Workload-sensitive Timing Behavior Analysis for Fault Localization in Software Systems

Rohr, Matthias (2015) Workload-sensitive Timing Behavior Analysis for Fault Localization in Software Systems (Doctoral thesis/PhD), Faculty of Engineering, Kiel University, Kiel, 224 pp

[img]
Preview
Text
RohrThesis.pdf - Published Version

Download (5Mb) | Preview

Abstract

Software timing behavior measurements, such as response times, often show high statistical variance. This variance can make the analysis difficult or even threaten the applicability of statistical techniques. This thesis introduces a method for improving the analysis of software response time measurements that show high variance.

Our approach can find relations between timing behavior variance and both trace shape information and workload intensity information. This relation is used to provide timing behavior measurements with virtually less variance. This can make timing behavior analysis more robust (e.g., improved confidence and precision) and faster (e.g., less simulation runs and shorter monitoring period). The thesis contributes TracSTA (Trace-Context-Sensitive Timing Behavior Analysis) and WiSTA (Workload-Intensity-Sensitive Timing Behavior Analysis). TracSTA uses trace shape information (i.e., the shape of the control flow corresponding to a software operation execution) andWiSTA uses workload intensity metrics (e.g., the number of concurrent software executions) to create context-specific timing behavior profiles.

Both the applicability and effectiveness are evaluated in several case studies and field studies. The evaluation shows a strong relation between timing behavior and the metrics considered by TracSTA and WiSTA. Additionally, a fault localization approach for enterprise software systems is presented as application scenario. It uses the timing behavior data provided by TracSTA and WiSTA for anomaly detection.

Document Type: Thesis (Doctoral thesis/PhD)
Thesis Advisors: Hasselbring, Wilhelm
Keywords: Timing Behavior Analysis, Fault Localization, Software Systems
Research affiliation: Kiel University > Software Engineering
Projects: Kieker
Date Deposited: 07 Feb 2015 21:47
Last Modified: 29 Apr 2018 20:23
URI: http://eprints.uni-kiel.de/id/eprint/27337

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...