5 System Dependence Graph

A System Dependence Graph (SDG) is an extension of a Program Dependence
Graph (PDG). While PDGs are used to model dependencies between statements



within a procedure, SDGs combine PDGs to model inter-procedural dependen-
cies [4]. Hence, a SDG is a directed multigraph which maps out control and
data dependencies between program statements. We categorise the statement
according to whether they contribute to the program’s structure or behaviour.
As a consequence, each category is represented differently on the graph. Thus,
the large number of different types of nodes and relationships makes it difficult
to visualize the graph in an efficient way [13].
Figure 3 shows the graph representation of a method call that sums up two num-
bers. Due to length of this paper, the gentle reader may get detailed information
in [13].

are represented by data dependence edges (dashed lines). A
full legend for all of the examples featured in this paper is
provided in appendix A.

c=c_in d=d_in

d_in=bc_in=a

int result = c + d return result result_out=result

added=result_out

int added=add(a,b)

private int add(int c, int d)

Figure 1. Example of a simple method call

2.4. Class Dependence Graph

The class dependence graph (ClDG) represents the
classes in a program [3]. It is the next layer up from the
MDG layer. For every class, there exists a class entry ver-
tex, which is connected to the method entry vertices of its
methods via class membership edges. These membership
edges can be tagged as either public, protected or package
(default) to indicate their visibility [4]. If one class inherits
from another, they are linked by a class dependence edge.
The class entry vertex is connected to its data members via
data member edges.

Figure 2 shows the ClDG of classes SimpleCalc and
AdvancedCalc (see nodes CE17 and CE46 in appendix
B). Inheritance is indicated by the class dependence edge
which passes between them. Note that although Advanced-
Calc inherits all of the data members and methods belong-
ing to SimpleCalc (apart from its constructors), it only
needs to be linked to its own specific data members and
methods. Inherited data members and methods can simply
be computed by traversing up the class dependence edge
and along the class membership / data member edges of
SimpleCalc [4].

private int add(int c, int d)

public int getA() public int getB()

public int average() private int divide(int c) public int multiply(int c, int d)

public class AdvancedCalc extends SimpleCalc

public int multiply()

public class SimpleCalc implements Calculator

public AdvancedCalc() public AdvancedCalc(int aIn, int bIn)public power()

public SimpleCalc(int aIn, bIn)

public SimpleCalc()

a b

Figure 2. The ClDGs of the SimpleCalc and
AdvancedCalc classes

Object Representation and Polymorphism The
JSysDG represents different instances of a class individ-
ually; this enables dependence graph operations such as

slicing to take individual objects into consideration [6]. A
statement vertex v which references an object is expanded
into a tree depending on the context in which v is used.
The examples (figures 3-6) are taken from the calculator
example given in appendices B and C. The following four
sections illustrate these possible expansions:

1. v is a parameter vertex representing a statically typed2

object: v is expanded into a tree. Figure 3 illustrates
the callsite for computePower(e) (see node C9 in ap-
pendix), given that it can only accept objects of the
type AdvancedCalc.

computePower(e)

a b

AdvancedCalc e

Figure 3. Example of single-typed parameter
object

2. v is a parameter vertex representing a dynamically
typed3 object: v is connected to a child vertex for each
possible object type and expands each child vertex into
a tree containing data members belonging to that ob-
ject. In figure 4, e can either be of types SimpleCalc
or AdvancedCalc (see node C11 in appendix).

a ab

SimpleCalc

e

b

getStats(e)

AdvancedCalc

Figure 4. Example of polymorphic parameter
object

3. v is a callsite vertex and the method being called is de-
fined in a statically typed object: Because the imple-
mentation of the method can be determined statically,

2The object type can be determined statically, without running the pro-
gram

3The object type can only be determined dynamically

Proceedings of the Third IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’03) 
0-7695-2005-7/03 $ 17.00 © 2003 IEEE 

Fig. 3. Example of a simple method call in the SDG [13].

2.6 The Cyper Query Language

Cypher is a declarative graph query language and is used, e.g., in the graph
database Neo4J. Its structure is borrowed from SQL. Since Cypher is a declara-
tive language its focus is on what to retrieve from a graph, not on how to retrieve
it [9].
Figure 4 demonstrates an example Cypher query. First, all relationships be-
tween the nodes n and m that got a directed relationship of type AGGRE-
GATED_CALLS from n to m, where the nodes got the names StartVertex and
TargetVertex, will be retrieved. Afterwards, we add runtime information to the
relationship, by setting the property runtime with a duration we recorded.

3 Approach

We aim to enhance the visualization of a sequential program in a Java Sys-
tem Dependence Graph (SDG, Section 2.5) using Neo4J and include runtime
information for as many relationships as possible. We overtake the approach’s



MATCH (n) -[r:AGGREGATED_CALLS]-> (m)
WHERE n.name = "StartVertex", m.name = "TargetVertex"
SET r.runtime = methodCallRuntime
RETURN n.name, m.name, r.runtime

Fig. 4. An example Cypher query, which adds the property runtime to a rela-
tionship.

utilized application programming interfaces (APIs). Consequently, we already
got an API that creates and saves the SDG (Section 2.3), one that visualizes the
SDG (Section 2.2), and one that monitors the runtime of method calls (Section
2.1). Following, we solely need to implement an application interface that writes
the runtime information provided by Kieker to the SDG.
In the following we will name the tool, which saves runtime information from
Kieker logs to a SDG in a Neo4J database, KiekerToNeo4J. KiekerToNeo4J will
read the Kieker logs, reconstruct traces of method calls from that logs, and
write all runtime information via Cypher queries into the graph database. A
more precise presentation of the part we implement is given in Figure 5.

Fig. 5. An overview how the approach will be enhanced [16].

3.1 Generate a System Dependence Graph with Soot

To give an compact overview of how this approach works, we take all steps on
a very simple HelloWorld application. The Main-method prints "Hello World",



no further methods are included. The advantage is a small SDG with only one
relationship to which we possibly can add runtime information. Although, the
SDG is larger than only two nodes, the print method is the only method call.
Hence, there is only one trace.
As described in Section 2.3, Soot has many different extensions. In this approach
we use Soot Tutorial [15] to create a SDG of the HelloWorld application. This
extension creates a SDG and saves it in an Neo4J graph database. We did not
implement Soot Tutorial on our own. Hence, we have to assume that Soot Tu-
torial creates all SDGs correctly. Figure 6 shows the SDG of our HelloWorld
application in Neo4J. This SDG contains several different types of nodes and

Fig. 6. A system dependence graph of an HelloWorld application.

relationships. Since we utilize Kieker to record method calls, we concentrate on
well-chosen relationships of the type AGGREGATED_CALLS.

3.2 Retrieve the Runtime Information

Since Soot cannot add runtime information of method calls to the SDG, an-
other tool has to monitor the same application that is saved as SDG in the
database and gather the runtime information. Hence, we use Kieker (Section
2.1) to analyse the application and get its runtime information. Previously, we
need to prepare our application.
First, we create an AspectJ aspect that puts a timestamp before and after each
method call. Since Kieker has abstract aspects that match our requirements, we
can utilized them in a configuration XML file. The difference of both timestamps
represents the runtime of each called method. Secondly, we run Kieker and let it
monitor our program [5]. It will gather all method calls, including all timestamps
before and after each call, and save the results in logs in a separate folder. An



example log is shown in Figure 7. This log saves the type of a method call, the
timestamps before and after calls, the called method, and also the method in
which it was called. Thus, Kieker logs allow us to reproduce the call trace. A
gentle reader discovers the log in Figure 7 contains only one call, although the
SDG got far more nodes and relationships. It is important to remind that we
only look for the runtime information of our application and do not monitor
all internal Java calls. As a consequence, not all relationships in the SDG will
contain runtime information. Kieker monitores the method calls that are repre-
sented in the SDG by the relationship AGGREGATED_CALLS.
Further, does Kieker contain its own tools to run an analysis and returns different
graphs, which represent the behaviour or structure of a monitored application.
Since we cannot retrieve that data and put it in our SDG on an efficient way
with these tools, we build our own tool for that purpose. This tool, named Kiek-
erToNeo4J, is an enhancement of the original approach [14].

3.3 Recreation and Aggregation of Method Calls

First, KiekerToNeo4J has to retrieve the logs in a given directory. Secondly, all
found logs have to be scanned line by line. Third, the lines that represent method
calls will be gathered to create call traces. Afterwards, we aggregate multiple
equal method calls. Thus, we use traces just to traverse through all method calls
and to aggregate them. This aggregated method calls can be parsed to Cypher
queries strings to add runtime information to the equivalent relationships in the
SDG. Due to the sequential reconstruction process, we realize KiekerToNeo4J
with a pipe-and-filter architecture. Therefore, we utilize the pipe and filter frame-
work TeeTime (see Section 2.4).
TeeTime already contains ready-to-use stages to reconstruct traces from Kieker
logs. Figure 1 shows the trace for the HelloWorld application. Additionally, we
can use TeeTime to aggregate traces and to calculate some statistics to them,
like minimal, maximum, and median durations of method calls. However, a trace
contains a sequence of method calls in a tree structure. An aggregated trace does
not aggregate its contained children. It aggregates equivalent traces. Since recur-
sive method calls create new children for each call, these calls are not aggregated
to a single child. In applications the same function can be called recursively thou-
sands of times and each call would generate a new child on a deeper level in the

Fig. 7. The Kieker log of an HelloWorld application.



tree. Thus, a trace of recursive method calls contains equivalent children multi-
ple times, but on different levels. Since we are not interested in the sequence of
method calls, we can filter each method call and aggregate them. Otherwise, the
database could present thousand of relationships just for two nodes. Since this
would be confusing, it harms our idea of finding parallelization potential for a
non-expert software engineer. Furthermore, it is uninteresting if a method needed
1999 times the minimal time to proceed and once time the maximum time. The
minimum and maximum duration of the aggregated method calls show exact
the same at solely one instead of 2000 traces. Further, the median and average
execution time are the important values a software engineer is looking for, if he
wants to find parallelization potential of software. This median duration is the
value that differs the maximum and minimum duration from chance. In Figure
8 is shown how KiekerToNeo4J reproduces the traces.
The stage InitialElementProducer retrieves all logs from a given directory. Af-

Fig. 8. Object diagram of KiekerToNeo4J

terwards, the logs will be read line by line by the Dir2RecordsFilter stage. This
stage returns monitored records that are used to reconstruct a trace in the stage
TraceReconstructionComposite. We traverse the trace in the stage SdgTraceTra-
verser and aggregate multiple equivalent method calls to an single method call.
Equivalent means two method calls got the same parent method call and the
same method declaration. All durations of equivalent calls are saved in a list in
the aggregated method call. SdgTraceTraverser returns a graph that contains
all methods (vertices) and method calls (edges). The stage SdgStatisticsDec-
orator gets the graph via its input port and computes the minimum, maxi-
mum, total, and median runtime for each aggregated method call. Afterwards,
the Cypher queries can be created. Therefore, the stage EdgeToCypherQuery
gets the graph’s edges via its input-port and returns a generated string on its
output-port. For each edge the Neo4J database contains a relationships. This
relationship can be accessed with a Cypher query (see Figure 4).



3.4 Insert the Runtime Information to the Graph Database

The final filter we use in KiekerToNeo2J to import runtime information into a
Neo2J graph database is the filter that transforms the graph’s edges to strings,
as shown in Figure 4. Each in the graph contained edge will be parsed to an
Cypher query as string. Afterwards, the queries are collected in a list of strings.
It is important to add the properties to each relationship, since Soot Tutorial
did not set the properties while the SDG’s creation.
Due to performance issues, we execute all queries at once. Otherwise, each query
would provoke a new database connection and closing after that query. This is
a possible source of error and performance bottleneck for our approach. Kiek-
erToNeo4J uses the embedded Neo4J database. Hence all query strings can be
executed in a loop.

3.5 Final Result

In Section 3 we presented our approach on a simple HelloWorld application. Since
there is only one edge in the SDG, the method call println(..) from the main(..)-
method, which can contain runtime information, we only need to check if the
equivalent relationship in the Neo4J database contains all runtime information
we retrieved. This relationship is shown in Figure 9. The runtime of 0ms is not a
mistake, due to the println operation does not need to execute very long. Kieker
monitors all timestamps in nanoseconds. Since method calls with a duration of
just a few milliseconds are already represented by a large number in nanoseconds,
we need a proper time unit. Humans cannot imagine and compare too large
numbers very well. Thus, we convert nanoseconds to milliseconds and thus loose
precision duo to rounding errors before adding the runtime information.

Fig. 9. Runtime information for the method call from main(..) to println(..).

4 Evaluation

Section 3 portrayed an approach to add runtime information of methods to a
SDG. It was presented exemplary by a HelloWorld application. Hence, we have
to show this approach works correct for larger applications, too.



4.1 Test Scenario

We evaluate the approach manually. Accordingly, we repeat all steps from Sec-
tion 3 on a larger sequential application, than the HelloWorld application. In our
evaluation this application will be named StaticAnalyzer. StaticAnalyzer reads
recursively all Java files in a given directory, creates an abstract syntax tree
(AST) representation, and saves all classes, methods, and loops in three sepa-
rate HTML files. This application contains round about 80 callable methods. An
overview of StaticAnaylzer’s functionality is shown in Figure 10. The runtime of

Fig. 10. Overview of StaticAnalyzer [3].

StaticAnalyzer depends on the specified filesystem, which is searched for Java
files. In this example PMD’s [1] Java source folder is used. PMD contains 331
Java files. StaticAnalyzer traverses the filesystem and reads all Java files. Mean-
while, Kieker monitores StaticAnaylzer while running on PMD and gathers all
runtime information for each method call.

4.2 Methodology

This evaluation does not intend that Soot Tutorial creates a proper SDG. Fur-
ther, we assume that Kieker monitors the runtime information correctly and
TeeTime reconstructs all traces accurately, too. We focus on the criteria for a
correctly added runtime to an relationship. Thus, we define our approach works
properly if Kieker2Neo4J reconstructs a method call, e.g., from node A to node
B, and adds the minimum, maximum, median, total, and average duration, and
the number of calls to an equivalent relationship in the Neo4J database. Mean-
ing, if the database contains a relationship from node A to node B, we add the
mentioned information to that relationship.

4.3 Exprimental Setup

First a Neo4J database of the system dependence graph will be created by run-
ning Soot Tutorial [15] for StaticAnalyzer.
We define an abstract aspect to gather runtime information before and after each
method call, via Kieker, in a XML configuration again. The results are saved in
logs in a separate folder.
All steps taken before, set up the foundation for our approach. KiekerToNeo4J
reproduces all traces, aggregates all method calls and writes them to the SDG



in the Neo4J graph database.
We launch our approach on a MacBook Pro (Midd 2010), including an Intel
Core i5 (2,4Ghz) processor and 4GB DDR3 memory. This approach runs with
the Java JDK 1.8, Neo4J 2.3, Kieker 1.12, and TeeTime 2.1 (including Kieker-
TeeTime-Stages branch).

4.4 Results

Soot Tutorial [15] creates a SDG saved in a Neo4J graph database. The generated
SDG contains about 1037 nodes and 3027 relationships. Due to the SDG’s size,
we can not present the whole graph. Subsequently, Kieker monitores StaticAn-
alyzer and generates logs far larger than the logs of the HelloWorld application.
In Figure 11 we used Kieker’s build-in analysis tools to create an assembly com-
ponent dependency graph of StaticAnalyzer to be able to compare the Kieker
results to the output of KiekerToNeo4J.

'Entry'
<<assembly component>>

@2:aufgabe3.application.StaticAnalyzer
min: 0ms, avg: 869ms, max: 3387ms,

total: 3476ms

4

<<assembly component>>
@1:aufgabe3.dirparsing.Dir2JavaFiles

min: 76ms, avg: 76ms, max: 76ms,
total: 76ms

1
<<assembly component>>

@3:aufgabe3.fileparsing.JavaFile2Ast
min: 0ms, avg: 0ms, max: 0ms,

total: 0ms
331

<<assembly component>>
@5:aufgabe3.fileparsing.Transformator

min: 0ms, avg: 0ms, max: 1ms,
total: 1ms

13710

<<assembly component>>
@9:aufgabe3.fileparsing.AstElementTraverser

min: 0ms, avg: 1ms, max: 304ms,
total: 463ms

331
<<assembly component>>

@4:aufgabe3.fileparsing.ClassTransformator
min: 0ms, avg: 0ms, max: 1ms,

total: 1ms

<<assembly component>>
@6:aufgabe3.fileparsing.MethodTransformator

min: 0ms, avg: 0ms, max: 1ms,
total: 2ms

<<assembly component>>
@7:aufgabe3.fileparsing.ForLoopTransformator

min: 0ms, avg: 0ms, max: 5ms,
total: 5ms

<<assembly component>>
@8:aufgabe3.fileparsing.ForEachLoopTransformator

min: 0ms, avg: 0ms, max: 0ms,
total: 0ms

3641

13710

14281

2037

2078

Fig. 11. An assembly component dependency graph of StaticAnaylzer generated
by Kieker.

KiekerToNeo4J reproduces 4 traces with 57387 method calls from the Kieker
logs. These four traces can be found in Figure 11, too. Further, does the graph
show that KiekerToNeo4J recreated all traces and method-calls. The follow-
ing method call filter compounds them to 40 aggregated method calls. Hence,
the sink stage collects 40 Cypher queries as string. All in all, runtime infor-
mation were added to 29 relationships in the graph database. KiekerToNeo4J
takes 808ms to read the logs, 202ms to create the traces, and 3368ms to ag-
gregate the method calls. Both stages, the one to compute the statistics for all
method calls and the Cypher query generator stage got no measurable impact on



the runtime. The execution of this 40 queries took 7348ms. Due to the SDG’s
size of StaticAnalyzer, we cannot show the whole SDG. Thus, we only show
the relationships we added runtime information to. 12. We will not discuss all

Fig. 12. All nodes and relationships that contain runtime information in the
SDG.

single relationships. Instead we show the results exemplary on the method call
dfsF ileSearch, which searches recursively for all Java files in a directory. This
method was called 367 times and took in total 2882ms to execute. Following,
each call was executed in average 7ms. The fasted call was executed in min-
imum 0ms and the slowest in maximum of 416ms, the median of all calls is
0ms. There were no errors in the queries and it took about 11, 726ms seconds
to read the Kieker logs, reconstruct all trace, create aggregated method calls,
parse the method calls to Cypher queries, and execute all queries.

4.5 Discussion

Due to the representation of a SDG, not all relationships illustrate a method call.
A SDG contains many more dependencies, than just method calls. Accordingly,
we cannot add runtime information to all relationships in the Neo4J database.
Hence, there cannot be more than 40 relationships that hold runtime informa-
tion. On the contrary, it would be a bug in our approach if all relationships
would hold runtime information.
Kieker recorded 40 different method calls in StaticAnaylzer and KiekerToNeo4J
executes 40 Cypher queries. StaticAnaylzer contains 80 method calls. Since



some methods are called multiple times or will not be recorded by Kieker, i.e.,
toString() methods, our results are valid.
4 of that method calls got no parent call. Since these 4 methods were executed
in the constructor of StaticAnalyzer, this missing parent calls are marked as
’Entry’. KiekerToNeo4J will parse this calls to Cypher queries, but Neo4J will
not find any relationship that matches this query. Thus, only 36 relationships
could possibly contain runtime information.
As shown in Figure 12, some methods got multiple identical relationships of
AGGREGATED_CALLS to another method. Thus, some of the 29 shown re-
lationships got equivalent runtime information. Ignoring equal relationships, we
got 15 different relationships holding runtime information. However, 15 of pos-
sible 36 relationships looks like an error in our query generation stage.
On this account, we ran Cypher queries manually to look up the missing rela-
tionships. As a result, we found this relationships are missing in the SDG. Due
to the usage of Soot Tutorial to create this SDG, it must be a failure in Soot
Tutorial. It did not create all relationships from the application’s code. Further-
more, do the SDGs created by Soot Tutorial differ from each other in different
versions of Soot Tutorial. A further key aspect of the approach’s correctness is
its performance. Section 4.4 presents the runtime information of each step. From
the point of the size of the Kieker logs, this seems to be a appropriate runtime.
On the other hand, we also parsed all 57387 method calls to Cypher queries and
executed them. Neo4J took 513272ms to execute all queries. All in all, Kieker-
ToNeo4J needed about 8 minutes for all steps. Due to the time it took to parse
and save the queries in a list of strings (3652ms) for that run, this larger run-
time must be the reason of the time it takes the embedded version of Neo4J to
execute the queries. In average each query was executed in 8.95ms. Meaning,
this is not a bug in our approach. However, Neo4J is a potential bottleneck in
this approach.
All in all our approach works properly. Recursive or multiple equal method calls
will be aggregated. KiekerToNeo4J parses all queries and executes them. Our dis-
cussion shows, that Soot Tutorial got bugs and does not create all relationships
properly.

4.6 Threats to Vadility

We evaluated our approach manually. Therefore, we presented our approach
on a simple HelloWorld application and evaluated the correctness with a larger
application, named StaticAnalyzer. Due to the utilization of various open-source
tools for our approach, we have to assume all of them work accordingly. Further,
we cannot guarantee Soot Tutorial generated a proper and full SDG, since there
is no evaluation that validates the correctness of Soot Tutorial.
All runtime information are taken by Kieker on one software run. Thus, the
runtime information can be distorted, since all applications are executed on
one personal computer. Hence, background processes can corrupt the runtime
of method calls. However, we intended to show we add runtime information
correctly to the SDG, not how they are measured.



5 Conclusions and Future Work

In this paper we enhanced an approach for finding parallelization potential based
on a static analysis. We utilized an extension of Soot, called Soot Tutorial [15], to
generate an Java system dependence graph, saved in a Neo4J graph database, of
an HelloWorld application. Afterwards, the same application was monitored by
Kieker to retrieve runtime information. All Kieker logs were read by our in Sec-
tion 3 proposed KiekerToNeo4J tool. Since this tool is based on a pipe-and-filter
architecture, TeeTime is utilized to implement this architecture. Furthermore,
TeeTime already got some ready-to-use stages to reconstruct all traces mon-
itored by Kieker. We implemented new stages to parse the traces to Cypher
queries and to run them all in a embedded version of Neo4J. The results were
presented in Figure 9.
Since the approach in Section 3 was proposed exemplary on a small HelloWorld
application, we had to show in our evaluation (Section 4) that this approach
works correctly on larger applications (StaticAnalyzer), too. Accordingly, we
used Soot Tutorial again to create the Java SDG of this application. Afterwards,
all method calls were recorded with Kieker. KiekerToNeo4J recreated all traces
from the Kieker logs and executed all parsed Cypher queries. Since the SDG is
to large to show it as whole, we presented a small part of the results in Figure
12.
All in all our tool works correctly, as far as we could evaluate it. The presen-
tation of the SDG is confusing, consequently only the method-calls should be
shown to find parallelization potential. Bugs can be in the implementation of
Soot Tutorial [15], in the Kieker logs, or in the trace reconstruction filters of
TeeTime. Furthermore, the execution of a large number of queries takes quite
long. We indicated the embedded version of Neo4J as a bottleneck for our ap-
proach. Following, we maybe find potential here to increase the efficiency of our
approach.

5.1 Future Work

In our approach we use the standard representation of a graph in Neo4J. This
graph is far to large and confusing. As a consequence, we maybe gain not the full
potential of our enhanced approach. Hence, the representation of the SDG could
be optimized a lot. Additionally, a GUI could simplify the usage of Kieker2Neo4J.
Unnecessary queries, like queries for method calls without a parent call, could
be filtered out before execution.
Another aspect could be the usage of the REST interface Neo4J provides. Since
Kieker can monitore programms written in other programming languages than
Java, e.g., C [5], this approach could deliver the runtime information for a SDG in
other programming languages. However, this implies the usage of Neo4J’s REST
interface. Since we propose an approach to add runtime information, we did not
focus on the efficiency of this approach. Although it is based on a pipe-and-filter
architecture, the whole approach has potential to parallelize tasks.



References

[1] T. Copeland and X. Le Vourch. Pmd - don’t shoot me messanger, 2015.
URL http://pmd.github.io.

[2] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S.
Lam. Interprocedural parallelization analysis in suif. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(4):662–731, 2005.

[3] W. Hasselbring and C. Wulf. Assignment 5 (task 3) in software engineering
for parallel and distributed systems, 2015.

[4] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using depen-
dence graphs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(1):26–60, 1990.

[5] Kieker Project. Kieker User Guide, Apr. 2013. URL http://
kieker-monitoring.net/documentation/.

[6] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The soot framework
for java program analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), 2011.

[7] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri. Identifying potential
parallelism via loop-centric profiling. In Proceedings of the 4th international
conference on Computing frontiers, pages 143–152. ACM, 2007.

[8] Neo4J. Neo4j website, 2015. URL http://www.neo4j.com/.
[9] neotechnology. The Neo4J Manuel v.2.3.1, 2015. URL http://neo4j.com/

docs/stable/cypher-introduction.html.
[10] Sable Research Group. Soot. URL http://sable.github.io/soot/.
[11] A. Udupa, K. Rajan, and W. Thies. Alter: exploiting breakable dependences

for parallelization. ACM SIGPLAN Notices, 46(6):480–491, 2011.
[12] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A framework for ap-

plication performance monitoring and dynamic software analysis. In Pro-
ceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE 2012), pages 247–248. ACM, Apr. 2012. ISBN 978-1-
4503-1202-8.

[13] N. Walkinshaw, M. Roper, and M. Wood. The java system dependence
graph. In Proceedings of the 3rd IEEE International Workshop on Source
Code Analysis and Manipulation, pages 55–64. IEEE, 2003.

[14] C. Wulf. Pattern-based detection and utilization of potential parallelism in
software systems. In Software Engineering 2014, 2014.

[15] C. Wulf. Soot tutorial, 2015. URL https://build.se.informatik.
uni-kiel.de/gitlab/chw/SootTutorial.

[16] C. Wulf. Slides: Runtime information integration into system dependency
graphs, 2015.

[17] C. Wulf and N. Tavares de Sousa. Teetime - the next-generation pipe-and-
filter framework for java, 2015. URL http://teetime.sf.net/.

http://pmd.github.io
http://kieker-monitoring.net/documentation/
http://kieker-monitoring.net/documentation/
http://www.neo4j.com/
http://neo4j.com/docs/stable/cypher-introduction.html
http://neo4j.com/docs/stable/cypher-introduction.html
http://sable.github.io/soot/
https://build.se.informatik.uni-kiel.de/gitlab/chw/SootTutorial
https://build.se.informatik.uni-kiel.de/gitlab/chw/SootTutorial
http://teetime.sf.net/

	Runtime Information Integration into System Dependency Graphs
	Alexander Barbie
	1 Introduction
	2 Foundations
	2.1 The Kieker Framework
	2.2 The Neo4J Graph Database
	2.3 The Dataflow Analysis Framework Soot
	2.4 The Pipe and Filter Framework TeeTime
	2.5 System Dependence Graph
	2.6 The Cyper Query Language

	3 Approach
	3.1 Generate a System Dependence Graph with Soot
	3.2 Retrieve the Runtime Information
	3.3 Recreation and Aggregation of Method Calls
	3.4 Insert the Runtime Information to the Graph Database
	3.5 Final Result

	4 Evaluation
	4.1 Test Scenario
	4.2 Methodology
	4.3 Exprimental Setup
	4.4 Results
	4.5 Discussion
	4.6 Threats to Vadility

	5 Conclusions and Future Work
	5.1 Future Work




