Physical controls of Southern Ocean deep-convection variability in CMIP5 models and the Kiel Climate Model

A. Reintges¹, T. Martin¹, M. Latif¹,², and W. Park¹

¹ GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
² University of Kiel, Kiel, Germany

Corresponding author: Annika Reintges (areintges@geomar.de)

Key Points:
- Variability of open-ocean deep-convection varies widely among climate models with implications reaching beyond the Southern Ocean
- Stratification influences the timescale of deep-convection variability in these models
- Sea ice volume affects the models’ predominant regime: convective or non-convective

Abstract
Global climate models exhibit large biases in the Southern Ocean. For example, in models Antarctic bottom water is formed mostly through open-ocean deep-convection rather than through shelf convection. Still, the timescale, region, and intensity of deep-convection variability vary widely among models. We investigate the physical controls of this variability in the Atlantic sector of the Southern Ocean, where most of the models simulate recurring deep-convection events. We analyzed output from eleven exemplary CMIP5 models and four versions of the Kiel Climate Model (KCM). Of several potential physical control parameters that we tested, the ones shared by all these models are: Stratification in the convection region influences the timescale of the deep-convection variability, i.e. models with a strong (weak) stratification vary on long (short) timescales. And, sea ice volume affects the modeled mean state in the Southern Ocean: large (small) sea ice volume is associated with a non-convective (convective) predominant regime.
1 Introduction

Variability in the Southern Ocean on multi-decadal and longer timescales is hardly detectable in observations owing to a too short instrumental record. Hints for the existence of long-term internal Southern Ocean variability on multi-decadal and longer timescales are indicated by reconstructions based on, for instance, tree ring records [Lara and Villalba, 1993; Cook et al., 2000; Villalba et al., 2012] and Antarctic ice core and sediment records [e.g., Jones et al., 2016]. Climate models provide an opportunity to learn more about long-term variability in the Southern Ocean. Control simulations that cover hundreds or thousands of years reveal variability modes in the Southern Ocean: In the Kiel Climate Model (KCM), a global ocean-atmosphere-sea ice model, it is shown that the Atlantic Meridional Overturning Circulation (AMOC) exhibits a quasi-periodic multi-centennial variability that is driven by Southern Ocean processes [Park and Latif, 2008]. In further studies based on the KCM the multi-centennial variability mode is reported also for the Southern Ocean sea surface temperature (SST) and is related to the onset and shutdown of Southern Ocean deep-convection [Martin et al., 2013; Latif et al., 2013].

Open-ocean deep-convection events are rarely observed in the Southern Ocean. Satellite-based ice observations were launched in 1972 and since then only one major event occurred: during the three consecutive winters of 1974 to 1976 an open-ocean polynya—an ice-free area surrounded by sea ice—of roughly 250,000 km² appeared [Carsey, 1980; Gordon, 2014]. Observations suggest that Antarctic Bottom Water (AABW) is mainly formed at the Antarctic continental margins [Orsi et al., 1999]. However, ocean and climate models have difficulties to simulate the processes at the Antarctic shelf due to their small spatial scales [Heywood et al., 2014]. In models AABW is typically formed by open-ocean deep-convection which may cause biases in Southern Ocean [Heuzé et al., 2013]. The ability of the models participating in the Coupled Model Intercomparison Project phase five (CMIP5) to capture the observed bottom water properties and the recent trend in sea ice is limited [Heuzé et al., 2013; Zunz et al., 2013] and different strengths of deep-convection are simulated [de Lavergne et al., 2014] with consequences for the ventilated water volume [Behrens et al., 2016]. In many models the simulated mixed layer is too warm, too light, and too shallow which leads to an increased stability of the water column and prevents deep-convection in winter [Sallée et al., 2013a; Sallée et al., 2013b]. This will also affect the carbon exchange with the ocean as active deep-convection enhances the rate of carbon uptake [Sarmiento et al., 1998; Bernardello et al., 2014]. CMIP5 projections of future climate, however, show a freshening of the Southern Ocean sea surface, which causes a stronger stratification and eventually a ceasing of deep-convection in the Southern Ocean [de Lavergne et al., 2014].

The above CMIP5-based studies mostly discuss the presence and regional consequences of open-ocean deep-convection accepting it as part of the modeled mean state under pre-industrial or present-day climate. However, in most models the deep convection is in fact associated with pronounced variability on an interannual to multi-decadal timescale. Simulations with the KCM showed that the variability is key to link the Southern Ocean deep convection to various other processes and quantities of global importance, such as surface air temperature, sea level pressure and associated modes, precipitation, Antarctic sea ice, ocean heat content, meridional density gradient in the ocean, Drake Passage transport and AMOC strength [Park and Latif, 2008; Martin et al., 2013; Latif et al., 2013; Martin et al., 2015; Pedro et al., 2016]. Motivated by the aforementioned earlier studies indicating significant differences in simulated Southern Ocean deep convection location, frequency, and intensity among CMIP5 models we here compare these models with different realizations of the KCM focusing on the deep convection’s variability, its time scales and potential physical controls.
For this, we analyze eleven CMIP5 models with prominent deep convection variability and four control simulations of the KCM. From those models we identify common principles that control Southern Ocean deep-convection variability. In chapter 2 we describe our methods, models and experiments, and in chapter 3 the results are presented. A summary follows in chapter 4.

2 Method and Models

2.1 Method / Definitions

Our focus in this study is the (re-)occurrence of open-ocean deep-convection under stable climate condition. The deep-convection is a winter phenomenon. Therefore, we use only the September mean model output from extensive control simulations most of which were performed using pre-industrial climate conditions. For all models we calculate the September mixed layer depth by taking the depth of the ocean where the potential density difference to the surface reaches 0.01 kg/m³. As nearly all models exhibit deep-convection in the Atlantic sector of the Southern Ocean, we restrict our analysis to 60°W-60°E and 50°S-70°S. A few models exhibit deep-convection also in the Ross Sea or other Southern Ocean regions. The spatial restriction enables us to identify single convection events and their direct interactions. Here we identify deep-convection events through a depth threshold of 3000 m that must be exceeded by the September mixed layer depth. A year is called convective if the integrated area with deep-convection covers at least 50,000 km² in the Atlantic sector. These definitions are similar to those of de Lavergne et al. [2014] but diverge regarding the mixed layer depth defining density difference (they used 0.03 kg/m³), the region of interest, which we limit to the Atlantic sector, and the deep convection defining thresholds of mixed layer depth (they used 2000 m) and coherent horizontal extent (they chose a minimum of 100,000 km²). Furthermore, in our analysis we define a main convection region for each model which equals the area in the Atlantic sector where the mixed layer depth exceeds 3000 m for at least 5 % of all years provided.

2.2 CMIP5 Simulations

We use pre-industrial control integrations of 11 models from CMIP5 (Coupled Model Intercomparison Project phase 5) [Taylor et al., 2012]. Our selection omits models that are permanently convecting or never convecting with regard to the mixed layer threshold of 3000 m. We further omit models that provide less than 500 years of output from their pre-industrial control simulation, as the modeled periods associated with deep-convection variability can be multi-centennial. The CMIP5 models used in this study are listed in the supplementary Table S1. All of them feature deep-convection in the Weddell Sea but only four of them in the Ross Sea.

2.3 Kiel Climate Model Simulations

In our analysis we also incorporate the Kiel Climate Model (KCM), which is a global coupled ocean-atmosphere-sea ice model [Park et al., 2009]. Its components are the ECHAM5 atmosphere general circulation model [Roeckner et al., 2003] and the NEMO ocean-sea ice general circulation model [Madec, 2008] coupled by the OASIS3 coupler [Valece, 2006]. In the KCM no form of flux correction and no anomaly coupling is applied. We use four control
experiments to analyze Southern Ocean deep-convection variability. These originate from two versions of the model: Two experiments are conducted with the older version, KCM1.2, which has an atmospheric horizontal resolution of T31 (~3.75°) and 19 vertical levels. The other two experiments are conducted with the KCM1.4 which has a higher atmospheric horizontal resolution of T42 (~2.8°). Furthermore, KCM1.2 and KCM1.4 differ, for example, in the stratus cloud and the oceanic advection schemes, and in certain parameters, specifically those of the sea ice component. Discrepancies in the model results between KCM1.2 and KCM1.4 can thus not be associated with the different grid resolutions conclusively. The two experiments of the KCM1.2 have both present-day CO₂-concentration and only differ in a single sea ice parameter. This causes a larger amount of sea ice in the KCM1.2b compared to the KCM1.2a [Martin et al., 2013]. The two experiments with the KCM1.4 employ different CO₂-concentration. One uses present-day CO₂-concentration (KCM1.4a) and the other one pre-industrial (KCM1.4b). In all four experiments the ocean-sea ice model runs on a 2° Mercator mesh with 1.3° on average and an increased meridional resolution of 0.5° close to the equator. The ocean model has 31 vertical levels. The KCM1.2 simulations were used in previous studies (KCM1.2a [Park and Latif, 2008 and 2010; Ba et al., 2013; Wu et al., 2016]; and KCM1.2b [Martin et al., 2013; Latif et al., 2013; Martin et al., 2015]).

Details of the KCM experiments are summarized in Table S2. Since the differences in model setup (or external forcing) are comprehensive, we treat the four KCM runs like individual models extending the total number of models to 15. The particular knowledge of the KCM’s different setups yields further insight into the physical processes regulating convection variability.

3 Results

In climate models deep-convection is usually not a persistent state but highly variable. A deep winter mixed layer is an indicator for convection events. Therefore, we use the individual main convection region of each model as described in chapter 2.1. All of the 15 models have main convection regions in the Atlantic sector with 10 models agreeing in showing a center in the Weddell Sea (Fig. 1a). Only seven models feature additional main convection regions in other parts of the Southern Ocean, four of them in the Ross Sea (supplementary Figure S1). While the specific model setup and mean climate clearly affects the exact location and extent of the deep convection, the Atlantic sector of the Southern Ocean, in the following defined at the area 60°W-60°E / 70°S-60°S (black box in Fig. 1a), is clearly preferred by the models, and we thus focus our analysis on this region.

During deep-convection the cool surface water mixes with the warmer water below. As a result deep-convection events are characterized by warm sea surface temperature (SST) anomalies. To measure the periodicity of deep-convection variability we construct an index by averaging the September-mean SST of the Atlantic sector. The frequency power spectrum of the index is visualized in Figure 1b for all 15 models. It reveals red noise characteristics with large differences between the models. Some models exhibit the strongest variability in the multi-centennial timescale, for example KCM1.2a and KCM1.2b, others in the multi-decadal timescale, such as the GFDL models (Fig. S2). Spectra of the Atlantic sector September mean mixed layer volume exhibit very similar peaks (not shown). This supports the notion that the SST variations are indeed associated with deep-convection variability. In some models, pronounced variability due to deep-convection variability appears at multi-centennial but also at multi-decadal timescales. In general, none of the models exhibits deep-convection variability with a specific constant period. Deep-convection events rather appear
within a model-dependent range of timescales.

Figure 1. (a) The number of models (out of 15) showing deep convection (according to their ‘main convection region’ defined in chapter 2.1) at the given grid point. The Atlantic sector of the Southern Ocean (60°W-60°E / 50°S-70°S) is marked by the bold black contour line. (b) Power spectra of the September sea surface temperature (SST) index area-averaged over the Atlantic sector from all 15 analyzed models.

The onsets and shutdowns of deep-convection can be seen in the timeseries of the September mixed layer volume integrated over the Atlantic sector (blue line in Fig. 2) and in the September ocean heat content integrated from 300 to 2000 m over the Atlantic sector (red line). The depth range of 300 to 2000 m approximately covers the model grid levels at which heat is accumulated during periods without convection (Fig. S4). In all four exemplary models displayed in Figure 2 (see Fig. S3 for all 15 models) the mixed layer volume is anti-correlated to the heat content. Martin et al. [2013] investigated the relationship between the Southern Ocean heat content and deep-convection events in KCM1.2a and KCM1.2b: During non-convective periods heat that originates from the North Atlantic and enters the Southern Ocean at intermediate depth is accumulated. This warm deep water is also saltier than the sea surface in the Southern Ocean maintaining stability of the water column. Destabilization of the water column results in convective overturning and the sub-surface heat is lost to the atmosphere. Figures 2 and S3 suggest that this process works also in other models than the KCM.

The four models displayed in Figure 2 illustrate the range of different deep-convection behavior that we find in the full model ensemble. The smoother heat content timeseries (red curve) reveals multi-decadal variations in the KCM1.4b and in the GFDL-ESM2M. Although the important difference between the two models is that the KCM1.4b remains longer in the non-convective regime than the GFDL-ESM2M. In contrast, the BCC-CSM1.1 and the KCM1.2a have pronounced multi-centennial variability. These two models differ in their convective mean state, as the BCC-CSM1.1 prefers the non-convective and the KCM1.2a the convective regime. In summary, we find that the models have different timescales and also
different tendencies to stay in one regime or the other. The latter can be measured by the percentage of convective years. Thus, the aim of the following analysis is to find the key factors that control the timescale and the percentage of convective years.

Figure 2. September mean oceanic heat content integrated from 300 to 2000 m and over the Atlantic sector (in red) and the September mixed layer volume (MLV) of the Atlantic sector (in blue). The four models shown here are exemplary for the different characteristics of deep-convection behavior as given in the panel heading. The correlation coefficient (r) between the MLV and the heat content is given below the model name. Please note that the ranges of the y-axes differ.

Several possibilities exist to define and quantify a characteristic timescale of simulated deep-convection variability. The first possibility is to use the duration of the non-convective regime, during which heat accumulates in the Weddell Sea region at mid-depth; a second option is given by the equivalent duration of the convective regime, during which this heat is lost to the atmosphere, and third, one can measure the timescale of the oscillation resulting from shifting between these two regimes. While these measures are not independent, the non-convective regimes can be distinctly shorter or longer than the convection events and all three timescales are model-dependent. We first turn to the non-convective regime which is terminated by the onset of deep-convection. To initiate deep-convection the water column must become unstable. The long-term mean stratification of the ocean is, however, itself closely related to the occurrence of deep-convection, which mixes the water masses and thus weakens the stratification. As a measure for the stratification we show on the x-axis in Figure 3a the September mean potential density difference between 300 m and 10 m averaged over the individual main convection region during non-convective years. A large difference reflects a strong stratification. The convective years are excluded as these only show the effect of deep-convection, which would be a well-mixed water column with a density difference close to zero. Given the vertical profiles of the potential density that are nearly saturated at a depth of 300 m and do not show any inversions (right panel of Fig. S4), we conclude that the density difference between 300 and 10 m is a robust measure of the models’
stratification strength. Also when the threshold level of 300 m was varied to up to 3000 m the results changed only slightly. The y-axis of Figure 3a shows the average length of the non-convective periods, which is calculated as the average number of consecutive non-convective years. The resulting average durations are relatively short, because we include even the shortest periods (i.e., single years) in this calculation. Further, we include simulations with different external forcing (e.g., pre-industrial and present day greenhouse gas concentrations) and thus different climate mean state. While this can be assumed to have an impact on the stratification, it should not affect the causal relation that we are testing.

Based on all 15 models main convection region stratification and duration of non-convective years are correlated at \(r = 0.52 \), which is significant at the 90%-confidence level (Fig. 3a). This means that models with generally weak stratifications tend to have shorter non-convective periods. This could be explained by the diffusive vertical redistribution of the heat accumulating at mid-depth, so that average or higher diffusion rates could more easily turn the balance toward the convective regime in these latently unstable models. Similarly, anomalous windy, cold and dry atmospheric conditions and stronger brine rejection from sea ice formation favor convection in weakly stratified models. However, frequent deep-convection continuously erodes the stratification, which hints at a positive feedback acting in such cases. Therefore, it must be stressed that the relation between the timescale and the stratification might be partly established through the effect of the timescale on the stratification. For example, models that stay in the non-convective regime only for short periods will contain a larger contribution of convection effects in their stratification strength averaged over the non-convective periods. Nevertheless, choosing a shorter averaging window, e.g. a decade [Martin et al., 2013; Zanowski et al., 2015], to compute a “non-convective” reference is not applicable to our multi-model analysis, because in 8 of the 15 models the average length of non-convective periods is shorter than 8 years.

Because there is no straightforward measure for the deep-convection variability timescale, we modified the definition to test the robustness of the relationship with the stratification. The resulting correlation coefficients range between \(r = 0.41 \) and 0.66 (see Table 1); all are statistically significant with 90% confidence.

Sea ice is a key factor for convection processes because it acts as a lid that moderates the oceanic heat loss to the atmosphere. To initiate strong open-ocean deep-convection in winter, a local polynya is crucial to enhance the heat loss. A polynya can form either through divergent winds that mechanically remove sea ice or thermally, through a heat flux from the deeper ocean to the surface [Williams et al., 2007]. We illustrate the relationship between the deep-convection variability and the sea ice volume of September in Figure 3b and 3c (see this relationship for March in Fig. S5 and the sea ice seasonal cycle in Fig. S6). In Figure 3b September sea ice volume within the Atlantic sector averaged over the non-convective years is plotted against the average duration of the non-convective regime (i.e., same y-axis as in Figure 3a). Again, we exclude the convective years. This largely removes the effect of deep-convection which is a reduction in sea ice area and volume in the main convection region. We find a positive correlation between the September sea ice volume and the timescale of the non-convective periods with a significant coefficient of \(r = 0.53 \) (Fig. 3b). A thick sea ice cover reduces the heat loss from the ocean to the atmosphere and by that protects the surface ocean from too much buoyancy loss, which otherwise could initiate deep-convection. If the sea ice extent or area is used instead of the sea ice volume the correlation becomes insignificant (Table S3), which stresses the importance of the sea ice thickness.

Furthermore, we find that the two control variables, stratification and sea ice volume, are independent. The correlation coefficient for stratification and the September sea ice volume is
Two main conclusions can be drawn from Figure: first, strong ocean stratification promotes long periods of inactive deep-convection through isolating the heat reservoir below the surface layer from surface interactions that could disturb the stability. Second, a large sea ice cover protects the surface layer from a large buoyancy loss that could initiate deep-convection, thereby elongating the phases of inactive deep-convection.

Besides the timescale of variability, we find a measure for the models’ tendency to prefer the convective regime over the non-convective. For this we use the percentage of convective years and contrast it with the September sea ice volume during non-convective years (Figure 3c). We find a significant anti-correlation of $r = -0.47$. Models with a low (high) sea ice volume tend to stay rather in the convective (non-convective) regime for two reasons: first, greater sea ice volume is in most cases associated with greater sea ice extent so that deep-convection in open water as has been observed in 1974-1976 [Carsey, 1980] is inhibited by the ice cover. And second, energy from the warmer subsurface layers is first used to melt the sea ice before major heat loss to the atmosphere can occur, initiating deep-convection. By acting as a lid inhibiting direct air-sea fluxes and providing meltwater that stabilizes the surface layer, sea ice prolongs the non-convective regime and the resulting percentage of convective years is low. For example, the KCM1.2a and the KCM1.2b were implemented with a different sea ice parameter. The total Antarctic sea ice volume in KCM1.2a is 3.6×10^{12} m³ as opposed to 7.7×10^{12} m³ in the KM1.2b. As a result the KCM1.2a exhibits convection 86% of all years but the KCM1.2b only in 33% of all years.
Figure 3. The roles of stratification and sea ice for deep-convection variability based on all analyzed models. (a) Stratification (x-axis) versus the timescale of deep-convection variability (y-axis). The stratification is computed as the potential density difference (300 m minus 10 m) of September averaged over the individual main convection regions in the Atlantic sector during years without deep-convection. The timescale of variability is here defined as the average number of consecutive non-convective years (this definition was modulated; the resulting correlation coefficients are listed in Table 1). The dashed black line depicts the observed stratification with some uncertainty, however, as the corresponding convection region is estimated from a single deep-convection event during the years 1974 to 1976. (b) September mean sea ice volume averaged over the Atlantic sector during non-convective years (x-axis) versus the timescale of deep-convection variability (same y-axis as in (a)). (c) September mean sea ice volume (same x-axis as in (b)) versus the percentage of convective years (y-axis). The solid black line is the linear regression with the correlation coefficient (r) given in one of the upper corners; correlation coefficients that are significant with 90% confidence are given in bold.
Table 1. Definitions of the deep-convection timescale and associated correlations with the stratification strength averaged over the non-convective years. These correlations were computed as a test of the relation depicted in Fig. 3a (only the definition of the timescale was modulated).

<table>
<thead>
<tr>
<th>Timescale definition</th>
<th>Correlation coefficient (with stratification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>average length of non-convective periods (analogous to Fig. 3a)</td>
<td>$r = 0.52$</td>
</tr>
<tr>
<td>average length of convective periods</td>
<td>$r = 0.60$</td>
</tr>
<tr>
<td>e-folding time of the auto-correlation function of the Atlantic sector heat content 200-3000m</td>
<td>$r = 0.55$</td>
</tr>
<tr>
<td>e-folding time of the auto-correlation function of the Atlantic sector mixed layer volume</td>
<td>$r = 0.65$</td>
</tr>
<tr>
<td>e-folding time of the auto-correlation function of the Atlantic sector SST index</td>
<td>$r = 0.66$</td>
</tr>
<tr>
<td>maximum in the power spectrum of the Atlantic sector SST index</td>
<td>$r = 0.41$</td>
</tr>
</tbody>
</table>

4 Conclusions

Open-ocean deep-convection in the Southern Ocean varies considerably among CMIP5 models and different configurations of the KCM regarding location, frequency, intensity, and the percentage of convective years. Based on 15 models with pronounced deep-convection variability, we find stratification strength and sea ice volume to be controlling factors among a variety of climate models which use a wide range of different parameterizations and numerical approaches. The stratification at the convection site influences the timescale of deep-convection variability: Models with a convection site that is weakly stable during the non-convective years tend to simulate deep-convection variability on shorter timescales than models with a more stable stratification. The presence of sea ice prevents the occurrence of deep-convection by freshening the surface when melting and by inhibiting direct heat loss to the atmosphere. In models with a large sea ice volume during non-convective years the non-convective regime dominates. In the 15 models included in our study, deep-convection variability depends critically on the models’ mean state. On the one hand, the simulated open-ocean deep-convection may be called “spurious” [e.g. Heuzé et al., 2015] as most models overestimate its spatial extent and in many cases also its frequency of occurrence in historical simulations [e.g. de Lavergne et al., 2014]—major open-ocean deep-convection was observed only once in the Weddell Sea and it is unclear whether future climate conditions will allow its re-appearance. On the other hand, the physical mechanism acting in the models producing open-ocean deep-convection oscillations bears intriguing similarities with those of the event in the 1970s. The lack of observations from the pre-industrial era to the mid-20th century makes conclusions about its frequency of occurrence extremely difficult. Our findings can thus define new metrics for model comparison in the Southern Ocean and demonstrate the need for circumpolar sea ice volume estimates from, for instance, remote
sensing, and intensified observational coverage of the hydrography in deep convection prone regions.

Acknowledgments

We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison (PCMDI) provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This study was supported by the North Atlantic Climate FP7 Collaborative Project (NACLIM) funded by the European Union, grant agreement no. 308299, by the InterDec project funded by the German Federal Ministry for Education and Research (BMBF), grant no. 01LP1609B, and by the national paleo climate modelling initiative PalMod also funded by the BMBF, grant no. 01LP1503D. This work was further funded by the Cluster of Excellence 80 "The Future Ocean". The "Future Ocean" is funded within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments. The KCM integrations were performed at the DKRZ Hamburg and the Computing Centre of Kiel University. The KCM data used for this paper can be made available from the authors upon request from W. P. (wpark@geomar.de).

References

Carsey, F. D. (1980), Microwave Observation of the Weddell Polynya, Monthly Weather

Latif, M., T. Martin, and W. Park (2013), Southern Ocean Sector Centennial Climate

Zunz, V., H. Goosse, and F. Massonnet (2013), How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent?, The Cryosphere, 7(2), 451–468, doi:10.5194/tc-7-451-2013.