Sulfur partitioning between magmatic phases at sulfide-sulfate transition - Implications for metal mobility

BOTCHARNIKOV R.E.¹, WILKE M.², KLIMM K.³, BEERMAN O.⁴ AND PORTNYAGIN M.⁵

¹Leibniz Universität Hannover; r.botcharnikov@mineralogie.uni-hannover.de
²Universität Potsdam; max@geo.uni-potsdam.de
³Goethe-Universität Frankfurt; klimm@em.uni-frankfurt.de
⁴Christian-Albrechts-Universität zu Kiel; ob@min.uni-kiel.de
⁵GEOMAR, Kiel; mportnyagin@geomar.de

Sulfur is a volatile component that participates in a number of processes from magma generation to volcanic eruption affecting magma properties and controlling mobility of many different elements. These effects depend on abundance and proportions of redox-sensitive S species and on their partitioning between magmatic phases.

Literature data and our experiments at 100 to 500 MPa and temperature of 1000-1250°C demonstrate that S partitioning in magmas is largely controlled by T, fO₂ and fS₂ as well as by melt composition. Furthermore, we found that Fe has a fundamental influence on S speciation in silicate liquids with up to 90% decrease in S⁶⁺/S⁰ ratio as FeO content increases from 0 to 18 wt% at fixed fO₂. It implies that the reaction constant of sulfide-sulfate transition is highly sensitive to melt composition opening the transition range from ca. 2 log fO₂ units in typical basaltic-andesitic melts to 4-4.5 log fO₂ units between Fe-poor and Fe-rich melts.

Change in S⁶⁺/S⁰ has important influence on activity coefficients of S-bearing species affecting S partitioning between silicate melt, fluid and S-rich phases and mobilization of metals. It is further complicated by the presence of Cl in the magma decreasing (by 30-40%) fluid/melt partition coefficient of oxidized S but having only small effect on partitioning of reduced S.

In contrast to available models, experimental basalts demonstrate enhanced ability to dissolve S close to sulfide-sulfate transition. It has important implications for the stability of S-rich phases and mobility of metals in the processes of melting and crystallization.

Sulfur speciation in melt and fluid as well as sulfur partitioning into S-rich phases imposes major control on the
mobility of metals. For instance, Au partitioning is mostly controlled by S2- with increasing contribution of Cl-bearing ligands as sulfide sulfur converts into sulfate. On the other hand, partitioning of metals between silicate melt and FeS liquids and solids is weakly affected by redox change at sulfide-sulfate transition.

In contrast to available models of S solubility, basalts demonstrate enhanced ability to dissolve S close to sulfide-sulfate transition. It has important implications for the stability of FeS phases in the processes of melting and crystallization as will be illustrated by new empirical model of S solubility.