
An Architecture-aware Approach to
Hierarchical Online Failure Prediction

Teerat Pitakrat, Dusǎn Okanović, André van Hoorn
Institute of Software Technology
University of Stuttgart, Germany

Lars Grunske
Department of Computer Science, Software Engineering

Humboldt University Berlin, Germany

Abstract—Failures in software systems during operation are
inevitable. They cause system downtime, which needs to be
minimized to reduce or avoid unnecessary costs and customer
dissatisfaction. Online failure prediction aims at identifying
upcoming failures at runtime to enable proactive maintenance
actions. Existing online failure prediction approaches focus on
predicting failures of either individual components or the system
as a whole. They do not take into account software architectural
dependencies, which determine the propagation of failures. In
this paper, we propose a hierarchical online failure prediction
approach, HORA, which employs a combination of both failure
predictors and architectural models. We evaluate our approach
using a distributed RSS reader application by Netflix and
investigate the prediction quality for two representative types of
failures, namely memory leak and system overload. The results
show that, overall, our approach improves the area under the
ROC curve by 10.7% compared to a monolithic approach.

I. INTRODUCTION

Quality of Service (QoS) problems in software systems at
runtime, such as, performance degradation and service outage,
can lead to frustrated customers and losses in revenue. Online
failure prediction [1] aims to foresee looming QoS problems
at runtime before they manifest themselves. Accurate failure
predictions are a prerequisite for preemptive maintenance
actions, reducing the effect of problems or even completely
preventing them from occurring [2, 3, 4].

Existing online failure prediction approaches predict failures
either of the whole system or of specific parts of the system.
These approaches employ monolithic models which view the
whole system as one entity and predict failure events based
on externally observable parameters, e.g., response time [5],
event logs [6, 7], or network traffic [8].

When faced with complex software systems comprised of
a large number of internal and external components, these
approaches may not be able to capture all the influencing
parameters. One reason is the fact that failures, which are
visible to the users, usually originate from complex interac-
tions and errors inside the system. Driven by the architectural
dependencies, these internal errors can propagate to other parts
of the software system and cause a chain of errors up to the
system boundary [9, 10, 11]. Moreover, if the system under-
goes frequent updates or evolution [12], its characteristics can
change, causing the prediction models to become outdated and
requiring a re-learning of the models.

To overcome these challenges, we hypothesize that online
failure prediction can be improved by including architectural

information about software systems. There are approaches for
architecture-based QoS prediction which are designed for early
stages of the development process [13]. Examples of these
approaches target performance [14, 15, 16] and reliability [17,
18, 19]. However, they are not designed for running systems.

In this paper, we propose a hierarchical online failure
prediction approach, called HORA. The core idea is to combine
architectural models with component failure prediction tech-
niques, such as time series forecasting or machine learning.
We use two types of architectural models: 1) Architectural
Dependency Model (ADM) and 2) Failure Propagation Model
(FPM). The ADM captures the dependencies between architec-
tural entities. The FPM employs Bayesian network theory [20]
to represent the propagation paths of failures with correspond-
ing probabilities. At runtime, the FPM is constantly updated
with individual failure probabilities, which are computed by
component failure predictors based on monitoring data. The
FPM is then solved to combine individual and propagated
failure probabilities.

Our evaluation investigates the prediction quality of HORA
with respect to the following research question: Does HORA
improve the prediction quality compared to a monolithic
approach? If yes, to what degree? The evaluation includes two
typical failure scenarios, which are memory leak and system
overload. The results of our approach are compared to those of
a monolithic approach, which does not consider architectural
knowledge for the prediction. The results show that our
approach can predict runtime failures with a higher prediction
quality, with respect to standard evaluation metrics [1].

To summarize, the paper contributes a novel online fail-
ure prediction approach—accompanied by a proof-of-concept
implementation—and shows its benefits over a monolithic
approach.

The remainder of the paper is structured as follows. Sec-
tion II emphasizes the challenge of online failure prediction
in distributed software systems. Section III details the HORA
approach. The evaluation and the discussion of the results are
presented in Section IV. Section V describes the related work.
Finally, Section VI draws the conclusion and outlines future
work. Additionally, we provide supplementary material for this
paper [21].



Distributed enterprise application system

Presentation Tier (PT)

PT1

...

PT2

...

Business Tier (BT)

BT1

...

BT2

...

BT3

...

Database Tier (DT)

DB

Clients

Service response time (sec)

CPU utilization (%) Heap utilization (%)Memory utilization (%)

Measurements (system boundary) Measurements (system-internal)

Service

Failed requests

0.0

2.0

4:05 PM

100.0

0.0

100.0

0.0

100.0

0.0

3:55 PM4:05 PM 4:05 PM

Fig. 1: Running example: high-level three-tier architecture and selected measurements

II. MOTIVATING EXAMPLE

Software service providers need to make sure that the
system satisfies its QoS requirements, e.g., in terms of both
response time quantiles and failure rates not exceeding a
certain threshold. During operation, such QoS properties are
continuously monitored at the system boundary to assess QoS
compliance.

Figure 1 provides a high-level view on a typical distributed
enterprise application system. The example system conforms
to the common three-tier architectural style of enterprise ap-
plications. Each of the tiers comprises a number of instances,
to which requests are distributed over load-balancers. Each
instance comprises a complex stack of software architecture,
middleware services, operating system, virtualization, and
hardware components.

In this example, it can be observed that at 4:05 PM QoS
problems manifest themselves at the system boundary as a
prompt increase in response times and failing requests for
the provided service. Online failure prediction approaches
aim to predict such problems before they occur in order
to allow timely actions, such as preventive maintenance, to
decrease or completely prevent system downtime. However, in
this case, neither of the two metrics measured at the system
boundary gives an indication about the upcoming problem.
Hence, traditional approaches for online failure prediction are
not appropriate in this case.

In addition to the system architecture, Figure 1 includes
three system-internal measures of BT2, namely the utilization
of CPU, system memory, and heap space of the Java Virtual
Machine (JVM). It can be observed that the CPU utilization
increases abruptly at 4:05 PM—the same time as the increase
of the service response time. The utilization of system memory
increases linearly until 3:55 PM when it reaches a level close
to 100% and remains stable. The JVM heap space utilization
shows an increasing trend until reaching almost 100%. In this
scenario, we can conclude that the increase of the response
times is caused by the increase of the CPU utilization. The
increase of the CPU utilization is in turn caused by garbage
collection activity inside the JVM—a common problem in Java
systems. In this scenario, the root cause of the failure could
be a memory leak in the business-tier instance BT2, which
causes a chain of errors [11] that propagates to the end users.

The online failure prediction approach, introduced in this
paper, aims to predict this kind of problems by incorporating
the failure probabilities of the internal components (in this case
CPU, memory, and JVM) along with the failure propagation
paths through the software system architecture.

III. THE HORA PREDICTION APPROACH

The main idea of HORA is derived from the vision [22] that
if the failure of each component in the software system can
be predicted and the dependencies among the components are
known, the consequence, i.e., the propagation, of the failures
can also be predicted.

The HORA approach is comprised of two integral parts:
1) two types of architectural models (Section III-A), namely
Architectural Dependency Model and Failure Propagation
Model; 2) hierarchical online failure prediction (Section III-B),
including component failure prediction and inference of failure
propagation.

A. Architectural Models

1) Architectural Dependency Model: The Architectural De-
pendency Model (ADM) lists software and hardware compo-
nents along with their weighted dependencies—as far as being
relevant to the online failure prediction. This intermediate step
allows us to focus on one type of model while still providing
the possibility to transform other types of architectural models
into ADM.

Table I shows the table representation of the ADM for
the example introduced in Section II. Following a topolog-
ical order, the database (DB) has no dependencies to other
components; the business-tier instances BT1–3 depend on DB;
the presentation-tier instances PT1–2 depend on the business-
tier instances BT1–3; and the service depends on PT1–2.
Additionally, Table I includes the weights associated to these
dependencies—in this case, assuming that requests among the
tiers are equally load-balanced to the instances of the next
tier. Note that for the sake of simplicity, we consider the
six nodes from the example as monolithic components. For
realistic scenarios (e.g., in the evaluation in Section IV), these
components can be further decomposed into software and
hardware components with measures, such as service response
time, method execution time, or resource utilization.



TABLE I: Table representation of the ADM for the system
in Figure 1

Component Required components and weights
DB {}
BT1 {(DB, 1.0)}
BT2 {(DB, 1.0)}
BT3 {(DB, 1.0)}
PT1 {(BT1, 0.33), (BT2, 0.33), (BT3, 0.33)}
PT2 {(BT1, 0.33), (BT2, 0.33), (BT3, 0.33)}

Service {(PT1, 0.5), (PT2, 0.5)}

There are already a number of existing architectural mod-
eling languages and model extraction mechanisms [23], e.g.,
PCM [14], Descartes [15], and SLAstic [24]. Working directly
with them becomes a challenge due to their different specifi-
cations. Thus, we introduce ADM which aims at being an in-
termediate model representing only the dependencies between
architectural entities. The existing architectural models can be
transformed into ADM using corresponding transformations.

2) Failure Propagation Model: Although the ADM con-
tains the component dependencies and the corresponding
weights, it does not allow efficient failure prediction due to
the complex relationships between components. To illustrate
this, let us consider the three-tiered system in Figure 1. It
can be observed from the architecture that the system allows
horizontal scaling to increase capacity and reliability. If some
of the nodes in each tier fail, the system is still able to continue
the service. However, if the number of failed nodes increases,
it will reach a point where the system cannot handle the
workload with the reduced capacity. This means that the more
nodes fail, the higher the probability that the whole system
will fail [11].

To model these complex component dependencies, we trans-
form the ADM into another representation, called Failure
Propagation Model (FPM), which is an abstraction that repre-
sents the concept of the inference of failure propagations. The
FPM employs the formalism of Bayesian networks [20] which
is a probabilistic directed acyclic graph that can represent
random variables and their conditional dependencies. Figure 2
depicts the Bayesian network which illustrates the relationship
of node failures for the example system. Each node in the
graph represents a software/hardware component and an arrow
represents a causal relationship between components. The
relationship implies that a failure of a parent component can
cause a failure in the child component. For simplicity reasons,
in this example we only consider each physical machine as
a node in the graph without going into the details of each
machine.

The conditional dependencies between the nodes in the
graph are represented by a Conditional Probability Table
(CPT). Each node in the graph has a corresponding CPT which
contains conditional probabilities of possible failures occur-
ring, given the failure probability of its parent components.
For instance, the database is a node that does not depend on
any other nodes. Therefore, its CPT contains only two failure
probabilities that represent the probability of failure occurring,
and not occurring, from inside the database itself. The table

PT2

BT1 BT2 BT3

DB

PT1

Service

DB fails
True False

P(DBF) 1 - P(DBF)

True False

P(BT3F) 1 - P(BT3F)
1.00 0.00

False
True

BT3 failsDB 
fails

BT1 
fails

BT2 
fails

BT3 
fails

True
True
True True

True
True True

TrueTrue
True True True

False False False
False False
False False
False

False False
False

False

P(PT2F) 1-P(PT2F)

1.00 0.00

0.66
0.66

0.66
0.66

0.66
0.66

0.33
0.33

0.33
0.33

0.33
0.33

PT2 fails
True False

CPTPT2

CPTDB

CPTBT3

Fig. 2: Failure propagation model for the system in Figure 1
with selected CPTs

is shown in Figure 2 as CPTDB. The failure probability is
denoted by P (DBF ) which is computed at runtime by the
corresponding component failure predictor, as will be detailed
in Section III-B1. On the other hand, the operation of a
business tier requires a functional database with a dependency
weight of 1.0, according to the ADM in Table I. This means if
the database fails, the business-tier instances will also fail. The
CPT of the business-tier instance BT3 is presented in Figure 2
(CPTBT3). The first row indicates the failure probability of
the business tier itself, if the database is operating properly.
The second row indicates the probability of BT3 failing if the
database fails.

A more complex relationship can be seen from the presen-
tation tier which requires at least one business-tier instance.
If one business-tier instance fails, the presentation tier can
still operate by forwarding requests to the remaining business-
tier instances. As listed in Table I, the dependency weight of
each presentation-tier instance to each business-tier instance
is 0.33. This implies that, for each business tier failure,
the failure probability of the presentation-tier instances will
increase by 0.33. Hence, if all business-tier instances fail, this
failure probability will sum up to 1.0 which means that the
presentation-tier instances will also fail. The CPT of PT2 is
presented in Figure 2 as CPTPT2.

Assuming that a component depends on n other components
with n ≥ 1, the CPT can be expressed by a multiplication of a
truth table matrix T of size 2n×n and the weight matrix W
of size n× 2, i.e., CPT = T ·W, where

T =

c1 . . . cn−2 cn−1 cn



0 . . . 0 0 0
0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 0 1 1
...

. . .
...

...
...

1 . . . 1 1 1

,W =




wc1 1− wc1
wc2 1− wc2

...
...

wcn 1− wcn

,



U
til

iz
at

io
n 

(%
)

Fa
ilu

re
 p

ro
ba

bi
lit

yMemory utilization

Prediction with
prediction interval

Failure probability
Failure threshold

Future memory
utilization

100.0

0.0

3:35 PM

1.0

0.0

3:55PM

(a) Memory failure prediction (monolithic
approach)

Response time

Prediction with
prediction interval

Failure probability
Failure threshold

Future response time

Future failed request

R
es

po
ns

e 
tim

e 
(s

ec
)

Fa
ilu

re
 p

ro
ba

bi
lit

y

2.0

0.0

3:35 PM

1.0

0.0

3:55PM

(b) Service response time failure predic-
tion (monolithic approach)

Response time

Failure probability
Failure threshold
Future response time

Future failed request

R
es

po
ns

e
 ti

m
e

 (
se

c)

F
ai

lu
re

 p
ro

b
ab

ili
ty

2.0

0.0

3:35 PM

1.0

0.0

3:55PM

(c) Service response time failure prediction
(HORA)

Fig. 3: Example prediction results: monolithic approach vs. HORA

with ci, 1 ≤ i ≤ n, are required components and wci are the
corresponding weights.

The CPTs of other nodes are also created in the same man-
ner as those for the database, business tier, and presentation
tier. The complete model with all CPTs is used as a core model
to infer about the failure probability of each component and
failure propagation. The failure prediction and inference of the
model at runtime will be discussed in detail in Section III-B.

B. Hierarchical Online Failure Prediction

The prediction of the failures and the inference of their
propagation at runtime are comprised of two main steps. The
first step is the prediction of individual component failure
probabilities (Section III-B1). The second step is the inference
of failure propagation based on the individual component
failures and the FPM (Section III-B2).

1) Component Failure Prediction: The purpose of compo-
nent failure predictors is to predict failures of each individual
component. Each predictor monitors the runtime measure-
ments of one component and makes a prediction whether the
current state might lead to a component failure.

At runtime when a component failure predictor produces a
new prediction, the result is used to update the FPM to keep the
model up-to-date. Since the prediction result of the component
failure predictor indicates the probability of a failure occurring
from the component itself, this probability then replaces the
first row of the CPT of the corresponding node in the model.
For example, if the predictor of BT3 predicts that it may fail
in 20 minutes with a probability of 0.8, the probabilities in
the first row of CPTBT3 in Figure 2, in which DB failure is
False, will be set to 0.8 and 0.2, accordingly. This process
is periodically performed for all component failure predictors.

Figure 3a illustrates the concept of a component failure
predictor based on the memory consumption of business
tier BT2 in Figure 1. Since the memory consumption is
time series data, we employ autoregressive integrated moving
average (ARIMA) [25] as a component failure prediction
technique. The goal of the prediction is to predict when the
memory utilization will reach the 100% threshold, assuming
that the machine will have a performance degradation when

Prediction Interval

10093
Utilization (%)

Fig. 4: Probability density function of memory utilization at
3:55 PM and memory failure probability

the memory is depleted, which can cause a service failure. The
thin solid line in the graph indicates the monitoring data of
memory utilization up to 3:35 PM. The dashed line indicates
the prediction of the memory utilization in the next 20 minutes
with a prediction interval in light grey.

The probability of the monitoring data crossing the failure
threshold α can be computed using the probability density
function f(x) of the predicted performance measure:

P (X > α) =

∫ ∞
α

f(x)dx (1)

Figure 4 depicts the probability density function of the
memory utilization at 3:55 PM. Assuming that the input data
is normally distributed, the prediction error is also normally
distributed [26]. Thus, the prediction interval assembles a
normal distribution. The predicted value of 93% indicates the
mean of the distribution. The 95% prediction interval covers
the ±1.96σ area of the distribution [26]. The probability of
the memory utilization crossing the failure threshold at 100%
can be computed using Equation 1 with α = 100.

In this section we show how HORA employs ARIMA as
a component failure predictor. HORA is designed to support
any other prediction method, such as other time series fore-
casting [5] or machine learning techniques [27, 22], as long
as they can 1) predict the failure probability and 2) provide
the expected time of the failure.

2) Inference of Failure Propagation: The inference of the
failure propagation is the last step of HORA, which aims to
predict what can be the effects of component failures. Once the
component failure probabilities are updated in the model, we



use Bayesian inference [20] to obtain the failure probabilities
of all components. The inference of the components’ failure
probabilities takes into account not only their own failure
probabilities but also those of their parents and ancestors. If
a node’s ancestors have high failure probabilities, its failure
probability will also be high. Therefore, the inference allows
us to model and predict failure propagation from inside to the
outside of the system. At runtime, the inference is done at
regular intervals to provide the current failure probabilities of
all components.

Figure 3b shows the result of an ARIMA component
failure predictor which does not take into account the failure
probabilities of other components. It is obvious that this
predictor cannot predict the first few occurrences of the service
failure. This is because the response time starts increasing
exactly when the first failure occurs. Figure 3c illustrates the
prediction of HORA which takes into account the architectural
dependencies of the components. HORA considers not only
the failure probability of the response time but also the
failure probability of memory utilization in Figure 3a and the
failure propagation model in Figure 2. By comparing failure
probabilities in Figure 3a and Figure 3c, it can be observed
that the failure probability at 3:55 PM is scaled down from
approximately 0.2 to 0.1. This effect is due to the weight of the
dependency presented in Table I. As the system contains three
instances of the business tier, a failure in one instance does
not necessarily have to cause a service failure. Therefore, the
failure probability is reduced by the inference of the model.

C. Hora Framework Implementation

According to the concept presented in Section III-A
and Section III-B, we have developed a Java-based proof-
of-concept implementation. The runtime measurements of
the system, including application-level performance and ex-
ecution traces, as well as resource utilization measurements,
are collected by the Kieker monitoring framework [28]. For
time series forecasting, the statistical library R [29] is used.
The implementation of HORA is available as part of the
supplementary material [21].

IV. EVALUATION

This section describes the evaluation of HORA and aims to
answer the following research question:
RQ: Does HORA improve prediction quality compared to a
monolithic approach? If yes, to what degree?

This research question refers to our main hypothesis that
we can improve the quality of online failure prediction using
HORA. In order to investigate the degree of improvement,
we compare HORA with a monolithic approach which is a
set of component failure predictors that do not use the archi-
tectural knowledge to propagate the failure probabilities. The
evaluation is conducted as a lab experiment with a distributed
enterprise application imposed to a synthetic workload under
different failure scenarios.

A. Experimental Methodology and Settings

1) System Under Analysis: The HORA approach is eval-
uated using an extended version of a distributed RSS feed
reader application developed by Netflix.1 This microservice-
based application [30] provides a web service where users can
view, add, or delete RSS feeds.

Our setup contains two instances in the presentation tier,
three instances in the business tier, and one database. The
workload driver is set up on a separate node and uses Apache
JMeter to generate user requests. The number of concurrent
users is set to 150 throughout the experiment. On average, the
workload generates approximately 90 requests per second.

The described system is deployed on Emulab [31], which is
a large-scale virtualized network testbed. Each of the instances
is a physical machine type pc3000 which is equipped with a
3-GHz 64-bit Xeon processor and 2 GB of physical memory,
running Ubuntu 14.04.1 LTS and Java 1.7.0 update 75.

2) Experiment Configuration: This section describes the
configurations of parameters and models that we use for the
evaluation.

a) Architectural Models: The ADM used in the evalua-
tion is similar to that in Table I. Other than the physical nodes
in the system, we include additional software and hardware
components with the following measures:
• Response times of view, add, and delete operations at the

system boundary (frontend load balancer),
• Response times of methods involved in processing re-

quests in all presentation- and business-tier instances,
• Load average, memory utilization, and heap utilization of

all physical machines.
The ADM contains 59 entries with 85 dependencies. The FPM
is created based on this ADM and, threfore, contains the same
number of nodes and dependencies between the nodes. The
complete ADM and FPM are not presented here due to the
space limitation but are available as part of the supplementary
material [21].

b) Failure Thresholds: In our experiment, we classify a
service to be in a healthy or failure state by observing the
response time and the response itself in 2-minute windows.
We consider a service to fail if the following condition occurs
within a certain time window: 1) the 95th percentile of the
server-side response times of all of the requests in that window
exceeds 1 second and/or 2) the ratio of successful requests over
all requests falls below 99.99%. Additionally, the execution
time threshold of all methods is set to 1 second in the same
manner as the server-side response time.

The failures of other architectural entities of the system
can be regarded as their intrinsic limitations. The memory
utilization threshold is set to 100% according to its physical
limit. The heap utilization threshold is set to 90%, since the
garbage collector is triggered automatically when utilization
becomes too high. The load average represents the number
of tasks in the CPU queue over time and provides more

1https://github.com/hora-prediction/recipes-rss



information than the CPU utilization [32]. For example, a 1-
minute load average of 1.0 means that there is one task in the
CPU queue on average in the past minute. Thus, we set the
failure threshold of the load average to 1.0.

c) Prediction Technique: At runtime, the monitoring
data, containing execution traces and resource measurements,
are aggregated into windows of size 2 minutes, which are
then pre-processed according to the type of architectural entity
measure. The 95th percentile is calculated for the response
time and method execution time while the mean is calculated
for the load average, memory utilization, and heap utilization.

As stated in Section III-B, we use ARIMA as a component
failure predictor. The size of the historical data for ARIMA is
set to 20 minutes. The prediction lead time is 10 minutes with
a 95% confidence level. The lead time of the FPM is the same
as the component failure predictors, which is 10 minutes.

3) Evaluation Metrics: This section introduces the metrics
used to evaluate the quality of the prediction. A complete list
of metrics and detailed descriptions can be found in [1].

Table II presents the four basic evaluation metrics as a
contingency table. A true positive (TP) is a correct prediction
of a failure. A false positive (FP) is a prediction of a failure
that never occurs. A false negative (FN) is a miss which
means the failure occurs but it was not predicted. A true
negative (TN) is a correct prediction that a failure does not
occur. Moreover, we consider four derived metrics, which are
precision, recall or true-positive rate (TPR), false-positive rate
(FPR), and accuracy, as listed in Table III.

Receiver Operating Characteristic (ROC) curve [33] repre-
sents the quality of the prediction by relating TPRs to FPRs
for different prediction thresholds, as shown in Figure 5. A
perfect predictor has a curve that covers the entire area of the
plot because the TPR is 1 while the FPR is 0. Thus, the closer
the curve is to the (0, 1) point, the better the prediction is.

Area Under ROC Curve (AUC) measures the area that is
covered by a ROC curve and allows comparison between
different ROC curves. A perfect predictor would have an AUC
of 1. The AUC is recommended to be used as a single-number
metric for evaluating learning algorithms [34]. Thus, in our
evaluation, the AUC is used as a representative metric for
the comparison of the prediction quality of HORA and the
monolithic approach. Furthermore, to evaluate the significance
of the improvement, we use two-sided hypothesis testing to
compare the AUCs with the following null and alternative
hypotheses:

H0 : AUCHORA = AUCMonolithic

H1 : AUCHORA 6= AUCMonolithic

The p-value is reported as the result of the test. The method
used in testing is introduced by DeLong et al. [35] to compare
two or more AUCs and is implemented in the pROC package
available in R [29].

4) Failure Scenarios: The types of failures that we consider
in our evaluation are two failure types from real world inci-
dents [36], which are memory leak and system overload. We

TABLE II: Contingency table

Prediction Actual
Failure Non-failure

Failure True positive (TP) false positive (FP)
Non-failure False negative (FN) True negative (TN)

TABLE III: Selected derived evaluation metrics

Metric Formula

Precision
TP

TP + FP

Recall, True-positive rate (TPR)
TP

TP + FN

False-positive rate (FPR)
FP

FP + TN

Accuracy
TP+TN

TP + TN + FP + FN

inject one type of these failures into each experiment run and
apply HORA and the monolithic prediction approach to predict
the failures. Each experiment lasts two hours and is repeated
10 times. The reported evaluation metrics are obtained by
combining and analyzing the raw prediction results of all runs.
The details of each type of failures are described as follows.

Memory Leak— In the experiment, we introduce a memory
leak in one of the business tiers. Every time a request is sent
from the presentation tier to this specific instance, 1024 bytes
of memory will be allocated and never released.

System Overload—System overloads occur when the
workload increases, either gradually or abruptly, until the
system cannot handle all the incoming requests. In this
scenario, instead of using a constant workload, we increase
the number of users until service failures occur (detailed
in Section IV-A2).

B. Results

In this section, we provide the results and explanation of the
failure scenarios. The ROC curves are depicted in Figure 5 and
the detailed evaluation metrics of all scenarios are summarized
in Table IV. The timeline plots, similar to Figure 3, of all ex-
periment runs are available in the supplementary material [21].

Memory Leak—The memory leak in one of the business-
tier instances causes the memory utilization to increase over
time. At approximately 75 minutes into the experiment, the
garbage collector starts continuously freeing up heap space,
which causes the system to slow down. As expected, this
causes a sudden increase in the service response time, which
cannot be predicted by the response time predictor. On the
other hand, HORA considers the memory utilization of the
business tier and propagates the failure probability to the
service boundary. The result shows that HORA can predict the
service failure 10 minutes before it occurs with a failure prob-
ability of 0.2. The ROC curves of HORA and the monolithic
approach are depicted in Figure 5a.

System Overload— The failures caused by overloading the
system start occurring at approximately 80 minutes into the
experiment. The increasing number of concurrent users causes
the load average of the business-tier instances to exceed the
failure threshold. As a result, some of the requests sent from



False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

AUC: 0.880
AUC: 0.945 p = < 2.22e−16

Hora
Monolithic

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

(a) Memory Leak

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

AUC: 0.760
AUC: 0.923 p = < 2.22e−16

Hora
Monolithic

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

(b) System overload

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

AUC: 0.848
AUC: 0.939 p = < 2.22e−16

Hora
Monolithic

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

(c) Overall

Fig. 5: Comparison of ROC curves for the different failure scenarios

TABLE IV: Comparison of all evaluation metrics for the different failure scenarios

Failure type Prediction approach Precision Recall, TPR FPR Accuracy AUC AUC improvement p-value

Memory leak HORA 0.614 0.944 0.095 0.911 0.945 7.3% < 2.22× 10−16

Monolithic 0.645 0.772 0.07 0.908 0.88

System overload HORA 0.204 0.936 0.191 0.816 0.923 21.4% < 2.22× 10−16

Monolithic 0.423 0.564 0.042 0.938 0.76

Overall HORA 0.437 0.921 0.123 0.881 0.939 10.7% < 2.22× 10−16

Monolithic 0.517 0.726 0.072 0.909 0.848

the presentation tier to the business tier are rejected. After
a pre-defined number of unsuccessful retries, the presentation
tier responds with a page indicating that an error has occurred.

The result shows that HORA can predict this type of service
failure since it takes into account the dependency of the
presentation tier on the business tier. On the other hand, the
predictor that observes only the increase in the response time at
the system boundary is not able to predict this type of service
failure. The ROC curves of both approaches are presented
in Figure 5b.

Overall—We evaluate the overall prediction quality of
HORA by analyzing the combined raw prediction data of both
scenarios. The results in Figure 5c and Table IV show that
HORA improves the overall AUC by 10.7%, compared to the
monolithic approach.

C. Discussion

Our prediction approach exploits the knowledge of the
component dependencies and a set of predictors, which can
predict individual component failures, to infer the failure prop-
agation. Our results show that in the both scenarios, HORA can
predict the failures with high TPR. This demonstrates that the
problems that develop internally can be detected early and the
failure probability can be propagated to other parts.

Although the results in Figure 5 and Table IV show that
HORA achieves higher TPR and higher AUC, the number of
false positives is also high. This results in a low precision
and high false-positive rate. In other words, the monolithic
approach performs better in the low false-positive-rate range
between 0 and 0.05. On the other hand, if a higher false-
positive rate is acceptable, HORA will be able to correctly
predict more failures than the monolithic approach.

These prediction results are obtained by collecting the mon-
itoring data from the system described in Section IV-A1 and
executing the offline analysis on a separate machine equipped
with 3.10 GHz Intel Xeon E31220 running Ubuntu 12.04.5
LTS. The analysis for a 2-hour monitoring data is completed
in less than 10 minutes. This demonstrates that HORA can be
deployed and make timely predictions at runtime.

D. Threats to Validity

We inject failures to introduce problems to the application
in our experiments. It is possible that the failures that occur at
runtime may be caused by other hidden problems rather than
those that we inject. In our evaluation, the failures that occur in
the memory leak scenario can be caused by a system overload
if the workload is too high. As a result, an attempt to predict
failures caused by a memory leak will also predict failures of
the system overload problem. Therefore, we carefully choose
the workload that is low enough so that it does not cause
system overload while we inject other types of failures.

In order to evaluate our approach, we need datasets that
include architectural dependencies, detailed runtime measure-
ments for the architectural entities, and information regard-
ing the types and time of the failures. Publicly available
datasets exist,2 but they are not appropriate for our evaluation
because they lack the architectural information and runtime
measurements. To systematically evaluate our approach, a
controlled environment is needed, which includes a usage
profile and the types of failures. We conduct a lab study with
failure injection which presents two main threats to external
validity. First, we consider only one system. Therefore, we

2https://www.usenix.org/cfdr



select an open-source application that is representative for the
state-of-the-art enterprise systems, in terms of architectural
style (microservice-based [30]) and technology (NetflixOSS
ecosystem). Second, our experiment did not cover all possible
types of failures. Since covering all possible failure types is
practically infeasible, we select two representative failure types
from real world incidents based on Pertet et al. [36].

V. RELATED WORK

In this paper, we propose a novel approach for hierarchical
online failure prediction. This work is related to QoS pre-
diction and can be categorized based on two dimensions; 1)
online vs. offline, and 2) monolithic vs. hierarchical.

Online prediction approaches aim at providing information
regarding the near future state of the running system based
on runtime observations [1]. In contrast, offline prediction
approaches are not used to trigger runtime actions, but to focus
on providing QoS measures to reason on system design and
evolution decisions [37, 38].

In another dimension, monolithic prediction approaches
consider the system as a black box. A prediction model can
be created using different techniques, such as time series
forecasting or machine learning. On the other hand, hier-
archical prediction approaches consider the architecture of
software systems including the components and their inter-
dependencies. Each component has its own specification that
can be combined with the others’ to form a model that
represents the whole system. The relevant measures of the
system can then be obtained by solving the combined model.

The remainder of this section describes related work in three
categories, based on the two dimensions, discussed previously.
Due to the lack of relevance to our approach, we do not discuss
works on monolithic offline prediction.

a) Monolithic Online Prediction: Similar to our ap-
proach, Cavallo et al. [39] and Amin et al. [5, 40] use ARIMA
and GARCH models to forecast response times and time
between failures of web services. In contrast, other approaches
use statistical analysis with adaptive thresholds [41], complex
event processing [8], rule-based classification [42], linear
regression and decision trees [43], support vector machine [44,
45], nearest neighbor methods [44], Bayesian networks and
submodels [46, 47, 48], and hidden semi-Markov models [7].

The HORA approach differs from these monolithic ap-
proaches at the system level in that we explicitly take archi-
tectural information into account. Although we apply similar
techniques to predict individual component failures, the archi-
tectural knowledge is employed to predict how a failure can
propagate and affect other components.

b) Hierarchical Offline Prediction: The approaches in
this category employ architecture-based system models an-
notated with specific quality evaluation models or scenar-
ios [13, 49, 50], e.g., performance [51, 16], reliability [52],
and safety [53] attributes. The model can be solved by
using analytical solution or simulations to obtain the relevant
properties of the whole system.

Cheung [19] proposes a seminal software reliability model
that takes into account reliability of individual components
along with the probability of calling other components. A
Markov model is employed to combine the reliability of
components and represent the reliability of the whole system.
Cortellessa and Grassi [10] present an approach for reliability
analysis of component-based software systems. Based on
the system architecture, they consider the error propagation
probability between components in addition to the reliability
of individual components. Becker et al. [14] introduce the
Palladio Component Model (PCM) which enables performance
prediction of component-based software systems. Brosch et
al. [17] extend the PCM by annotating the components with
corresponding reliability attributes. The model is transformed
into a discrete-time Markov chain and solved to obtain the
reliability of the system.

The approaches in this category have shown that the
capability of the prediction can be significantly improved
by combining traditional approaches, which are monolithic,
with the architecture-based models. Our approach applies the
same concept and incorporates the architecture of the system,
specifically the dependencies between components, into online
failure prediction. In combination with monolithic prediction
approaches, our approach is able to predict both failures of
individual components and the probabilities that those failures
will propagate to other parts of the system.

c) Hierarchical Online Prediction: As one recent exam-
ple for performance, Brosig et al. [15] employ an architecture-
based performance model to predict system performance at
runtime for capacity planning and online resource provi-
sioning. The performance characteristics are captured in an
architectural performance model which is then solved by
transforming it to an analytical model or by simulation, similar
to Becker et al. [14]. As opposed to this, HORA focuses
on predicting failure occurrences using an extensible set of
tailored prediction techniques.

Chalermarrewong et al. [54] predict system unavailability
in data centers using a set of component predictors and fault
tree analysis. The component predictors employ autoregressive
moving average (ARMA) to predict failures of hardware
components. These component failures are leaf nodes in the
fault tree which is evaluated to conclude whether the current
set of component failures will lead to system unavailability.
Even though this work does not consider software, it shares
the same basic idea as HORA by having a dedicated failure
predictor for each component. However, the fault tree does
not incorporate the conditional probability which represents
complex software architectural relationships. On the other
hand, HORA employs Bayesian networks which can represent
conditional dependencies and infer the probabilities of failures
and their propagation.

VI. CONCLUSION

Failures in software systems usually develop inside the
system and propagate to the boundary. Existing online failure
prediction approaches do not explicitly consider the software



system architecture and failure propagation paths. In this
paper, we introduce our hierarchical online failure prediction
approach, HORA, which employs a combination of a failure
propagation model and component failure prediction tech-
niques. The failure propagation model uses Bayesian networks
and is extracted from an architectural dependency model.
The component failure predictors are updated by continuous
measurements of the running system. Our evaluation shows
that HORA provides a significantly higher prediction quality
than the monolithic approach. In addition to the improved
prediction quality, HORA allows a higher degree of modularity
as different failure prediction techniques can be applied and
reused among similar types of system components. This makes
HORA an appropriate online failure prediction approach for
software systems, particularly with short release cycles.

In our future work, we plan to investigate the effect of the
granularity of the architectural dependency model and develop
an incremental solution technique for increasing the efficiency
of the failure propagation model. We will also incorporate
structural changes and update the failure propagation model
at runtime. Moreover, we plan to extend our evaluation setup
to a benchmark for online failure prediction approaches.

ACKNOWLEDGMENT

This work has been partly funded by the German Federal
Ministry of Education and Research (grant no. 01IS15004).

REFERENCES

[1] F. Salfner, M. Lenk, and M. Malek, “A survey of online
failure prediction methods,” ACM Computing Surveys,
vol. 42, no. 3, pp. 10:1–10:42, 2010.

[2] Y. Brun, J. Y. Bang, G. Edwards, and N. Medvidovic,
“Self-adapting reliability in distributed software sys-
tems,” IEEE Trans. on Software Engineering, vol. 41,
no. 8, pp. 764–780, 2015.

[3] R. Calinescu, L. Grunske, M. Z. Kwiatkowska, R. Mi-
randola, and G. Tamburrelli, “Dynamic QoS management
and optimization in service-based systems,” IEEE Trans.
on Software Eng., vol. 37, no. 3, pp. 387–409, 2011.

[4] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox, “Microreboot - a technique for cheap recovery,”
in Proc. Symposium on Operating Systems Design &
Implementation (OSDI ’04), 2004, pp. 31–44.

[5] A. Amin, A. Colman, and L. Grunske, “An approach
to forecasting QoS attributes of web services based on
ARIMA and GARCH models,” in Proc. 19th Int. Conf.
on Web Services (ICWS ’12), 2012, pp. 74–81.

[6] T. Pitakrat, J. Grunert, O. Kabierschke, F. Keller, and
A. van Hoorn, “A framework for system event classifi-
cation and prediction by means of machine learning,” in
Proc. 8th Int. Conf. on Performance Evaluation Method-
ologies and Tools (VALUETOOLS ’14), 2014.

[7] F. Salfner and M. Malek, “Using hidden semi-Markov
models for effective online failure prediction,” in Proc.
26th Int. Symposium on Reliable Distributed Systems
(SRDS ’07), 2007, pp. 161–174.

[8] R. Baldoni, G. Lodi, L. Montanari, G. Mariotta, and
M. Rizzuto, “Online black-box failure prediction for mis-
sion critical distributed systems,” in Proc. 31st Int. Conf.
on Computer Safety, Reliability and Security (SAFE-
COMP ’12), 2012, pp. 185–197.

[9] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Trans. on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[10] V. Cortellessa and V. Grassi, “A modeling approach to
analyze the impact of error propagation on reliability of
component-based systems,” in Proc. 10th Int. Conf. on
Comp.-Based Soft. Eng. (CBSE ’07), 2007, pp. 140–156.

[11] M. Nygard, Release It!: Design and Deploy Production-
Ready Software. Pragmatic Bookshelf, 2007.

[12] L. Bass, I. Weber, and L. Zhu, DevOps: A Software
Architect’s Perspective. Addison-Wesley Prof., 2015.

[13] M. A. Babar and I. Gorton, “Comparison of scenario-
based software architecture evaluation methods,” in Proc.
11th Asia-Pacific Software Engineering Conf. (APSEC
’04), 2004, pp. 600–607.

[14] S. Becker, H. Koziolek, and R. Reussner, “The Palladio
component model for model-driven performance predic-
tion,” Journal of Systems and Software, vol. 82, no. 1,
pp. 3–22, 2009.

[15] F. Brosig, N. Huber, and S. Kounev, “Architecture-
level software performance abstractions for online perfor-
mance prediction,” Science of Computer Programming,
vol. 90, Part B, pp. 71–92, 2014.

[16] H. Koziolek, “Performance evaluation of component-
based software systems: A survey,” Performance Eval-
uation, vol. 67, no. 8, pp. 634–658, 2010.

[17] F. Brosch, H. Koziolek, B. Buhnova, and R. Reuss-
ner, “Architecture-based reliability prediction with the
Palladio Component Model,” IEEE Trans. on Software
Engineering, vol. 38, no. 6, pp. 1319–1339, 2012.

[18] L. Cheung, R. Roshandel, N. Medvidovic, and L. Gol-
ubchik, “Early prediction of software component relia-
bility,” in Proc. 30th Int. Conf. on Software Engineering
(ICSE ’08), 2008, pp. 111–120.

[19] R. C. Cheung, “A user-oriented software reliability
model,” IEEE Trans. on Software Engineering, vol. 6,
no. 2, pp. 118–125, 1980.

[20] C. M. Bishop, Pattern Recognition and Machine Learn-
ing. Springer, 2006.

[21] T. Pitakrat, D. Okanovi, A. van Hoorn, and L. Grunske,
“An Architecture-aware Approach to Hierarchical Online
Failure Prediction,” Apr. 2016. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.46425

[22] T. Pitakrat, A. van Hoorn, and L. Grunske, “Increasing
dependability of component-based software systems by
online failure prediction,” in Proc. Euro. Dependable
Computing Conf. (EDCC ’14), 2014, pp. 66–69.

[23] B. R. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and
H. Yan, “Discovering architectures from running sys-
tems,” IEEE Trans. on Software Engineering, vol. 32,



no. 7, pp. 454–466, 2006.
[24] A. van Hoorn, “Model-driven online capacity manage-

ment for component-based software systems,” Ph.D. dis-
sertation, 2014, faculty of Engineering, Kiel University.

[25] R. H. Shumway and D. S. Stoffer, Time series analysis
and its applications. Springer Science, 2013.

[26] D. C. Montgomery, G. C. Runger, and N. F. Hubele,
Engineering statistics. John Wiley & Sons, 2009.

[27] T. Pitakrat, A. van Hoorn, and L. Grunske, “A compar-
ison of machine learning algorithms for proactive hard
disk drive failure detection,” in Proc. 4th Int. Conf. on
Architecting Critical Systems (ISARCS ’13). ACM,
2013, pp. 1–10.

[28] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker:
A framework for application performance monitoring
and dynamic software analysis,” in Proc. Int. Conf. on
Performance Eng. (ICPE ’12), 2012, pp. 247–248.

[29] R Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2015. [Online]. Available:
http://www.R-project.org/

[30] S. Newman, Building Microservices. O’Reilly Media,
Inc., 2015.

[31] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad,
T. Stack, K. Webb, and J. Lepreau, “Large-scale virtu-
alization in the Emulab network testbed.” in USENIX
Annual Technical Conference, 2008, pp. 113–128.

[32] R. Walker, “Examining load average,” Linux Journal, vol.
2006, no. 152, pp. 5–16, 2006.

[33] T. Fawcett, “An introduction to ROC analysis,” Pattern
Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006.

[34] A. P. Bradley, “The use of the area under the ROC
curve in the evaluation of machine learning algorithms,”
Pattern Recognition, vol. 30, no. 7, pp. 1145–1159, 1997.

[35] E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson,
“Comparing the areas under two or more correlated
receiver operating characteristic curves: A nonparametric
approach,” Biometrics, vol. 44, no. 3, pp. 837–845, 1988.

[36] S. Pertet and P. Narasimhan, “Causes of failure in web
applications,” Parallel Data Laboratory, p. 48, 2005.

[37] V. Cortellessa, A. Di Marco, and P. Inverardi, Model-
based software performance analysis. Springer, 2011.

[38] J. D. Musa, Software reliability engineering. McGraw-
Hill, 1998.

[39] B. Cavallo, M. D. Penta, and G. Canfora, “An empirical
comparison of methods to support QoS-aware service
selection,” in Proc. 2nd Int. Workshop on Principles
of Engineering Service-Oriented Systems (PESOS ’10).
ACM, 2010, pp. 64–70.

[40] A. Amin, L. Grunske, and A. Colman, “An automated
Approach to Forecasting QoS Attributes based on linear
and non-linear Time Series Modeling,” in Proc. 27th
IEEE/ACM Int. Conf. on Automated Software Engineer-
ing (ASE ’12), 2012, pp. 130–139.

[41] A. Bovenzi, F. Brancati, S. Russo, and A. Bondavalli,
“A statistical anomaly-based algorithm for on-line fault

detection in complex software critical systems,” in Proc.
30th Int. Conf. on Computer Safety, Reliability, and
Security (SAFECOMP ’11), 2011, pp. 128–142.

[42] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E.
Moreira, S. Ma, R. Vilalta, and A. Sivasubramaniam,
“Critical event prediction for proactive management in
large-scale computer clusters,” in Proc. 9th Int. Conf.
on Knowledge Discovery and Data Mining (KDD ’03),
2003, pp. 426–435.

[43] J. Alonso, J. Torres, and R. Gavalda, “Predicting web
server crashes: A case study in comparing prediction
algorithms,” in Proc. 5th Int. Conf. on Autonomic and
Autonomous Systems (ICAS ’09), 2009, pp. 264–269.

[44] Y. Liang, Y. Zhang, H. Xiong, and R. K. Sahoo, “Failure
prediction in IBM BlueGene/L Event Logs,” in Proc. Int.
Conf. on Data Mining (ICDM ’07), 2007, pp. 583–588.

[45] I. Fronza, A. Sillitti, G. Succi, M. Terho, and J. Vlasenko,
“Failure prediction based on log files using random in-
dexing and support vector machines,” Journal of Systems
and Software, vol. 86, no. 1, pp. 2–11, 2013.

[46] Q. Guan, Z. Zhang, and S. Fu, “Ensemble of Bayesian
predictors and decision trees for proactive failure man-
agement in cloud computing systems,” Journal of Com-
munications, vol. 7, no. 1, pp. 52–61, 2012.

[47] Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi, and
Y. Matsumoto, “Online failure prediction in cloud data-
centers by real-time message pattern learning,” in Proc.
4th Int. Conf. on Cloud Computing Technology and
Science (CloudCom ’12), 2012, pp. 504–511.

[48] S. Fu and C.-Z. Xu, “Exploring event correlation for
failure prediction in coalitions of clusters,” in Proc. 2007
Conf. on Supercomputing (SC ’07), 2007, pp. 41:1–41:12.

[49] M. A. Babar, L. Zhu, and D. R. Jeffery, “A framework
for classifying and comparing software architecture eval-
uation methods,” in Australian Soft. Eng. Conf. (ASWEC
2004). IEEE Computer Society, 2004, pp. 309–319.

[50] L. Grunske, “Early quality prediction of component-
based systems - A generic framework,” Journal of Sys-
tems and Software, vol. 80, no. 5, pp. 678–686, 2007.

[51] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni,
“Model-based performance prediction in software devel-
opment: A survey,” IEEE Trans. on Software Engineer-
ing, vol. 30, no. 5, pp. 295–310, 2004.

[52] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-
based approach to reliability assessment of software
systems,” Perf. Eval., vol. 45, no. 2-3, pp. 179–204, 2001.

[53] L. Grunske and J. Han, “A comparative study into
architecture-based safety evaluation methodologies using
AADL’s error annex and failure propagation models,” in
Proc. 11th IEEE High Assurance Systems Engineering
Symposium (HASE) ’08, 2008, pp. 283–292.

[54] T. Chalermarrewong, T. Achalakul, and S. See, “Failure
prediction of data centers using time series and fault
tree analysis,” in Proc. 18th Int. Conf. on Parallel and
Distributed Systems (ICPADS ’12), 2012, pp. 794–799.


