Frog tongue acts as muscle-powered adhesive tape

Kleinteich, Thomas and Gorb, Stanislav (2015) Frog tongue acts as muscle-powered adhesive tape Royal Society open science, 2 (9). p. 150333.

Full text not available from this repository.

Abstract

Frogs are well known to capture fast-moving prey by flicking their sticky tongues out of the mouth. This tongue projection behaviour happens extremely fast which makes frog tongues a biological high-speed adhesive system. The processes at the interface between tongue and prey, and thus the mechanism of adhesion, however, are completely unknown. Here, we captured the contact mechanics of frog tongues by filming tongue adhesion at 2000 frames per second through an illuminated glass. We found that the tongue rolls over the target during attachment. However, during the pulling phase, the tongue retractor muscle acts perpendicular to the target surface and thus prevents peeling during tongue retraction. When the tongue detaches, mucus fibrils form between the tongue and the target. Fibrils commonly occur in pressure-sensitive adhesives, and thus frog tongues might be a biological analogue to these engineered materials. The fibrils in frog tongues are related to the presence of microscopic papillae on the surface. Together with a layer of nanoscale fibres underneath the tongue epithelium, these surface papillae will make the tongue adaptable to asperities. For the first time, to the best of our knowledge, we are able to integrate anatomy and function to explain the processes during adhesion in frog tongues.

Document Type: Article
Research affiliation: Kiel University > Kiel Marine Science
OceanRep > The Future Ocean - Cluster of Excellence
Kiel University
Refereed: Yes
Projects: Future Ocean
Date Deposited: 18 Oct 2016 03:45
Last Modified: 10 Apr 2018 09:01
URI: http://eprints.uni-kiel.de/id/eprint/32548

Actions (login required)

View Item View Item