
Microservice Architectures for
Scalability, Agility and Reliability in E-Commerce

Wilhelm Hasselbring
Software Engineering Group

Kiel University

D-24098 Kiel, Germany

Email: hasselbring@email.uni-kiel.de

Guido Steinacker
Otto GmbH & Co KG

Werner-Otto-Straße 1–7

D-22179 Hamburg, Germany

Email: guido.steinacker@otto.de

Abstract—Microservice architectures provide small services
that may be deployed and scaled independently of each other,
and may employ different middleware stacks for their im-
plementation. Microservice architectures intend to overcome
the shortcomings of monolithic architectures where all of the
application’s logic and data are managed in one deployable unit.

We present how the properties of microservice architectures
facilitate scalability, agility and reliability at otto.de, which is one
of the biggest European e-commerce platforms. In particular, we
discuss vertical decomposition into self contained systems and
appropriate granularity of microservices as well as coupling,
integration, scalability and monitoring of microservices at otto.de.
While increasing agility to more than 500 live deployments per
week, high reliability is achieved by means of automated quality
assurance with continuous integration and deployment.

I. INTRODUCTION

Traditionally, information system integration aims at achiev-

ing high data coherence among heterogeneous information

sources [1], [2]. However, a great challenge with integrated

databases is the inherently limited horizontal scalability of

transactional database management [3]. One of the inten-

tions of microservice architectures is to overcome the limited

scalability of such monolithic architectures. A system has

a microservice architecture when that system is composed

of many collaborating microservices; typically without cen-

tralized control [4]. Microservices are built around business

capabilities and take a full-stack implementation of software

for that business area. The following topics are of eminent

relevance.

1) Vertical Decomposition for Microservices: The trade-

off between many small microservices and a few more

coarse grained services must be considered in microservice

architectures. To achieve an appropriate granularity, we pro-

pose a vertical decomposition into self contained systems

(scs-architecture.org) along business services, as exemplified

at otto.de. Besides scalability, an appropriate modular structure

supports program comprehension, resilience (inhibiting error

propagation) and autonomous teams with good knowledge of

their vertical domain.

2) Loose Coupling and Eventual Consistency: Decentral-

izing responsibility for data across microservices has impli-

cations for managing updates. The traditional approach to

dealing with updates is to use transactions to guarantee con-

sistency when updating multiple resources. This approach is

often used within monoliths. Using transactions this way helps

with consistency, but imposes significant coupling, which is

problematic across multiple services. Distributed transactions

are notoriously difficult to implement and as a consequence

microservice architectures emphasize transaction-less coordi-

nation between services, with explicit recognition that consis-

tency may only be eventual consistency and problems are dealt

with by compensating operations.

3) Microservices for Scalability and Fault Tolerance: Non-

functional attributes, such as scalability and fault tolerance for

high availability, are addressed by microservice architectures.

A consequence of using microservices is that applications

need to be designed such that they can tolerate the failure

of individual services. Since services can fail at any time,

it is important to be able to detect the failures quickly

and, if possible, automatically restore services. Microservice

applications put a lot of emphasis on real-time monitoring

of the application, checking both technical metrics (e.g. how

many requests per second is the database getting) and business

relevant metrics (such as how many orders per minute are

received). Monitoring can provide an early warning system

of something going wrong that triggers development teams to

follow up. Scalable systems should allow to react to changing

workloads automatically via elastic capacity management, as

offered by cloud infrastructures. With microservice architec-

tures, you can dynamically replicate those microservices to

cloud infrastructures that are under heavy load. It is not

necessary to scale the complete system, as it would be required

with a monolithic system. Small services are easier to deploy,

and since they are autonomous, are less likely to cause system

failures when they go wrong.

4) Microservices and DevOps: The DevOps movement

intends to improve communication, collaboration, and inte-

gration between software developers (Dev) and IT operations

professionals (Ops). Automation is key to DevOps success:

automated building of systems out of version management

repositories; automated execution of unit tests, integration and

system tests; automated deployment in test and production

environments; including performance benchmarks [5].

5) Scalable Microservice Deployment: Containerization is

a new trend that is well suited for microservices [6]. By uti-

Preprint of: Wilhelm Hasselbring, Guido Steinacker: "Microservice Architectures for 
Scalability, Agility and Reliability in E-Commerce" 
In: Proceedings 2017 IEEE International Conference on Software Architecture Workshops.



lizing containers, for instance via Docker (www.docker.com),

one can deploy service instances with lower overheads than via

operating-system virtualization. The deployment on compute

clusters or on the cloud is performed using containers running

in cluster-management infrastructures such as Apache Mesos

(mesos.apache.org). These cluster-management infrastructures

schedule containers onto nodes in a compute cluster and

manage load balancing among containers on these clusters.

6) Scalable Microservices Development: The well known

Conway’s Law states that organizations which design systems

are constrained to produce designs which are copies of the

communication structures of these organizations [7]. If the

organizational structure is decomposed vertically and accord-

ing to the microservices structure into cross-functional feature

teams, scaling development capacities according to changing

business requirements is enabled. The feature teams should

be highly independent, having members of all roles and skills

that are required to build and maintain their microservices. Mi-

croservices reinforce modular structure, which is particularly

important for larger teams. Decoupling teams is as relevant as

decoupling software modules.

II. MICROSERVICES AT OTTO.DE

Having a turnover of more than 2.563 billion Euros in

business year 2015/2016 and up to 1 million visitors per day,

otto.de is one of the biggest online shops in Europe. In 2011

Otto started a complete re-implementation of their e-commerce

software from scratch. The drivers for this decision primarily

were non-functional requirements like scalability, performance

and fault tolerance. Regarding scalability and agility, they were

not only thinking about technical scalability in terms of load

or data. Particularly, a solution that was scaling with respect

to the number of teams and/or developers working on the

software at a given time was needed. In addition to that, it was

planned to practice DevOps including continuous deployment,

in order to deliver features quickly to the customer.

What was found initially was somewhat unusual, but in the

end highly successful: Instead of setting up a single develop-

ment team to create a new platform for the shop, Otto was

actively employing Conway’s Law by starting development

with initially four separate teams. Consequently, they were

not building a single, monolithic application, but a vertically

decomposed system consisting of four loosely coupled appli-

cations: Product, Order, Promotion, and Search/Navigation. In

the following years, Otto founded more teams and systems.

Today, there are 18 Teams working on 45 different applications

in 12 so-called “verticals” as illustrated in Figure 1.

A vertical is a part of the platform that is responsible for

a single bounded context in a business domain [8]. Verticals

could be as small as a microservice, but most of the time, they

are more coarse grained. Communication between verticals is

only allowed by accessing REST APIs in the background using

the “Backend Integration Proxy” – see Figure 1. This makes

it easier to ensure that slow or unavailable applications cannot

tear down other applications or the whole shop with a snowball

effect.

Fig. 1. Current Vertical Decomposition at otto.de

Verticals follow the “Shared Nothing” principle: They do

not share state, no infrastructure components beside of the two

Proxies, no database or other shared resources. Verticals do not

make use of HTTP sessions, shared caches or similar things.

Only a very limited amount of client-side state (using cookies

or local storage) is shared between different systems, in order

to have a common understanding on who is accessing the

shop. The big advantages of shared-nothing architectures are

excellent horizontal scalability and improved fault-tolerance.

The reason for this is apparent: if two components are not

sharing anything, they are obviously unable to have a negative

impact on each other.

1) Integrating Verticals at otto.de: All pages of the shop

contain fragments from different verticals: a preview to the

shopping cart, a navigation structure, maybe some products or

other parts. In order to integrate these fragments, the following

principles for the “Page Assembly Proxy” are used [9]:

• Fragments that are not part of the primary content or

fragments that are initially invisible are preferably inte-

grated at the client side using AJAX [10]. The shopping

cart preview, for example, is one of these features that is

included on almost every page.

• Primary content is integrated at the server side using Edge

Side Includes [11] resolved through a Varnish Reverse

Proxy (www.varnish-cache.org).

This way, the verticals are integrated at the user interface into a

single page website. Users experience the shop as a consistent

entity, despite the backend decomposition.

2) Communication among Verticals at otto.de: All verticals

have redundant data using pull-based data replication. This

ensures that a vertical is able to deliver the content without

having to access other verticals during a request. At otto.de,

the pull principled via the Apache Kafka high-throughput dis-

tributed messaging system (kafka.apache.org) in combination

with Atom feeds (tools.ietf.org/html/rfc4287) is implemented.



There exist a few features with push notifications in situations,

where guaranteed ordering and delivery is not required.

3) Verticals and Microservices at otto.de: For microser-

vices, as for other software components, it is essential to de-

sign for the appropriate granularity [12]. The vertical domains,

as illustrated above, could be small enough to be implemented

as a microservice – but they may also be too coarse grained.

Thus, it is sometimes necessary to further refine those vertical

pillars: If possible by extracting independent features from

existing code into a new vertical (ideally being a microser-

vice), or by cutting the vertical into a distributed system of

microservices.

4) Scaling Delivery Pipelines at otto.de: To deploy fre-

quently and automatically, continuous deployment pipelines

[13] are used for every single application. Every commit is

first checked out, compiled, packaged, deployed and tested

in the continuous-integration stage. After all the tests have

passed, the container is deployed to the next stage, called

testing. This stage is used to run load and integration tests and

is also used to approve stories by the product owners. Because

all teams are continuously integrating, this stage contains the

latest development versions of all verticals.

The last step before going live is the pre-live stage, where

the next deployment of a service is tested against those

versions of other services, which are currently deployed and

live. Another suite of automatic (and some manual) integration

tests is executed, to ensure the compatibility of new and old

versions of the software being deployed. The final step is the

deployment to the live environment.

Due to the high number of deployment pipelines at otto.de,

traditional continuous-integration servers like Jenkins (jenkins.

io) reach their limits. If you need to keep dozens of pipelines

up to date and in a similar configuration, you have to engineer

these pipelines as any other critical software components.

Meanwhile, the pipelines are implemented with the internal

domain-specific language LambdaCD (www.lambda.cd) to

describe and run deployment pipelines. Because LambdaCD

pipelines are nothing else but microservices responsible for

building, testing and deploying a single application, they are

running in the same infrastructure as other microservices. They

can be tested, they are running locally on a notebook without

any extra continuous-integration or application server, and –

interestingly enough – they can be debugged just like any other

software system.

5) Agility and Reliability at otto.de: At otto.de, most mi-

croservices are deployed fully automatically after every single

push to the version control system. Automation is key to

DevOps success: automated building of systems out of version

management repositories; automated execution of unit tests,

integration tests, and system tests; automated deployment in

test and production environments.

Since the start of 2015, more and more microservices were

introduced within the verticals. Meanwhile, the number of live

deployments increased from 40 to currently more than 500

deployments per week. Figure 2, blue line, shows the number

of live deployments per week for the last two years.

At the same time, the reliability is retained and even

improved: The number of live incidents is not following

these numbers, but is staying on the same, very low level;

refer to Figure 2, red bars. The incidents are counted since

2015, thus no incident data is available for 2014. However, it

indicates that the quality assurance measures implemented for

continuous integration and deployment really take effect for

reliability.

6) Monitoring Microservices at otto.de: Every feature team

has at least two large screens beside their team space: one

is used to monitor the deployment pipelines and additional

build-related information, the other monitor provides various

graphs and metrics for all the microservices and verticals of

the team. The increasing number of microservices is already

becoming a challenge for some teams. Basic monitoring and

alarming is not sufficient anymore. In the future, it is planned

to find solutions to automatically detect anomalies [14] in all

the available metrics, such that the dashboards can give an

overview about only those graphs that are currently of interest.

7) Dynamic Scaling of Microservices at otto.de: Via moni-

toring the CPU utilization and the number of incoming request,

otto.de is able to react to changing workloads automatically

via elastic capacity management [15]. With the microservice

architecture, those features that are under heavy load are

dynamically replicated. Developers are now able to set up,

deploy and scale microservices without any support from

the operations team. Applications can be scaled dynamically,

depending on the current load that a single microservice is

facing.

8) Code Sharing and Reuse at otto.de: Some code to

implement common cross-functional requirements is required.

For example, many microservices regularly run data import

jobs, because of polyglot persistence. A common solution

to implement such cross-cutting concerns is to extract the

required code into a number of libraries that are shared among

all services. However, the downside of this approach would be

a tight coupling of service implementations. Particularly, third-

party dependencies would restrict teams in their freedom to

choose the best solution for the particular problem domain.

We argue that code should not be shared among microser-

vices to avoid dependencies; only reuse of framework code

as open source software is recommended. In order to keep

teams and applications as independent and loosely coupled as

possible, no code is shared between verticals or microservices.

Beside of the already mentioned frontend assets, there is only

one exception to this rule: General-purpose code that is loosely

coupled, highly coherent and “good” enough to be open

sourced may be published on GitHub (github.com/otto-de).

Other teams are free to use these libraries – or to write their

own solutions.

Apparently, open sourcing the code instead of sharing com-

mon private libraries seems to be almost the same. However,

the open-source approach has some psychological effects:

Developers show a tendency to apply higher quality standards

if they know that the code will be publicly available.



Fig. 2. Number of life deployments per week at otto.de over the last two years. Despite the significant increase of deployments, the number of live incidents
remains on a very low level.

III. CONCLUSIONS AND TAKE AWAY

Microservice architectures can be an enabler for scalable,

agile and reliable software systems, as demonstrated with the

successful re-implementation of otto.de. A vertical decompo-

sition along business services provides the basis for highly

scalable and reliable software services. Other e-commerce

systems such as Amazon follow similar approaches.

We discussed how coupling, integration, scalability, mon-

itoring and development of microservices are addressed in

teams at otto.de. Besides focusing on the scalability of a

microservice-based system itself, we emphasize scalability of

deployment pipelines for continuous delivery.

Team organization is vital for success. Microservice archi-

tectures allow to assign the responsibility for all concerns of

certain business capabilities – from requirements to operations

– to individual teams. The responsibility, combined with

open-source development, yields team’s empathy for “their”

microservices. Both, the architecture and the organizational

structure are vertically decomposed. This enables Otto to scale

development capacities according to new requirements.

Additional concerns at otto.de, not discussed in the present

paper, are behavior-driven design, test-driven development,

customer-driven contracts, feature toggles, polyglot program-

ming, and embedding application servers.

Full automation of quality assurance and software deploy-

ment allows for early fault and error detection, thus reducing

repair times both during development and during operations.

Microservice architectures enable scalability [16]. As a

take away of this paper, we presented how both agility and

reliability may be achieved; in addition to scalability.

However, be aware that microservice architectures also

come with costs. Maintaining consistency, monitoring, alarm-

ing and fault tolerance are difficult for a distributed system,

which means that you have to operate a much more complex

system than in monolithic architectures. You need a mature

operations team to manage lots of services, which are being

redeployed frequently.

REFERENCES

[1] W. Hasselbring, “Information system integration,” Communications of
the ACM, vol. 43, no. 6, pp. 32–36, 2000.

[2] ——, “Web Data Integration for E-Commerce Applications,” IEEE
Multimedia, vol. 9, no. 1, pp. 16–25, 2002.

[3] M. Abbott and M. Fisher, The Art of Scalability, 2nd ed. Addison-
Wesley, 2015.

[4] S. Newman, Building Microservices. O’Reilly, 2015.
[5] J. Waller, N. C. Ehmke, and W. Hasselbring, “Including performance

benchmarks into continuous integration to enable DevOps,” ACM SIG-
SOFT Softw. Eng. Notes, vol. 40, no. 2, pp. 1–4, Mar. 2015.

[6] V. Marmol, R. Jnagal, and T. Hockin, “Networking in containers and
container clusters,” in Proceedings NetDev 0.1, 2015.

[7] M. E. Conway, “How do committees invent?” Datamation, vol. 14, no. 4,
pp. 28–31, 1968.

[8] E. Evans, Domain-driven design. Addison-Wesley, 2004.
[9] G. Steinacker, “On monoliths and microservices,” 2015, http://dev.otto.

de/2015/09/30/on-monoliths-and-microservices/.
[10] E. Woychowsky, AJAX: Creating Web Pages with Asynchronous

JavaScript and XML. Prentice Hall, 2006.
[11] M. Tsimelzon et al., “ESI language specification,” 2001, w3C Note 04

August 2001, https://www.w3.org/TR/esi-lang.
[12] W. Hasselbring, “Component-based software engineering,” in Handbook

of Software Engineering and Knowledge Engineering. World Scientific
Publishing, 2002, pp. 289–305.

[13] J. Humble and D. Farley, Continuous Delivery. Pearson, 2010.
[14] N. Marwede, M. Rohr, A. van Hoorn, and W. Hasselbring, “Automatic

failure diagnosis in distributed large-scale software systems based on
timing behavior anomaly correlation,” in Proc. CSMR 2009, 2009.

[15] R. von Massow, A. van Hoorn, and W. Hasselbring, “Performance
simulation of runtime reconfigurable component-based software archi-
tectures,” in Proceedings ECSA 2011, 2011, pp. 43–58.

[16] W. Hasselbring, “Microservices for scalability: Keynote talk abstract,”
in Proceedings of the 7th ACM/SPEC on International Conference on
Performance Engineering (ICPE 2016). ACM, 2016, pp. 133–134.


