Fahrtbericht

F. S. "POSEIDON" Reise Nr. 153

Skagerrak

06. - 10. 01. 1989

Zusammenfassung

Wissenschaftliches Programm

Auf der Fahrt sollten folgende Arbeiten durchgeführt werden:

Dr. P. Werner

Geologisch-Paläontologisches Institut

der Universität Kiel, Ludewig-Meyn-Str. 12, D-2300 Kiel
Zusammenfassung

Wissenschaftliches Programm

Auf der Fahrt sollten folgende Aufgaben durchgeführt werden:

3) In der Beschäftigung mit den Pockmarken sollten ferner auch geochemische Methoden eingesetzt werden. Der Vergleich von Analysen innerhalb und außerhalb der Strukturen soll die Frage klären, ob die Entstehung der Pockmarken, wie in anderen Gebieten, z.B. in der Norwegischen Rinne, durch aufsteigendes Gas bedingt ist, wenn ja, ob sie heute noch "aktiv" sind, oder ob

Falls es die Zeit erlaubte, sollte ferner noch versucht werden, Oberflächenproben mit videogesteuertem Kastengreifer aus den Pockmarken zu erhalten, mit möglichen Hinweis auf spezielle Faunenassoziationen in diesen Vertiefungen.

Fahrtverlauf

POSEIDON legte planmäßig um 09.00 Uhr am 6.1.89 von der Pier des Instituts für Meereskunde ab. Die Fahrtzeit ins Arbeitsgebiet nördlich Skagen wurde genutzt durch die Einrichtung der Labors, Installation und Tests der Sonargeräte (u. a. Einbau des 3,5 kHz Sedimentecholot-Schwingers im Schwingerschacht) und andere Vorbereitungen.

Es wurde ein Schwerelotkern von 5 m Länge (GIK-Standardformat mit 12 cm Innendurchmesser) gezogen, sowie anschließend zur Gewinnung einer einwandfreien Sedimentoberfläche ein Rumohrlotkern von 1,45 m Länge. Durch das transparente Kernrohr hindurch waren hierbei einige Pogonophoren-Röhren sichtbar.

Drei Einsätze mit der Baumkurre brachten anschließend eine reichliche Ausbeute an Pogonophoren. Auch hier zeigte das mitlaufende 3,5 kHz-Profil, daß in diesem Gebiet keine Pockmarkenstrukturen lagen.

Personen bereits um 11 Uhr wieder von Bord gehen konnten.

Anschließend an diesen Einsatz wurde die vorgesehene Kernentnahme aus den Pockmarken-ähnlichen Vertiefungen angesteuert. Als Position wurde eine geeignet erscheinende, größere Struktur auf einem der in der Nacht zuvor gefahrenen Sedimentecholotprofile ausgesucht (Tiefe ca. 20 m, oberer Durchmesser ca. 300, Wassertiefe 220 m). Trotz der Schwierigkeiten durch stürmischen Wind und driftendes Decca gelang es, ein Schwerelot im zweiten Versuch und ein Rumohrlot nach Kontrolle durch das Sedimentecholot direkt in das Zentrum des Lochs zu plazieren, während das erste Schwerelot die Flanke der Vertiefung in halber Höhe traf. Die Länge der Schwerelotkerne lag wiederum zwischen 4,5 und 5 Metern, die des Rumohrlotkerns bei 1,5 m.
Nach Abschluß der Stationsarbeiten gegen 21 Uhr wurde das Arbeitsgebiet verlassen, um die Rückreise anzutreten. Während der Nacht erfolgte die chemische Aufbereitung der neu gewonnenen Sedimentkerne mit ersten Messungen. Am 10.1. um 9.00 Uhr machte das Schiff an der Pier des GEOMAR-Forschungszentrums am Seefischmarkt in Kiel fest.

Durchgeführte Laborarbeiten und Ergebnisse

1) Sedimentechogramme

Die Profile mit dem 3,5 kHz-Sedimentecholot (eingebauter 9-Schwinger Array im Schwingerschacht ergaben Information über die Struktur der obersten Sedimentschichten im Skagerrak in wesentlich verbesserter Qualität als die früher mit dem festinstallierten 18 kHz-Bordgerät. Die Eindringung betrug im zentralen Skagerrak bei Wassertiefen über 500 m maximal 40-50 m, während im mittleren Tiefenbereich die Eindringung durch den dort weit verbreiteten Gasgehalt der Sedimente begrenzt wird. Der Gasgehalt (freies as) setzt mit scharfer Grenze bei ca. 350 m Wassertiefe ein. Auffallend ist die feine Nachzeichnung des im Basisreflektor sichtbaren, unregelmäßigen Reliefs durch die überlagernden Schichten ("draping"), die bis an die Sedimentoberfläche anhält. Sie läßt auf sehr ruhige Sedimentationsbedingungen (minimale Strömungsgeschwindigkeiten) im zentralen Skagerrak schließen. Bezüglich der Pockenmarken fällt auf, daß bei Formen im mittleren Tiefenbereich, wo akustische Gastrübung vorhanden ist, unter einzelnen Formen der Boden kurzfristig transparent wird, so daß der (tiefliegende) Basisreflektor in einem kleinen Fensterichtbar wird. Es hat also den Anschein, daß die Pockenmarken mit Entgasung etwas zu tun haben, wenn dabei auch nichts über die Natur des die Pockenmarken bedingenden austretenden Gases ausgesagt werden kann.

Im flacheren Tiefenbereich (oberhalb 200 bis 80 m), in dem eine Vielzahl morphologischer Depressionen unterschiedlicher Größe
auftritt, erwecken diese durch ihre Verteilungsdichte, ihre sehr unterschiedliche Größe und vor allem durch ihre für Pockmarken oft sehr untypische Form den Verdacht, andersartiger Entstehung zu sein.

Die Profile wurden z. T. direkt auf die Kurse der früheren Profile gelegt, so daß ein direkter Vergleich der Aufnahmen möglich wird.

2) Sidescan-Sonar-Aufnahmen

Das Profil bedeckte eine Wassertiefe von 120 bis 450 m. Die auftretenden Pockmark-ähnlichen Formen bildeten sich in ihrer Struktur nicht auf dem Sonogramm ab, weil sie offenbar zu flach und in der Sedimentbedeckung homogen sind. Auch sonst ergaben sich keinerlei Strukturen im Sonogramm. Das im tieferen Wasser auftretende, kleinräumige Relief wurde nicht mehr erreicht.

3) Geochemische Untersuchungen (M. Whiticar, A. Khandriche)

Die Sedimentkerne wurden unmittelbar nach der Entnahme in Sektionen von 0,5 bis 1 m zerlegt und an den jeweiligen Endstücken Proben zur Gewinnung des Porenwassers, pH- und Eh-Bestimmung und den vorgesehenen molekularen und isotopischen Bestimmungen entnommen.

4) Biologische Untersuchungen (R. Schmaljohann)

Eingesetzte Geräte

1) Tiefeschlepmporan des GIK (EG&G Modell 990S/996/260), mit zugehörigem Datenaufnahmesystem.

2) 3,5 kHz Sedimentecholot (9- Schwinger-Array in Schwingerschacht), EPC-Schreiber, Bandaufzeichnung

3) Schwerelot GIK, 6 m Länge (ohne Absetzgestell)

4) Kleines Schwerelot ohne Mantelrohr ("Rumohrlot")

5) Baumkurre

Teilnehmerliste

Helmut Beese, techn. Ang. (Elektronik), SFB 313
Michael Bernhard, cand. geol. GIK
Ali Khandriche, Dipl.-Geol., GIK
Axel Kion, stud. geol., GIK
Sabine Magnus, Dipl.-Geol., GIK
Doris Milkert, Dipl.-Geol., GIK
Dr. Rolf Schmaljohann, IFM, Abt. Mikrobiologie
Eric Steen, techn. Ang. (Mechanik), SFB 313
Dr. Friedrich Werner, Fahrteileiter, GIK
Dr. Mike Whiticar, BGR Hannover
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>153/1</td>
<td>07.01.58</td>
<td>00.00 10 01.82</td>
<td>10:00</td>
<td>58 03.09</td>
<td>9 53.10</td>
</tr>
<tr>
<td>153/2</td>
<td>07.01.58</td>
<td>03.09 9 53.10</td>
<td>10:36</td>
<td>58 02.55</td>
<td>9 40.49</td>
</tr>
<tr>
<td>153/3</td>
<td>07.01.58</td>
<td>02.58 9 54.02</td>
<td>16:55</td>
<td>58 21.26</td>
<td>9 35.66</td>
</tr>
<tr>
<td>153/4</td>
<td>07.01.58</td>
<td>26.42 9 43.97</td>
<td>19:38</td>
<td>57 59.84</td>
<td>10 10.88</td>
</tr>
<tr>
<td>153/5</td>
<td>07.01.57</td>
<td>59.87 10 02.15</td>
<td>23:03</td>
<td>58 22.52</td>
<td>9 37.00</td>
</tr>
<tr>
<td>153/6</td>
<td>08.01.58</td>
<td>23.46 9 41.68</td>
<td>01:44</td>
<td>58 13.05</td>
<td>9 53.91</td>
</tr>
<tr>
<td>153/7</td>
<td>08.01.58</td>
<td>12.89 9 53.85</td>
<td>02:52</td>
<td>57 45.93</td>
<td>9 36.09</td>
</tr>
<tr>
<td>153/8*</td>
<td>08.01.57</td>
<td>58.79 10 00.92</td>
<td>12:41</td>
<td>58 11.52</td>
<td>9 49.15</td>
</tr>
<tr>
<td>153/9</td>
<td>08.01.58</td>
<td>12.33 9 46.97</td>
<td>17:00</td>
<td>58 05.22</td>
<td>9 56.40</td>
</tr>
<tr>
<td>153/9a</td>
<td>08.01.58</td>
<td>05.28 9 56.46</td>
<td>19:36</td>
<td>57 59.80</td>
<td>10 10.70</td>
</tr>
</tbody>
</table>

*) mit Sidescan-Sonar
Stationsliste der Poseidon-Reise 153

vom 6.-10.1.1989

Geräte-Abkürzungen: SL: Schwerelot (hier 6m)
RL: Rumohrlot (hier 2m)

<table>
<thead>
<tr>
<th>Stations- Nr. GIK</th>
<th>Datum</th>
<th>Gerät</th>
<th>Grundberehrung GMT</th>
<th>Geogr. Breite N</th>
<th>Geogr. Länge E</th>
<th>Wasser- tiefe m</th>
<th>Eindr. Gewinn (E/G) cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>13880-1</td>
<td>07.01.</td>
<td>SL-6m</td>
<td>12:10</td>
<td>58 02.90</td>
<td>9 40.81</td>
<td>293</td>
<td>550 (E)</td>
</tr>
<tr>
<td>13880-2</td>
<td>07.01.</td>
<td>RL-2m</td>
<td>12:36</td>
<td>58 02.47</td>
<td>9 40.53</td>
<td>285</td>
<td>145 (G)</td>
</tr>
<tr>
<td>13881-1</td>
<td>08.01.</td>
<td>SL-6m</td>
<td>18:23</td>
<td>58 05.18</td>
<td>9 56.18</td>
<td>210</td>
<td>500 (E)</td>
</tr>
<tr>
<td>13881-2</td>
<td>08.01.</td>
<td>SL-6m</td>
<td>18:46</td>
<td>58 05.22</td>
<td>9 56.30</td>
<td>220</td>
<td>580 (E)</td>
</tr>
<tr>
<td>13881-3</td>
<td>08.01.</td>
<td>RL-2m</td>
<td>19:36</td>
<td>58 05.28</td>
<td>9 56.46</td>
<td>218</td>
<td>200 (E)</td>
</tr>
</tbody>
</table>

Arbeitsgebiet der ¨Poseidon¨-Reise Nr. 153 mit Profilinien und Stationen mit Proben-Nummern.
Arbeitsgebiet der "Poseidon"-Reise Nr. 153 mit Profillinien und Stationen mit Proben-Nummern.