Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods

Hu, Marian Yong-An, Hwang, Pung-Pung and Tseng, Yung-Che (2015) Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods Tissue Barriers, 3 (4). e1064196. DOI 10.1080/21688370.2015.1064196.

Full text not available from this repository.

Supplementary data:

Abstract

Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4+) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems.

Document Type: Article
Research affiliation: OceanRep > The Future Ocean - Cluster of Excellence > FO-R03
OceanRep > The Future Ocean - Cluster of Excellence > FO-R08
OceanRep > The Future Ocean - Cluster of Excellence
OceanRep > GEOMAR > FB3 Marine Ecology > FB3-EOE-B Experimental Ecology - Benthic Ecology
Refereed: Yes
DOI etc.: 10.1080/21688370.2015.1064196
ISSN: 2168-8370
Date Deposited: 21 Mar 2017 15:13
Last Modified: 21 Mar 2017 15:13
URI: http://eprints.uni-kiel.de/id/eprint/37093

Actions (login required)

View Item View Item