Energetics of the Global Ocean: The Role of Mesoscale Eddies

Aiki, Hidenori, Zhai, Xiaoming and Greatbatch, Richard John (2016) Energetics of the Global Ocean: The Role of Mesoscale Eddies Indo-Pacific Climate Variability and Predictability. World Scientific Series on Asia-Pacific Weather and Climate, 7 . World Scientific Publishing Company, Singapore, pp. 109-134. ISBN 978-981-4696-61-6

Full text not available from this repository. (Contact)

Abstract

This article reviews the energy cycle of the global ocean circulation, focusing on the role of baroclinic mesoscale eddies. Two of the important effects of mesoscale eddies are: (i) the flattening of the slope of large-scale isopycnal surfaces by the eddy-induced overturning circulation, the basis for the Gent–McWilliams parametrization; and (ii) the vertical redistribution of the momentum of basic geostrophic currents by the eddy-induced form stress (the residual effect of pressure perturbations), the basis for the Greatbatch–Lamb parametrization. While only point (i) can be explained using the classical Lorenz energy diagram, both (i) and (ii) can be explained using the modified energy diagram of Bleck as in the following energy cycle. Wind forcing provides an input to the mean KE, which is then transferred to the available potential energy (APE) of the large-scale field by the wind-induced Ekman flow. Subsequently, the APE is extracted by the eddy-induced overturning circulation to feed the mean KE, indicating the enhancement of the vertical shear of the basic current. Meanwhile, the vertical shear of the basic current is relaxed by the eddy-induced form stress, taking the mean KE to endow the eddy field with an energy cascade. The above energy cycle is useful for understanding the dynamics of the Antarctic Circumpolar Current. On the other hand, while the source of the eddy field energy has become clearer, identifying the sink and flux of the eddy field energy in both physical and spectral space remains major challenges of present-day oceanography. A recent study using a combination of models, satellite altimetry, and climatological hydrographic data shows that the western boundary acts as a “graveyard” for the westward-propagating eddies.

Document Type: Book chapter
Research affiliation: OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-TM Theory and Modeling
Refereed: Yes
Date Deposited: 10 Sep 2015 10:04
Last Modified: 11 Dec 2015 09:11
URI: http://eprints.uni-kiel.de/id/eprint/29581

Actions (login required)

View Item View Item