Linked sediment and water-column methanotrophy at a man-made gas blowout in the North Sea: Implications for methane budgeting in seasonally stratified shallow seas

Lea Steinle,1,2* Mark Schmidt,2 Lee Bryant,2,a Matthias Haeckel,2 Peter Linke,2 Stefan Sommer,2 Jakob Zopfi,1 Moritz F. Lehmann,1 Tina Treude,2,b Helge Niemann1,3*

1Department of Environmental Sciences, University of Basel, Basel, Switzerland
2GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
3CAGE – Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geology, UIT The Arctic University of Norway, Tromsø, Norway

Abstract

Large quantities of the greenhouse gas methane (CH$_4$) are stored in the seafloor. The flux of CH$_4$ from the sediments into the water column and finally to the atmosphere is mitigated by a series of microbial methanotrophic filter systems of unknown efficiency at highly active CH$_4$-release sites in shallow marine settings. Here, we studied CH$_4$-oxidation and the methanotrophic community at a high-CH$_4$-flux site in the northern North Sea (well 22/4b), where CH$_4$ is continuously released since a blowout in 1990. Vigorous bubble emanation from the seafloor and strongly elevated CH$_4$ concentrations in the water column (up to 42 μM) indicated that a substantial fraction of CH$_4$ bypassed the highly active (up to ~2920 nmol cm$^{-2}$ d$^{-1}$) zone of anaerobic CH$_4$-oxidation in sediments. In the water column, we measured rates of aerobic CH$_4$-oxidation (up to 498 nM d$^{-1}$) that were among the highest ever measured in a marine environment and, under stratified conditions, have the potential to remove a significant part of the uprising CH$_4$ prior to evasion to the atmosphere. An unusual dominance of the water-column methanotrophs by Type II methane-oxidizing bacteria (MOB) is partially supported by recruitment of sedimentary MOB, which are entrained together with sediment particles in the CH$_4$ bubble plume. Our study thus provides evidence that bubble emission can be an important vector for the transport of sediment-borne microbial inocula, aiding in the rapid colonization of the water column by methanotrophic communities and promoting their persistence close to highly active CH$_4$ point sources.

Even though large quantities of methane (CH$_4$) are stored in the ocean seafloor as shallow and deep gaseous reservoirs, bound in CH$_4$ hydrates or dissolved in pore water (Wallmann et al. 2012), most recent estimates suggest that oceans account for only a minor fraction of natural CH$_4$ emissions to the atmosphere (Kirschke et al., 2013; IPCC 2013). The fact that the marine contribution is rather small can largely be attributed to a series of microbial CH$_4$-oxidation filter systems preventing large-scale CH$_4$ evasion into the atmosphere (Reeburgh 2007; Knittel and Boetius 2009; Kessler et al. 2011; Boetius and Wenzhöfer 2013; Graves et al. 2015; Steinle et al. 2015). In sediments, a large fraction (~80% on average, Knittel and Boetius 2009) of uprising CH$_4$ is oxidized through the sulfate-dependent anaerobic oxidation of methane (AOM, Eq. 1).

$$\text{CH}_4 + \text{SO}_4^{2-} \rightarrow \text{HCO}_3^- + \text{HS}^- + \text{H}_2\text{O}. \quad (1)$$

AOM is typically mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB; Boetius et al. 2000; Orphan et al. 2001; Niemann et al. 2006) though ANME may possibly mediate AOM without partner bacteria (Milucka et al. 2012). Furthermore, aerobic methane-oxidizing bacteria (MOB) consume part of the CH$_4$ flux in oxygenated surface sediments (aerobic oxidation of
CH$_4$ – MOx; Eq. 2) and represent a second sedimentary filter (Niemann et al. 2006; Boetius and Wenzhöfer 2013).

\[
\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}. \tag{2}
\]

These sedimentary filters, however, are less effective in systems characterized by elevated advective fluxes of CH$_4$ (Treude et al. 2003; Niemann et al. 2006; Knittel and Boetius 2009; Steeb et al. 2014). Globally, 0.02 Gt yr$^{-1}$ (3–3.5% of the atmospheric budget; Kirschke et al. 2013) of CH$_4$ is estimated to bypass the benthic filter systems and to be released into the ocean water column (Boetius and Wenzhöfer 2013). Within the water column, CH$_4$ can be oxidized aerobically, or anaerobically in the rare case of ocean water column anoxia (Reeburgh 2007).

MOx is performed by MOB, generally belonging to the Gamma-(Type I) or Alphaproteobacteria (Type II) (Hanson and Hanson 1996; Murrell 2010). In oceanic waters, MOB typically belong to the Type I group (Elsaied et al. 2004; Tavormina et al. 2013, 2010; Reed et al. 2009; Håvelsrud et al. 2011; Kessler et al. 2011; Steinle et al. 2015). The first step of MOx is catalyzed by the enzyme particulate or soluble methane mono-oxygenase (pMMO or sMMO, respectively; Semrau et al. 2010, and references therein).

Water-column MOx is the final sink for CH$_4$ before its release to the atmosphere, where it acts as a potent greenhouse gas; however, relatively little is known about the mechanisms and environmental factors controlling the spatiotemporal distribution and activity of pelagic MOB (Tavormina et al. 2010; Kessler et al. 2011; Mau et al. 2013; Crespo-Medina et al. 2014; Steinle et al. 2015). Previous studies showed that MOx and the distribution of Type I and Type II MOB in the oceans are controlled by CH$_4$ and O$_2$ concentrations (Kessler et al. 2011; Mau et al. 2013; Crespo-Medina et al. 2014) and trace metal availability (Semrau et al. 2010; Crespo-Medina et al. 2014). Furthermore, advection of water masses harboring distinct microbial communities can constrain prokaryote-biogeographic patterns (Wilkins et al. 2013). Current-induced water mass exchange at CH$_4$ seeps, for example, has been shown to control the distribution of water-column MOx communities, thereby modulating the microbial CH$_4$ filter capacity in the water column (Steinle et al. 2015).

Knowledge of the physical and biogeochemical controls on the activity and distribution of MOB is particularly important for our understanding of the role of shallow water environments (e.g., shelf and coastal seas) in the global marine CH$_4$ budget. In contrast to deep-sea environments, the distance between the seafloor and the atmosphere is short in shallow-water settings, leaving limited time/space for quantitative CH$_4$ consumption to occur prior to its release to the atmosphere (Graves et al. 2015). This effect is amplified when benthic CH$_4$ flux rates are particularly high. Accidents during oil and gas exploration, for example, can lead to the release of excessive amounts of CH$_4$ (and other hydrocarbons) to the ocean water column (Kessler et al. 2011; Sommer et al. 2015). Elevated CH$_4$ evasion is also expected as a result of intensified CH$_4$ hydrate destabilization and permafrost degradation in Arctic shelf environments in the future (Shakhova et al. 2010; Biastoch et al. 2011; Ferré et al. 2012; Berndt et al. 2014); yet it is unknown to which extent the sediment- and water-column methanotrophic filter systems will be able to adapt to high CH$_4$ fluxes, and hence to hinder excessive CH$_4$ liberation to the atmosphere (James et al. 2016). In support of evaluating future CH$_4$ seepage scenarios at high-latitude shelf environments, present-day CH$_4$ release sites in other shelf seas, such as those initiated or enhanced by drilling activities, provide a “natural” laboratory for studying the distribution and activity of methanotrophs, and thus the efficiency of the microbial CH$_4$ filter in sediment and the water column in high CH$_4$ flux settings.

Extensive shallow gas accumulations occur in North Sea sediments (Judd and Hovland 2007), and one of the gas pockets at well 22/4b (hereafter referred to as the “Blowout,” Fig. 1) was accidentally tapped during drilling operations in November 1990 (Leifer and Judd 2015). This caused a massive blowout (Fox 1995), which left a 60-m wide crater behind (see below), with extensive amounts of CH$_4$ being released from its center until today (Schneider Von Deimling et al. 2015). In this study, we assessed the impact of the
persistent and vigorous seabed CH$_4$ release from the Blowout on the methanotrophic community in sediments and the water column. In an interdisciplinary approach combining biogeochemical and molecular tools, we confirm that a stable and highly active AOM community may establish in ocean sediments within ~20 years after seepage onset (Willert et al. 2015). We further demonstrate that the aerobic methanotrophic communities in sediments and in the water column are linked. High water-column MOx rates are supported by the bubble-plume-associated entrainment of sediment-borne MOB, which restock the water-column methanotrophic community and thus help to maintain a highly efficient aerobic water-column CH$_4$ filter.

Material and methods

Site description

The Blowout (57°55.41′N and 1°37.95′E, Fig. 1) is located in the northern North Sea at a water depth of 98 m (Fig. 2a) and consists of a ~60 m wide and ~20 m deep crater (for details see, e.g., Schneider Von Deimling et al. 2007). Although the vigorousness of the gas release has declined since the accident, the Blowout still releases more CH$_4$ (mostly as bubbles, building spiral vortexes, Fig. 2b, Schneider Von Deimling et al. 2015) than any other natural seep in the North Sea (Rehder et al. 1998; Judd 2015). Based on stable carbon isotope analyses, the Blowout emits CH$_4$ of biogenic origin (13C-CH$_4$, ca. ‑75‰; Sommer et al. 2015). The water column above the Blowout is seasonally stratified, with a well-developed thermocline lasting from approximately April until October/November when deep mixing is induced by the first fall storms (Nauw et al. 2015). Throughout the duration of our study (July/August 2012), the water column above the Blowout was stratified with a well-developed thermocline at about 30 m water depth (Fig. 3b). In this area, hydrographic processes are highly dynamic with strong tidal currents changing direction approximately every 6 h (Nauw et al. 2015, and references therein).

Sediment sampling

Undisturbed surface sediments were recovered by push-coring with the remotely operated vehicle (ROV) KIEL 6000 (GEOMAR). Biogeochemical and microbiological investigations were conducted at three different sites on parallel push cores sampled in close proximity (~10 cm) to each other (Table 1). At the Blowout, we sampled sediments in the center of the crater (Fig. 2a,b; BOC), in close vicinity (~0.5 m) to the emanation point of one of the two main bubble jets, and sediments from the Blowout crater wall (Fig. 2a; BOW). Finally, we retrieved push cores at a background site 50 m to the southeast of the Blowout crater at a water depth of 99 m. Parameters measured at each sampling site are summarized in Table 1.

Water-column sampling

Water samples were recovered with a video-guided rosette sampler equipped with twelve 10-liter Niskin bottles and probes for continuous measurements of conductivity, temperature and pressure/depth (CTD rosette sampler; Linke et al. 2015; Table 2). Sampling casts with the CTD rosette sampler will be simply referred to as CTD casts in the following. Both the water within the crater and close to the seafloor was sampled with a 5-liter Niskin bottle mounted to the ROV since sampling with the CTD rosette was not possible. At the Blowout, samples were collected along three surfaces with a grid size of about 200 × 200 m (Fig. 2): (i) bottom waters at 85 m below sea level (mbsl), (ii) the lower part of the thermocline at 42 mbsl, and (iii) the upper mixed layer at 11 mbsl above the thermocline. In the following, the different grids will be referred to as (i) bottom water (BW), (ii) thermocline (TC), and (iii) mixed layer grid (ML). We recovered 11 (ML grid) to 12 (BW and TC grid) discrete water samples from each isopycnal surface. Within the Blowout crater, we sampled crater waters ~1 m away from the bubble stream at 110 mbsl with the ROV (bottle 1 = BO1). One additional water sample...
was recovered with the ROV 50 m away from the crater (i.e., above the sediment background site). A reference CTD cast with Niskin bottle samples recovered from 11, 41, and 85 mbsl was conducted 2.2 km NNE of the Blowout crater. CH4 concentrations, d13C-CH4 signatures and MOx rates (in quadruplicates) were measured in all samples. For CAtalyzed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH) analyses, we fixed four discrete samples from each CTD grid (Table 2; Fig. 6g–i). Additional CARD-FISH analyses were performed on aliquots from the BO1 and BO2 samples, and each depth of the reference CTD. For DNA analysis, we combined 10–20 liter of water from two to four different Niskin bottles (5 liter from each bottle) from each grid (Table 2; Fig. 6g–i). From the reference CTD, 20 liter of water from the thermocline was collected for DNA analysis. We could not subsample BO1 and BO2 for DNA analyses because of the limited amount of water in the ROV Niskin bottles.

The collected water was filtered through a single Whatman GF/F Glass Microfiber filter (4.7 cm ø, pore size 0.7 μm), and the filters were wrapped in aluminum foil and stored at −20°C until further analyses.

Sediment biogeochemistry

Sediments were subsampled for concentration measurements of dissolved CH4, sulfate (SO42−), sulfide (H2S), and porosity. Immediately after recovery, 2 cm slices of pushcore sediments were extruded with a plunger, and 3 mL were subsampled with a cut-off syringe and fixed in a saturated NaCl solution for headspace CH4 concentration measurements by gas chromatography with flame ionization detection (GC-FID) according to Sommer et al. (2009). Five milliliter of wet sediment was sampled for porosity determination by weight difference before and after freeze-drying and the remaining sediment slice (~50 mL) was transferred to a low pressure-squeezer for pore water extraction. Porosity.
Table 2. List of water-column sampling locations parameters sampled during cruise CE12010.

<table>
<thead>
<tr>
<th>Location</th>
<th>IDs</th>
<th>Position</th>
<th>#Niskin bottles</th>
<th>Depth (mbsl)</th>
<th>Geochemistry</th>
<th>Rates/microbiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crater water</td>
<td>BO1</td>
<td>57°55.29’N 1°37.85’E</td>
<td>1 (ROV)</td>
<td>110</td>
<td>CH₄(1), δ¹³C-CH₄(1)</td>
<td>MOx(1), CARD-FISH(1)</td>
</tr>
<tr>
<td>0.5 m above sediment*</td>
<td>BO2</td>
<td>57°55.29’N 1°37.89’E</td>
<td>1 (ROV)</td>
<td>97.5</td>
<td>CH₄(1), δ¹³C-CH₄(1)</td>
<td>MOx(1), CARD-FISH(1)</td>
</tr>
<tr>
<td>Upper mixed layer</td>
<td>ML</td>
<td>57°55.29’N 1°37.85’E</td>
<td>11 (CTD)</td>
<td>10.9</td>
<td>CH₄(11), δ¹³C-CH₄(1)</td>
<td>MOx(11), CARD-FISH(4) DNA(1)</td>
</tr>
<tr>
<td>Lower thermocline</td>
<td>TC</td>
<td>57°55.29’N 1°37.85’E</td>
<td>12 (CTD)</td>
<td>41.5</td>
<td>CH₄(12), δ¹³C-CH₄(12)</td>
<td>MOx(12), CARD-FISH(4) DNA(1)</td>
</tr>
<tr>
<td>Bottom water grid</td>
<td>BW</td>
<td>57°55.29’N 1°37.85’E</td>
<td>12 (CTD)</td>
<td>84.5</td>
<td>CH₄(12), δ¹³C-CH₄(12)</td>
<td>MOx(12), CARD-FISH(4) DNA(1)</td>
</tr>
<tr>
<td>Reference CTD</td>
<td>refCTD</td>
<td>57°56.41’N 1°38.62’E</td>
<td>3 (CTD)</td>
<td>10.6/40.6/85.0</td>
<td>CH₄(3), δ¹³C-CH₄(3)</td>
<td>MOx(3), CARD-FISH(3) DNA(1)</td>
</tr>
</tbody>
</table>

*Sampled 50 m away from the crater above the background sediment site. Numbers in brackets (geochemistry, rates/microbiology) indicate number of samples taken per parameter.

Water samples were filtered through 0.45 μm regenerated cellulose filters (Whatman) and aliquots were used for on-board analyses of sulfide (photometry of methylene blue; Grasshoff 1999). Dissolved SO₄²⁻ concentrations were determined by ion chromatography onshore. Analytical details are described in Wallmann et al. (2006) and Haffert et al. (2013).

Water-column CH₄ concentrations and isotopic composition

Immediately after CTD/ROV recovery, water samples for CH₄ concentration measurements were transferred into 100 mL serum vials and closed bubble-free with butyl rubber septa. Dissolved CH₄ concentrations were determined using headspace extraction (Linke 2012). Briefly, we replaced 10 mL of water sample with argon and fixed the remaining water sample with 50 μL of saturated HgCl₂-solution. CH₄ concentrations were determined by GC-FID measurements onboard (Vielstädte et al. 2015). Serum vials were then stored at 4°C for subsequent stable carbon isotope measurements at GEOMAR by using continuous flow GC combustion-Isotope Ratio Mass Spectrometry (Thermo, MAT253; Vielstädte et al. 2015). All isotope ratios presented here are reported in the conventional δ notation (i.e., δ¹³C-CH₄ and δ³⁴S-CH₄) and normalized against the Vienna Pee Dee Belemnite (VPDB) standard. Analytical precision of the reported concentrations and isotopic composition is ±3% and ±0.3‰, respectively.

Methane-oxidation and sulfate-reduction rate measurements

Anaerobic CH₄-oxidation (AOM) and sulfate-reduction (SR) rates in sediments were measured by ex situ whole-core incubation (Jørgensen 1977): small push cores were sub-sampled from the push cores amended with trace amounts of ¹⁴C-labelled aqueous CH₄ solution (10 μL, 4 kBq, ~150 nmol CH₄, American Radiolabeled Chemicals) and ³⁵S-labelled sulfate (25 μL, 20 kBq, American Radiolabeled Chemicals, USA), respectively. All incubations were conducted in triplicates for 24 h at in situ temperature (7–9°C) in the dark. Incubations were either stopped by fixing extruded sediment slices (1–3 cm) in 20 mL 2.5% sodium hydroxide (AOM) or in 20 mL 20% zinc acetate (sulfate reduction). CH₄-oxidation rates were assessed by ¹⁴CH₄ combustion (Treude et al. 2005), ¹⁴CO₂-acidification and determination of rest activity in the remaining sample (Blees et al. 2014). The first-order rate constant (k) was calculated from the fractional tracer turnover with consideration of ¹⁴C-label transfer into biomass:

\[
k_{\text{AOM/MOx}} = \frac{(A_{\text{CO}_2} + A_R)}{(A_{\text{CH}_4} + A_{\text{CO}_2} + A_R)} \times \frac{1}{t},
\]

where \(A_{\text{CH}_4}\) is the activity of remaining ¹⁴C-CH₄ after incubation, \(A_{\text{CO}_2}\) is the activity of the generated CO₂, \(A_R\) is the rest activity (biomass and non-carbonate intermediates), and \(t\) is the incubation time. We attribute methane oxidation in sediments to AOM because sediments were generally anoxic. Yet, MOx may have contributed to methane oxidation in the top few millimeters of sediments, which may have been oxic (Niemann et al. 2006, 2009).

SR rates were determined with the cold-chromium distillation method (Kallmeyer et al. 2004) to separate total reduced inorganic sulfur species (TRIS) from unreacted SO₄²⁻. Similar to AOM, the first-order rate constant of SR (\(k_{\text{SR}}\)) was then determined from the fractional tracer turnover:

\[
k_{\text{SR}} = \frac{A_{\text{TRIS}}}{A_{\text{TRIS}} + A_{\text{SO}_4^{2-}}} \times \frac{1}{t} \times 1.06,
\]

where \(A_{\text{SO}_4^{2-}}\) is the remaining activity in the sulfate pool after incubation, \(A_{\text{TRIS}}\) is the activity of the generated sulfide and associated sulfur species, \(t\) is the incubation time, and 1.06 the correction factor for the expected ³⁵S-isotope discrimination (Jørgensen and Fenchel 1974). Samples for SR rates were not kept frozen until rates were measured, which may lead to an underestimate of the SR rates (Røy et al. 2014).

For water-column MOx measurements, water samples were transferred bubble-free into ~22 mL crimp-top vials and sealed with bromobutyl stoppers (Helvoet Pharma), which have been tested not to impede MOx activity (Niemann et al. 2015). Samples were amended with 6 μL of a...
14C-CH4:N2 gas mixture (~0.25 kBq, ~100 nmol CH4, American Radiolabeled Chemicals) and incubated for 2 days at in situ temperature in the dark. Incubations were terminated by fixing the sample in butyl rubber sealed glass bottles with ~1 g of solid NaOH, and bottles were stored at room temperature until determination of ACH4, ACO2, and ASR onshore. First order rate constants were determined analogously as for CH4-oxidation in the sediments. We attribute all water-column CH4-oxidation to MOx since the North Sea water column is generally well oxygenated (Queste et al. 2016). Quadruplicate incubations were performed for all MOx measurements.

Rates of AOM/ MOx and SR were then calculated as

\[r_{AOM/MOx} = k \times [CH_4], \]

\[SRR = k_{SRR} \times [SO_4^{2-}] \times \rho, \]

where \([CH_4]\) is the concentration of CH4 in sediments or the water column, respectively, at the beginning of the incubation (plus the CH4 added by 14C-CH4 tracer injection), \([SO_4^{2-}]\) is the sulfate concentration in the pore water, and \(\rho\) is the porosity of the sediment. All rate measurements were corrected for abiotic tracer turnover in killed controls.

CARD-FISH

Type I and II MOB in the water column were enumerated by CARD-FISH (Pernthaler et al. 2002). In addition, we tested for the presence of Type I and II MOB in surface sediment layers (0–1 cm sediment depth (cmsd)) in the Blowout center- and the background sediment cores, and for the presence of ANME in sediment layers with maximal AOM rates (6–10 cmsd) of the core from the Blowout center. Fixation of water-column samples was carried out as described in Steinle et al. (2015) and references therein. CARD-FISH was performed as described by Schmale et al. (2015), except that Type I MOB were detected with a mixture of probes M705-HRP (horseradish peroxidase) and M784-HRP (0.3 ng µL\(^{-1}\) each), and probe Mx450-HRP (0.6 ng µL\(^{-1}\) was used for detecting Type II MOB (Eller et al. 2001). CARD-FISH in sediments was conducted according to Wilpert et al. (2015). CARD-FISH staining of benthic Type I and II MOB was done as for water-column samples.

Molecular analyses

DNA was extracted from one quarter of a GF/F filter (Whatman, 4.7 cm ø, pore size ~0.7 µm) for water-column samples (Woebken et al. 2007) or ~0.5 g of wet sediment (Tables 1, 2) with the FastDNA SPIN Kit for soil (MP Biomedicals) using a Precellys24 (Bertin Technologies) cell homogenizer. Partial 16S rRNA gene sequences of Type I and Type II MOB were amplified by PCR with the primer pairs MethT1dF/MethT1bR and 27F/MetT2R, respectively (Lane 1991; Murray et al. 1996; Costello and Lidstrom 1999; Wise et al. 1999). DNA extracts and amplification products were verified by electrophoresis in 0.8–2% (wt/vol) agarose gels with 0.001% (vol/vol) Midori Green DNA stain (Nippon Genetics) and quantified fluorometrically using Qubit (Invitrogen). The community structure of surface sediments and the water column was investigated by denaturing gradient gel electrophoresis (DGGE) following the approach of Tsutsumi et al. (2011). GC-clamped PCR products were separated on a 9% polyacrylamide gel with a linear denaturing gradient of a 40–70% (with 100% denaturants corresponding to 7 M urea and 40% (v/v) deionized formamide). Migration was done in a phorU-2 DGGE system (Ingeny International) at a constant temperature of 62°C and a voltage of 130 V for 1 h, followed by 16 h at 75 V. The gel was stained in 300 mL TAE (Tris-acetate-EDTA buffer) containing 25 µL SYBR Safe (Invitrogen) for 30 min. Dominant bands were excised and DNA was extracted from gel slices with sterile, nuclease-free water at 4°C overnight. Extracted DNA was re-amplified, cleaned (Wizard SV Gel and PCR Clean-up System, Promega) and finally cloned in E. coli JM109 using the pGEM-T Easy Vector System (Promega). Inserts were verified by direct clone colony PCR using KAPA2G Robust Polymerase (KAPA Biosystems) and primers SP6/T7. Purified amplicons were sent out for sequencing. Partial 16S rRNA gene sequences have been deposited in the ENA-EBI database under the accession numbers LT591861–LT591887.

Phylogenetic analysis

Phylogenetic analysis of the partial 16S rRNA gene sequences from isolated DGGE bands was performed in MEGA6 (Tamura et al. 2013). 16S rRNA gene sequences of the nearest uncultivated neighbors were identified and downloaded using SINA (Pruesse et al. 2012), completed by additional sequences of closely related cultivated bacteria as well as outgroup representatives. The sequences were aligned using the Muscle implementation of MEGA. The phylogenetic relationship was inferred using the Maximum Likelihood method based on the Kimura 2-parameter model (Kimura 1980). Initial Neighbor-Joining tree(s) for the heuristic search were based on a pairwise distances matrix calculated with the Maximum Composite Likelihood method. The phylogenetic analysis involved 35 (Type I)/34 (Type II) sequences. Positions with less than 95% site coverage were eliminated from the analysis, resulting in 159 (Type I)/135 (Type II) positions in the final dataset.

Results

Sediments

In sediments of the center of the Blowout, we found saturated CH4 concentrations (after retrieval at ambient pressure) without any clear downcore trends (Fig. 4a). Similarly, pore water sulfate concentrations were high (~29.5 mM) and did not change substantially with depth. No sulfide was detected. AOM and SR rates both peaked between 6 and 11 cmsd with rates of up to 2920 and 2380 nmol cm\(^{-2}\) d\(^{-1}\), respectively (Fig. 4b,c). At 6 cmsd, our CARD-FISH analyses revealed the presence of large aggregates, which only contained ANME-2 cells (6.6 × 10\(^7\) cells cm\(^{-3}\)); however, potentially associated
SRB could not be observed (Fig. 5a,d). Additionally, some single cells of ANME-1 and -3, and some cell-chains of ANME-1 were detected (all together <0.3 × 10^7 cells cm^-3). In surface sediments (0–1 cm sd), both Type I and II MOB were detectable by CARD-FISH (8.0 and 8.4 × 10^7 cells cm^-3, respectively (Fig. 5b,c,e,f), while ANMEs were not detected in this layer. As sediments were anoxic, we attribute methane oxidation in sediments to AOM with potential contribution from MOx at the sediment surface (Niemann et al. 2009).

In the Blowout wall sediment, CH4 concentrations generally increased with sediment depth (i.e., horizontal penetration depth in the Blowout wall sediment core) reaching ~3 μM at 17 cm sd; yet they were still ~1000 times lower than in sediment cores retrieved from the crater bottom (Fig. 4d). Sulfate concentrations decreased slightly from seawater concentrations (~29.5 mM) to about 25 mM at 15 cm sd (Fig. 4d). Sulfide could not be detected. We measured only very low CH4-oxidation rates in the upper section of the sediment core (~6 nmol cm^-3 d^-1 at 5 cm sd, Fig. 4e). In contrast, SR rates were three orders of magnitude higher and showed a double-peak with maximum values of ~1300 and ~2400 nmol cm^-3 d^-1 at 5 and 10 cm sd, respectively (Fig. 4f). Note that slumping probably disturbed crater wall sediments, which complicates further interpretation of this data.

At the background site 50 m away from the crater, downcore CH4 concentrations increased only slightly, reaching ~8 μM at the bottom of the core (17 cm sd, Fig. 4g), and were thus much lower than in nearby crater bottom sediments. Sulfate concentrations were essentially invariant throughout the core and we could not detect sulfide (Fig. 4g). Methanotrophic activity was comparatively low (max. 9 nmol cm^-3 d^-1, Fig. 4h) and similar to what was observed for the crater wall sediments. Compared to the other sediment sampling sites, SR rates were relatively

Fig. 4. Sediment geochemical profiles and rate measurements from the bottom of the blowout crater (a–c), blowout wall (d–f), and background site 50 m away from the blowout (g–i). Replicate rate measurements are shown individually (dashed lines) and the average value is indicated as a thick, solid line. As sediments were anoxic, we attribute methane oxidation in sediments to AOM with potential contribution from MOx at the sediment surface (Niemann et al. 2009). [Color figure can be viewed at wileyonlinelibrary.com]
low, with values of <500 nmol cm$^{-3}$ d$^{-1}$ (Fig. 4i). We found both Type I and Type II MOB in the upper 0-1 cm of the sediment core with CARD-FISH.

Water column

Spatial variations of CH$_4$ concentrations and δ^{13}C-CH$_4$

We detected the highest CH$_4$ concentration of 42,097 nM within the Blowout crater, just adjacent to the main bubble stream (BO1, Table 3). However, even higher concentrations can be expected closer to the bubble jets. Lower CH$_4$ concentrations were found in the bottom water grid (all concentrations >500 nM; 37,233 nM maximum; Fig. 6c; Table 3) and within the thermocline (>50 nM; 13,526 nM maximum; Fig. 6b; Table 3). While we also found elevated CH$_4$ concentrations (1794 nM) in waters sampled ~0.5 m above the sediment background site (BO2, Table 3), we did not find indications for active CH$_4$
seepage at this site (e.g., gas ebullition). In the mixed layer above the thermocline, CH4 concentrations were comparably low (all <20 nM), but even here they were at supersaturation levels (up to eightfold) with respect to the atmospheric equilibrium (2.5 nM). δ13C-CH4 values as low as –71.1‰ were detected in crater waters next to the plume (BO1) and similarly negative δ-values were measured in the bottom water grid (Table 3; Fig. 6f). More variable and more positive δ13C-CH4 values (up to –67.5‰) were detected within the thermocline, particularly in samples with values at the lower end of the CH4 concentration range (Fig. 6e). Samples collected further away from the crater (sample BO2) also showed a slight enrichment in 13C (–69.3‰; Table 3) when compared to BO1. CH4 concentrations at the reference CTD site were highest at 85 mbsl (221 nM) and decreased to 88 nM within the thermocline (Table 3).

Methane oxidation rates

The vertical distribution of MOx in the water column displayed two maxima: One within the Blowout crater (BO1; 498 nM d⁻¹), and a second one at the thermocline (up to 262 nM d⁻¹; 49 nM d⁻¹ on average; Fig. 3b, 6h, Table 3). In sample BO2, MOx rates were also elevated (up to 63 nM d⁻¹) while samples from the bottom water grid showed substantially lower rates with values <19 nM d⁻¹ (3.5 nM d⁻¹ on average; Figs. 3b, 6i). MOx rates in the mixed layer were low (<0.03 nM d⁻¹). Nevertheless, it has to be noted that, despite generally high CH4 concentrations measured in the bottom water grid and the thermocline, rates were variable, and below detection limit in several samples (Fig. 6, detection limit ~20 nM).

MOB communities in the water column

The water-column MOB community within the crater, in the bottom water grid and the thermocline was mainly composed of Type II MOB (76–95% of all MOB, Fig. 5j,k, Fig. 7). Highest cell counts of Type II MOB were observed within the crater (44.8 × 10³ cells mL⁻¹; BO1; Fig. 7, Table 3) and in
the sample taken 50 m away from the crater (29.3 \times 10³ cells mL⁻¹; BO2; Table 3). In both the bottom water grid and the thermocline, average Type II cell numbers were ~0.5 \times 10³ cells mL⁻¹ (Table 3), but ~100-fold lower than within the crater. In contrast, average Type I MOB counts differed between the bottom water grid and the thermocline, with higher average cell numbers in the bottom water grid (0.15 \times 10³ cells mL⁻¹) compared to the thermocline (0.03 \times 10³ cells mL⁻¹; Fig. 7, Table 3). No Type II MOB and only few Type I MOB (max. 0.02 \times 10³ cells mL⁻¹) were observed in the mixed layer (Table 3). MOB contributed up to 29% of total DAPI cell counts in the water column at the Blowout (29% BO1; 7.3% BO2; <0.3% bottom water grid, and thermocline; <0.01% mixed layer). We observed abundant sediment particles on the filters of the BO1 (Fig. 5i) and BO2 samples, whereas only a few particles were present on filters from the bottom water grid (Fig. 5l) and none on filters from the thermocline.

In the reference CTD samples, no MOB were present, except for sporadic Type I MOB cells at the thermocline, where they constituted <1% of total DAPI cell counts (0.01 \times 10³ MOB cells mL⁻¹, Table 3).

DGGE and phylogenetic analysis of methanotrophs

Community fingerprints of Type I MOB and other Gammaproteobacteria from the Blowout crater surface sediments (BOC 0–1, 1–2 cm and BOW 0–1 cm) were very similar to the one from the bottom-water sample (Fig. 8a). In contrast, the upper water column (thermocline and mixed layer) and waters from the reference CTD were characterized by DGGE band patterns that were distinct from the sediments and the bottom-water sample. However, while the mixed layer sample showed some similarity to the reference CTD sample, the band pattern of the thermocline sample was unique. Phylogenetic analysis of cloned bands (Fig. 8b) revealed that the sequences BW_3 and BOC_3 were identical to a clone from the Haakon Mosby Mud Volcano (HMMVBeg-1; AJ704654; Løsekann et al. 2007). The BW_3/BOC_3 and the BOC_1 sequences grouped into the “Marine Methanotrophic Group I” or “deep sea-clade 1” (Fig. 8b; Ruff et al. 2013; Tavormina et al. 2015). Sequences of BOW_1 and TC_2 also grouped within the Type I MOB, while all other sequences were more closely related to potentially methanotroph-related clones originating from the water column above cold seeps at the E-Atlantic continental margin (Tavormina et al. 2008). Among these, the sequences of BW_2 and BOC_2 were identical, as were BOC_3 and BW_3.

DGGE band patterns of Type II MOB and other Alphaproteobacteria were similar for both Blowout sediment samples (Fig. 9a). In contrast to the Type I DGGE gels, there was only one strong band in the water-column samples from the bottom water grid and the mixed layer (BW_6, ML_4, respectively) with

Table 3. Overview of water depth, CH₄ concentrations, δ¹³C-CH₄ values, MOx rates, MOx rate constants, and Type I and II MOB cell numbers in the water column.

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Crater water (BO1)</th>
<th>0.5 m above sediment (BO2)</th>
<th>Bottom water grid (BW)</th>
<th>Thermocline (TC)</th>
<th>Mixed layer (ML)</th>
<th>Reference CTD (refCTD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water depth (mbsl)</td>
<td>110</td>
<td>97.5</td>
<td>85</td>
<td>42</td>
<td>11</td>
<td>11/41/85</td>
</tr>
<tr>
<td>max. CH₄ (nM)</td>
<td>42,097</td>
<td>1,794</td>
<td>37,233</td>
<td>13,526</td>
<td>21</td>
<td>221</td>
</tr>
<tr>
<td>min. CH₄ (nM)</td>
<td>—</td>
<td>—</td>
<td>523</td>
<td>57</td>
<td><5</td>
<td>88</td>
</tr>
<tr>
<td>Source δ¹³C CH₄</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>max. δ¹³C dissolved CH₄ (%)</td>
<td>-71.1</td>
<td>-69.3</td>
<td>-69.9</td>
<td>-67.5</td>
<td>NA</td>
<td>—</td>
</tr>
<tr>
<td>max. MOx rate (nM d⁻¹)</td>
<td>498.4 (±159.6)</td>
<td>63.3 (±5.4)</td>
<td>17.5 (±18.1)</td>
<td>261.7 (±18.7)</td>
<td>0.03 (±0.01)</td>
<td>0</td>
</tr>
<tr>
<td>Average MOx rate (nM d⁻¹)</td>
<td>—</td>
<td>—</td>
<td>3.5</td>
<td>49</td>
<td>0.006</td>
<td>—</td>
</tr>
<tr>
<td>max. k (×10⁻² d⁻¹)</td>
<td>1.2 (±0.4)</td>
<td>3.5 (±0.3)</td>
<td>1.9 (±2.0)</td>
<td>2.9 (±2.5)</td>
<td>0.2 (±0.1)</td>
<td>0</td>
</tr>
<tr>
<td>average k (×10⁻² d⁻¹)</td>
<td>—</td>
<td>—</td>
<td>0.5 (±0.7)</td>
<td>1.1 (±1.3)</td>
<td>0.04 (±0.06)</td>
<td>0</td>
</tr>
<tr>
<td>max. Type I MOB (×10³ cells mL⁻¹)</td>
<td>0.7</td>
<td>0.8</td>
<td>0.3</td>
<td>0.08</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>max. Type II MOB (×10³ cells mL⁻¹)</td>
<td>44.8</td>
<td>29.3</td>
<td>1.3</td>
<td>0.9</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Steinle et al. Linked sediment and water methanotrophy
the same migration distance as a band from the sediments (BOC_6). With this exception, the band patterns of water-column samples differed from those of the sediment samples. Additionally, the band pattern of all water-column samples did not show a substantial degree of similarity. Sequencing of excised bands and subsequent phylogenetic analyses grouped most sediment and water-column sequences into either the Sphingomonaclades or Rhodobacterales clade (Fig. 9b). No sequences were related to the groups conventionally defined as Type II MOB (including only the genus Methylosinus and Methylocystis). However, the sequences from the thermocline (TC_3, TC_4) were closely related to known (obligate) MOB (Methylocapsa sp.) belonging to the family Beijerinckiaeae (Marin and Ruiz Arahal 2014). BOC_5 grouped with uncultivated bacterial clones from gas-hydrate-influenced areas; furthermore, sequences of bands BW_6 and TC_4 showed a relatively high degree of similarity (~99%) when compared to a clone sequence from the water column found in the Gulf of Mexico after the Deepwater Horizon oil spill (S2-8-036; KF786955). The sequences obtained from the faint bands of the bottom water grid (BW_7) and the Blowout sediment sample (BOC_7) were identical, and grouped in the Sphingomonadales clade.

Discussion

CH₄ seepage at the Blowout was triggered as a result of a drilling accident in 1990, during which a shallow gas pocket was tapped. Vigorous seepage mainly in the form of CH₄-bubble plumes emanating from the crater’s center has been observed during every investigation of the Blowout (Fox et al. 1995, Rehder et al. 1998, Schneider Von Deimling et al. 2007, Schneider Von Deimling et al. 2015), suggesting uninterrupted seepage since 1990. The Blowout is thus an ideal model system to study the developmental state and activity of CH₄-oxidizing communities, as well as the spatial distribution of microbial CH₄-oxidation (AOM and MOx) at highly active CH₄ point sources in shallow shelf seas.

AOM in sediments

Two decades after the onset of seepage, our investigations revealed a distinct AOM horizon between 5 and 10 cm sediment depth at the Blowout crater bottom with ex situ rates that are similar to the highest known AOM activities in the marine environment (e.g., Hydrate Ridge: Boetius et al. 2000; Treude et al. 2003; Black Sea: Treude et al. 2007). Wilfert et al. (2015) found similar (though potential) AOM rates in an in vitro slurry experiment from Blowout crater sediments recovered in 2011. Our ex situ observations thus confirm the development of a highly active AOM community within only two decades after the onset of gas seepage (Wilfert et al. 2015). Despite the highly active AOM community at the Blowout, only a small fraction of CH₄ is retained by the sediment CH₄ filter, as becomes obvious when considering the high dissolved CH₄ concentrations at the sediment water interface and in the water column (Figs. 4, 6; Table 3). The role of SRB in AOM at the Blowout, however, remains unclear. SR and AOM rates displayed similar trends and were of the same order of magnitude, indicating that SR was most likely AOM-dependent (Knittel and Boetius 2009). Yet, we only found large ANME-2 aggregates without any obvious association with SRB (Wilfert et al. 2015), which is rather atypical for sediments characterized by high rates of AOM (Boetius et al. 2000; Michaelis et al. 2002; Niemann et al. 2006). The physical association of ANMEs and SRB, thermodynamic constraints of the AOM reaction (Boetius et al. 2000; Orphan et al. 2001; Treude et al. 2003), and molecular indications for direct electron transfer from ANMEs to SRB (McGlynn et al. 2015) suggests that ANMEs carry out CH₄-oxidation with the SRB as syntrophic partners, where the SRB mediate the reduction of sulfate as the terminal electron acceptor (Knittel and Boetius 2009). On the other hand, a study on an AOM enrichment culture showed that ANMEs may perform complete AOM by themselves (Milucka et al. 2012). Our observations of solitary ANME cells and aggregates supports putative evidence from natural environments that AOM can indeed be performed independent of an obligate SRB partner (see also Orphan et al. 2002; Niemann et al. 2005; Maignien et al. 2013). In contrast to sediments of the Blowout center, the Blowout-wall and background-site sediments were only moderately affected by CH₄ bubble emanations and dissolved CH₄ seepage (i.e., low CH₄ concentrations and low CH₄-oxidation rates restricted to the uppermost ~5 cm, Fig. 4), underscoring that CH₄ flow is strongly focused within the Blowout crater bottom sediments (Schneider Von Deimling et al. 2015, and references therein).
Fig. 8. (a) DGGE community fingerprints of Type I MOB and other Gammaproteobacteria at the different sampling sites. Sample names are indicated (BOC = Blowout crater push core, BOW = Blowout wall push core, BW = bottom water grid, TC = thermocline, ML = mixed layer, refCTD = reference CTD). (b) Maximum likelihood tree based on partial 16S rRNA gene sequences showing the phylogenetic affiliation of sequenced DGGE bands (indicated with a star and a label on the DGGE gels) with closely related cultivated MOB and sequences of uncultivated close relatives from comparable environments. Bootstrap values are based on 2000 sub-samplings.
Methane oxidation in the water column

CH₄ concentrations in the water column above the Blowout (up to 42 μM) were comparable to other catastrophic CH₄-release sites, such as the Deepwater Horizon oil spill site (Kessler et al. 2011; Crespo-Medina et al. 2014), or anoxic marine basins (Reeburgh et al. 1991). Water-column CH₄ concentrations at other highly active marine seeps, e.g., at hydrothermal vents at the Juan de Fuca Ridge (deAngelis et al. 1993), cold seeps in the Santa Monica basin (Mau et al. 2012), at Hydrate Ridge (Heeschen et al. 2005), and at the Svalbard continental margin (Steinle et al. 2015), are generally 1–2 orders of magnitude lower. The highest CH₄ concentrations at the Blowout (i.e., [CH₄] > 5000 nM, Fig. 6b,c) seem to be constrained to waters most directly influenced by the main bubble plume (Schneider Von Deimling et al. 2015; Sommer et al. 2015). The horizontal extension of the plume can be estimated from the highest CH₄ concentrations located in the eastern part of the CTD grid (Fig. 6b,c). In line with results from data from 2011 (Sommer et al. 2015), bottom water grid samples (Fig. 6c) showed ubiquitously high CH₄ concentrations (~900 nM), and thus a strong lateral influence of the plume, possibly driven by density-driven recirculation of CH₄-rich waters ascending with the main bubble plume (Schneider Von Deimling et al. 2015, Wilson et al. 2015). At the thermocline, the impact of the bubble plume on CH₄-concentrations seems reduced and less constant (CH₄-concentrations as low as 50 nM; Fig. 6b). See Sommer et al. (2015) and Schneider Von Deimling et al. (2015) for a detailed discussion on lateral plume extension.

At the Blowout, >95% of the uprising CH₄ seems to be trapped below the thermocline (Schneider Von Deimling et al. 2007; Sommer et al. 2015), so that relatively little CH₄ reaches the mixed layer (see Fig. 6a). Yet, the fate of the uprising CH₄ is not completely certain. The enrichment of 13C of thermoline CH₄ relative to the source CH₄ (Table 3; Fig. 4d–f) is consistent with C-isotope fractionation during partial CH₄-consumption by MOX (Whiticar 1999) and implies that a fraction of seep-derived CH₄ is oxidized in the water column. However, the rather subtle increase in δ¹³C suggests that ¹³C-enrichment during MOX is counteracted by the continuous resupply of CH₄ with a low δ¹³C-signature. In light of the very high water-column CH₄ concentrations, mixing with atmospheric CH₄ (about ~475ppm; NOAA-ESRL network) can be excluded to cause the observed ¹³C-isotopic enrichment in the residual CH₄ pool, leaving partial consumption by water-column MOX as the most likely explanation for the elevated methane δ¹³C within the thermocline.

The MOX rates in the Blowout water column (Figs. 3b, 6g–i) are among the highest values reported for marine environments (Reeburgh 2007; Mau et al. 2013; Steinle et al. 2015). They lie within the same range as rates detected in the anoxic basin of the Black Sea (Reeburgh et al. 1991) and the Gulf of Mexico water column following the Deepwater Horizon oil spill (Kessler et al. 2011; Crespo-Medina et al. 2014). Two rate maxima were observed within the water column, one within the crater and the second one at the thermocline (Fig. 3b), indicating more favorable conditions for MOX in these water layers. Previous studies found that important factors controlling MOX are (1) CH₄ availability, (2) trace metal abundance, and/or (3) changes in the abundance of MOB bacteria caused by water mass exchange (Semrau et al. 2010; Kessler et al. 2011; Mau et al. 2013; Crespo-Medina et al. 2014; Steinle et al. 2015).

1. CH₄ availability. Low CH₄ concentrations may explain the overall low MOX rates in the mixed layer, and the high variability of MOX rates in the thermocline may to some extent be related to variable CH₄ concentrations (Fig. 6). However, even though very high CH₄ concentrations were observed both in the bottom water grid and in crater waters, MOX rates were much lower in the bottom water grid compared to crater waters. The overall rather poor correlation between CH₄ concentrations and MOX (R²-values <0.2; data not shown) implies that the ambient CH₄ concentrations are not the major control on MOX activity in these water layers.

2. Trace metal abundance. No water-column trace metal data are available for the Blowout area. However, within the crater and the plume above, it seems plausible that sediment mobilization can increase the concentration of trace metals that are important for MOB (i.e., Cu, Fe; Semrau et al. 2010) and thus stimulate MOX in the water column (see section below “Type II methanotrophs in the water column” for further discussion).

3. Water mass transport. The space within the Blowout crater is partly shielded against tidal influences/currents, providing relatively stable conditions. We also detected a constant supply of MOB from surface sediments to the water column within the crater (see section below “Sediment-borne MOB fuel the water-column MOX filter”). Combined, these factors appear to warrant conditions conducive to MOB community development and thus high MOX rates (Steinle et al. 2015). A similar situation seems to apply to thermoline waters, where CH₄ is being trapped during density stratification. Yet, the rather variable CH₄ concentrations (Fig. 6b) suggest a stronger influence by lateral advection (Sommer et al. 2015). At seeps offshore Svalbard, lateral transport of water-column MOB away from the CH₄ point source was found to reduce water-column MOX activity (Steinle et al. 2015). In comparison to the crater, the more variable conditions at the Blowout’s thermoline may thus explain the fluctuating MOX rates in this water layer (Fig. 6h).

Sediment-borne MOB fuel the water-column MOX filter

Sediment particles on the filter from the Blowout crater water sample (Fig. 5i) and, though less abundant, on filters from the bottom water grid (Fig. 5l) indicate that sediment
is entrained in the bubble plume and transported into the water column. Our DGGE and phylogenetic analysis revealed several bottom water sequences (BW_2, BW_3, BW_7), which were identical to sequences from crater surface sediments (BOC_2, BOC_3, BOC_7; Figs. 8, 9) providing evidence that mobilized sediments provide a vector for transporting benthic microbes into the water column. The distribution of sediment particles in the water column paired with the identity of pelagic vs. benthic microbes thus suggests that MOB, maybe in immediate association with sediment particles, were transported at least ~40 m up into the water column. The elevated MOx rates in the bottom water grid samples are likely supported by the ebullition-aided dispersal of sediment-borne MOB, which seem to continuously re-stock the MOx filter in the water column. A recent study by Schmale et al. (2015) described the entrainment of MOB by bubbles at the Rostocker seep site (Coal Oil Point seep field, California) as “bubble transport mechanism”; however, the bubble stream with the entrained microbes was captured only 15 cm above the sediment surface. Here, we confirm that mobilization of sediment microbes into the water column can play an important role for inoculating the water column. In addition, we demonstrate for the first time that “bubble plumes” can transport microbes over much larger vertical distances, thereby linking benthic and pelagic bacterial communities. Although other work at cold seeps could not find similar MOB communities in sediments and in bottom waters (Tavormina et al. 2008), our study suggests that transport of benthic microbes far into the water column may be a globally important mechanism that shapes the regional microbial biogeography (Schmale et al. 2015).

Type II methanotrophs in the water column

Results from earlier studies suggest that aerobic MOB in marine habitats almost exclusively belong to Type I MOB (Elsaied et al. 2004; Tavormina et al. 2013, 2010; Reed et al. 2009; Kessler et al. 2011; Hävelsrud et al. 2011, Steinle et al. 2015). In some marine studies, Type II MOB were observed, but in all cases they constituted only a small part of the methanotrophic community (Wang et al. 2004; McDonald et al. 2005; Hamdan et al. 2011). So far, Type II-dominated MOB communities seem to be restricted to certain freshwater systems, e.g., some arctic lakes (He et al. 2012), soils (Henckel et al. 2000), and rice fields (Bodelier et al. 2000; Macalady et al. 2002). Our finding of a Type II-dominated MOB community in the water column at the Blowout (Fig. 9) is thus unique. The recruitment from the sediments (where both Type I and II MOB were detected, Table 3; Fig. 5) provides a stock of both types of aerobic MOB to bottom waters, which explains the presence of Type II MOB in the bottom water grid. However, it remains unclear as to why the thermocline MOB community at the Blowout is dominated by Type II MOB. Very little is known about factors selecting for this group of MOB. Hanson and Hanson (1996) suggested that Type II MOB are better adapted to high CH4 concentrations, which agrees with more recent environmental observations (Bodelier et al. 2000; Henckel et al. 2000; Macalady et al. 2002; Kessler et al. 2011; He et al. 2012). Besides CH4 concentrations, the availability of copper and iron (which are present in the reaction centers of the soluble and particulate MMO, respectively) may also influence expression, enzyme activity, and ultimately the community structure of MOB. For example, pMMO has been found to be less expressed under copper limitation compared to sMMO (Murrell 2010). While Type II MOB often have the ability to express both, pMMO and sMMO, most Type I MOB synthesize only the particulate form of MMO (Semrau et al. 2010, and references therein). We did not measure water-column trace metal concentrations, so that we can only speculate whether the water column at the Blowout is depleted in copper, which could potentially limit the expression of pMMO and thus give competitive advantage to Type II MOB over Type I MOB. We propose that elevated levels of CH4 in the water column paired with potential copper limitation (to be confirmed by future work) constitute important selection mechanisms for Type II MOB at the Blowout.

Diversity of MOB in the blowout area

Phylogenetic analyses revealed strong differences between the MOB and phylogenetically related communities in the bottom water grid, the thermocline, and the mixed layer. As for Type I MOB, we found several sequences from the bottom water grid (and from the Blowout crater sediment) that were closely related to known MOB of the “Marine Methanotrophic Group I” or “deep-sea clade 1.” These sequences are thus originating from obligate MOB (Tavormina et al. 2008; Ruff et al. 2013). Similarly, two sequences from the bottom water grid and the thermocline at the Blowout are also likely to originate from bacteria mediating MOx, since they were closely related to a methanotrophic epibiont from a deep-sea crab (Watsuji et al. 2014). In addition to sequences related to known obligate MOB, we found several sequences that were closely related to putatively methanotroph-related bacteria previously found in the water column at cold seeps off the US West Coast (Tavormina et al. 2008). Their occurrence at the Blowout, and at two other CH4-rich environments (Eel River Basin and Santa Monica Basin; Tavormina et al. 2008) may indicate an involvement of these organisms in hydrocarbon degradation.

The Type II MOB recovered from the water column belong to the order Rhizobiales within the class Alphaproteobacteria and, therein, to two genera of the family Methylocystaceae: Methylocystis or Methylosinus. Two additional genera, Methylocella and Methylocapsa within the order Rhizobiales, were recently identified as obligate methanotrophs, but are not considered traditional Type II MOB as they belong to the family Betiirinckiaiceae and not to Methylocystaceae (Marin and Ruiz Arahal 2014). The identified sequences from the
Fig. 9. (a) DGGE community fingerprints of Type II MOB and other Alphaproteobacteria at the different sampling sites. Sample names are indicated (BOC = Blowout crater push core, BOW = Blowout wall push core, BW = bottom water grid, TC = thermocline, ML = mixed layer, refCTD = reference CTD). The bands for the thermocline sample (TC_3, TC_4) are from a second DGGE-gel. (b) Maximum likelihood tree based on partial 16S rRNA gene sequences showing the phylogenetic affiliation of sequenced DGGE bands (indicated with a star and a label on the DGGE gels) with closely related cultivated MOB and sequences of uncultivated close relatives from comparable environments. Bootstrap values are based on 2000 sub-samplings.
thermocline are closely related to Methylcapsa sp. (TC_3 and TC_4) are hence most likely (obligate) methanotrophs. Several other Rhizobiales members, belonging to the Methylococcaceae and Hyphomicrobiaceae, were found to be methylo-
trophic (e.g., Urakami et al. 1995; Vuilleumier et al. 2011; Marx et al. 2012). As a result, the sequences from the BW grid and the Blowout crater sediments (BW_6, BOC_6) clu-
tering with Hyphomicrobi um sp. and with a clone sequence recovered from the water column after the Deepwater Horiz-
on oil spill (KF786955) could also be involved in hydrocar-
bon degradation. Similarly, another crater sediment sequence (BOC_2) is closely related to environmental clones from
hydrate-influenced areas and an involvement in CH4 metabolism is hence possible.

Efficiency of the water-column methane filter

At the Blowout, less than 5% of the uprising dissolved CH4 is estimated to reach the upper mixed layer during strat-
fied conditions (Schneider Von Deimling et al. 2015; Sommer et al. 2015). The thermocline acts as a barrier, which
delays diffusive CH4 emissions into the atmosphere and, thus, enhances the CH4 availability for water-column MOB communities. For the water column where the CH4 is trapped (i.e., below the upper mixed layer: 20–98 mbsl), we
calculated a depth-weighted average turnover constant (k) by linear interpolation between the measured k in the thermo-
cline, the bottom water grid and in bottom waters sampled 0.5 m above the seafloor (BO2). The depth-weighted k was
0.01–0.03 d\(^{-1}\) when considering average and maximum k in the different water layers, respectively (Table 3). This trans-
lates to a CH4 turnover time (1/k), of 92 or 31 days for aver-
age and maximum depth-weighted k values, respectively.
Assuming that first-order rate kinetics apply, MOX has the potential to oxidize only 1–3% of the CH4 in our study area. The only possible sink for the remaining >95% of the emitted CH4 is lateral advective transport away from the immediate Blowout-seep area. Strong tidal currents will not only transport CH4 (Sommer et al. 2015) laterally away from the CH4 point source, but probably also MOB (Steinle et al. 2015), so that MOX is very likely to proceed outside the immediate Blowout seep area. Indeed, previous work from the Svalbard Continental margin suggests that much of the total CH4 liberated from a cold seep area is likely consumed downstream of the CH4 point source (Graves et al. 2015; Steinle et al. 2015). The efficiency of the water-column MOX thus depends strongly on the time scale of turbulent vertical mixing, i.e., the time needed for (CH4-rich) water to be transported from the sea floor to the sea surface in a MOB-containing water parcel. In the Blowout region, slow vertical mixing during stratified conditions results in a retention time for CH4 of ~23 days (Nauw et al. 2015). Assuming that the range of depth-weighted k values determined above also apply to MOX during lateral transport of the MOB community away from the Blowout, and given typical vertical mixing rates under stratified conditions, we calculate that at least 25% (and up to 74%) of the emitted CH4 could be oxidized. Importantly, our estimates do not consider that advection-
related dilution of the MOB cell density may act to lower k. On the other hand, these estimates also do not take into
account the possibility of MOB community growth during lateral transport away from the Blowout, which would likely
lead to higher k values.

During fully mixed conditions, in contrast, rapid vertical transport within the water column leads to a short retention
time for CH4 of ~1 day (Nauw et al. 2015). Even a similarly active MOB community as the one present during stratified
conditions could thus only consume <3% of the emitted CH4. Yet, the development of a highly active MOB commu-
nity is unlikely under fully mixed conditions due to a lack of environmental stability and continuity (Steinle et al. 2015),
resulting in an even less efficient CH4 removal. Additional investigations of MOX activity in the water column in the
broader Blowout area and under both stratified and fully mixed
conditions are necessary to further constrain the fate of the seep-derived CH4 and the overall MOX filter capacity.

In conclusion, MOX rates in the water column at the Blowout are among the highest rates ever measured in a marine environment, and effectively consume a significant part of the emitted CH4 at least during stratified conditions. We speculate, however, that the microbial methane filter is temporarily suspended during fully mixed conditions. The MOB community in the lower water column is (at least in parts) recruited from sedentary MOB, which are entrained in CH4-bubble plumes rising from the sediments and trans-
ported into the water column. Hence our study demonstrates that gas ebullition not only provides ample CH4 substrate fueling MOX in the water column, it also serves as an important vector for sediment-borne microbial inocula
that aid in the establishment of a water-column methanotro-
pheric community at high-flux cold seeps.

References

Berndt, C., and others. 2014. Temporal constraints on
hydrate-controlled methane seepage off Svalbard. Science
343: 284–287. doi:10.1126/science.1246298

Bischof, A., and others. 2011. Rising Arctic Ocean tempera-
tures cause gas hydrate destabilization and ocean acidifi-
2011GL047222

Blees, J., and others. 2014. Micro-aerobic bacterial methane
oxidation in the chemocline and anoxic water column of
deep south-Alpine Lake Lugano (Switzerland). Limnol.
Oceanogr. 59: 311–324. doi:10.4319/lo.2014.59.2.0311

Stimulation by ammonium-based fertilizers of methane
doi:10.1038/35000193

Fox, M. A. 1995. Memorandum 22/4b-4 well site hazards. MOBIL North Sea Ltd.

Treude, T., V. Orphan, K. Knittel, A. Gieseke, C. H. House, and A. Boetius. 2007. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the

Acknowledgments

We thank the Captain and crew of R/V Celtic Explorer, the ROV team (GEOMAR), and the scientific party of cruise CE12010 for the excellent support at sea. Additional thanks go to G. Schüßler, M. Dibbern, B. Domeyer, A. Bleyer, and A. Bodenbinder for technical support. This work received financial support through a D-A-CH project funded by the Swiss National Science Foundation and the German Research foundation (grants 200021L_138057 and 200020_159878/1). Further support was provided through the EU COST Action Pergamon (ESSEM 0902). The project’s ship time and transportation was funded by EUROFLEETS (grant 228344), with work being conducted in the framework of the ECO2 project (FP7, grant 265847). Further support came from the Cluster of Excellence “The Future Ocean” funded by the German Research Foundation.

Conflict of Interest

None declared.

Submitted 05 February 2016
Revised 08 June 2016
Accepted 15 July 2016

Associate editor: Leila Hamdan