
SHORT COMMUNICATION

Carbon content of Mnemiopsis leidyi
eggs and specific egg production rates
in northern Europe

CORNELIA JASPERS1†*, JOHN H. COSTELLO2,3 AND SEAN P. COLIN2,4

1
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The comb jelly Mnemiopsis leidyi is considered to be a suc-
cessful invasive species, partly due to its high reproduc-
tion potential. However, due to the absence of direct
carbon measurements of eggs, specific reproduction rates
remain uncertain. We show that egg carbon is 0.22+
0.02 mg C and up to 21 times higher than previously
extrapolated. With maximum rates of 11 232 eggs
ind21 day21, largest animals in northern Europe invest
�10% day21 of their body carbon into reproduction.

The comb jelly M. leidyi has received wide public and
scientific attention during the last decades due to its
commonly observed formation of bloom abundances in
native and invaded areas (e.g. Costello et al., 2012;

Riisgård et al., 2012). One of the traits suggested to be re-
sponsible for M. leidyi’s invasion success is its high fecund-
ity. At the northern end of its distribution range in native
areas, M. leidyi has been shown to produce up to 9380
and 14 233 eggs ind21 day21 (Kremer, 1976a; Graham
et al., 2009), with similar rates of 9910 eggs ind21 day21

for the native southern population in Biscayne Bay, FL,
USA (Baker and Reeve, 1974). Within invaded European
waters, rates of up to 3000 and 12 000 eggs ind21 day21

have been recorded for northern and southern popula-
tions, respectively (Zaika and Revkov, 1994; Javidpour
et al., 2009). Since M. leidyi is a simultaneous hermaphro-
dite and fertilized eggs are produced on a daily basis
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during favorable conditions (Jaspers, 2012), M. leidyi

can circumvent the Allee effect and efficiently seed new
populations even from few founding individuals.
Although the documented reproduction potential is
large, carbon investment into reproduction remains
speculative due to the lack of direct carbon measure-
ments of eggs. Literature values of carbon content of eggs
vary by a factor of 21, from 0.012 mg C egg21 (Reeve
et al., 1978) to 0.25 mg C egg21 (Anninsky et al., 2007) but
so far there have been no direct measurements. This
leads to the discrepancy between high feeding rates
(Colin et al., 2010) and negligible investment into repro-
duction with 0.03 to ,2% of M. leidyi’s body carbon per
day, which is several fold less than its respiratory carbon
demand (Reeve et al., 1989). The aim of this study is to
present direct carbon and nitrogen measurements of
M. leidyi eggs to clarify carbon specific reproduction rates
along with its maximum reproduction capacity within
invaded, northern European waters. This information is
crucial for understanding population dynamics and
assessing carbon budgets of M. leidyi throughout its distri-
bution range.

Carbon and nitrogen content of freshly spawned eggs
(n ¼ 2800) were measured from wild caught M. leidyi

(n ¼ 5) originating from Woods Hole, MA, USA (pos-
ition: Latitude 41.525N, Longitude 270.674E). Animals
were incubated overnight in GFF-filtered seawater. Eggs
were individually picked using a micropipette and
washed three times in GFF-filtered seawater before being
placed, with as little water as possible, onto pre-
combusted, pre-weighed GFF filters. To assure sufficient
carbon and nitrogen content for the analyses, eggs were
pooled into batches of 200, 300, 400 and 500 eggs per
GFF filter. Filters with eggs were dried at 608C for
3 days, stored in a desiccator and analyzed within 3 days
at the Marine Biological Laboratory, USA, using a

FLASH 2000 NC Analyzer (ThermoFisher Scientific,
Cambridge, UK). Blank filters to correct for contribution
of filter and seawater were prepared at the same time
using equivalent amount of water from the final washing
step which was used as background correction. The mea-
surements were repeated on 2 days with independently
caught animals (n ¼ 5) with replicates for each egg batch
of 200–500 eggs, respectively.

Egg production rates of M. leidyi were measured
during late August and early September 2010 in inter-
mediate saline waters of northern Europe (position:
Latitude 58.250N, Longitude 11.447E—Skagerrak,
Gullmar Fjord, Sweden), representing high saline waters
of the Baltic Sea region. Freshly caught, .50 mm sized
animals (oral–aboral length, n ¼ 5) were individually
incubated in 7.5-L GFF-filtered seawater at ambient sal-
inity (22.5) and temperature (16.58C) following natural
light conditions. After 24 h of incubation, M. leidyi were
removed, total and oral–aboral lengths measured and
eggs concentrated via reverse filtration. Eggs were pre-
served in acidified Lugol solution at a final concentration
of 2% for later enumeration under a dissecting micro-
scope. To calculate specific egg production (SEP), the re-
gression from total length (TL) to dry weight (DW) from
Baker (Baker, 1973), as cited in Kremer et al. (Kremer
et al., 1986) was used (i) and the DW to carbon regression
based on analyses of Table I in Kremer et al. (Kremer
et al., 1986) leading to regression (ii) with the following re-
gression parameters (F1,7¼ 1698, P , 0.0001, R2¼ 0.997,
n ¼ 8).

Dry weight ðmgÞ 0:038� toal length ðmmÞ2:42 ð1Þ

Mnemiopsis carbon ðmgÞ
¼ 0:0018�DW ðmgÞ1:318 ð2Þ

Direct measurement of early egg cleavage stages shows
that the carbon and nitrogen content is 0.22+
0.02 mg C egg21 and 0.07+ 0.01 mg N egg21, respect-
ively (Fig. 1). The average M. leidyi egg size is 503+
58 mm (n ¼ 25), similar to egg sizes observed in invaded
northern Europe of 565+ 66 mm (Jaspers et al., 2013).
Early cleavage stages are shown in Fig. 2. Largest sized
animals found during August/September 2010 were
70–78 mm in TL, with an average reproduction rate of
8432+ 1884 eggs ind21 day21. The highest egg produc-
tion rate of 11 232 eggs day21 was attained by the largest
sized animal (Table I).

Calculation of carbon SEP shows that ca. 8.5% day21

of the M. leidyi body carbon is channeled into reproduc-
tion (Table I).

Table I: Mnemiopsis leidyi (n ¼ 5)
reproduction rates in northern Europe
(August/September 2010 during two
sampling events) at in situ salinity (22.5)
and temperature (16.58C), with highest egg
production (11 232 eggs day21, 78 mm total
length) recorded in northern Europe so far

Maximum Minimum Average SD

Total length (mm) 78 70 73.8 3.5
Oral–aboral length (mm) 57 51 54.3 2.5
Eggs (ind21 day21) 11 232 6432 8432 1884
SEP 10.4 7 8.4% 1.4%

Carbon specific egg production (SEP) is presented based on given length
to carbon conversions (see text) and egg carbon of 0.22 mg C egg21.
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We present the first direct carbon and nitrogen mea-
surements of M. leidyi eggs. Previous studies have esti-
mated carbon from extrapolation of larval carbon
measurements or DW to carbon conversions of larvae
(e.g. Reeve et al., 1978, 1989; Anninsky et al., 2007).
Since no direct measurements of eggs are available, esti-
mates of carbon contents used for carbon and energy
budgets of M. leidyi vary by a factor of 21. The only direct
carbon measurement of ctenophore eggs available is
0.56 mg C egg21 for 200 mm larger Bolinopsis mikado eggs
(Kasuya et al., 2008). Mnemiopsis leidyi eggs have 37% of
the volume of B. mikado eggs; however, the volume-
specific carbon and nitrogen concentrations are similar
with 1 and 1.2 times of the B. mikado carbon and nitrogen
content, respectively. The commonly used carbon value
for M. leidyi of 0.1 mg C egg21 (Reeve et al., 1989) is thus
a factor 2.2 less than expected if compared with the mea-
sured carbon content of B. mikado eggs (Kasuya et al.,
2008). Reeve et al. (Reeve et al., 1989) estimated the
carbon content from the assumption that the DW of eggs
is 0.5 mg and used extrapolations of carbon measure-
ments of .1.1-mm-sized larvae to estimate egg carbon
using a carbon ratio to DW of 20%. The lowest carbon
content used for M. leidyi eggs is based on Pleurobrachia

carbon and nitrogen measurements of 3.28+ 0.35 and
0.87+ 0.09% (+SD) of DW, assuming a M. leidyi DW of
0.35 mg egg21 (Reeve et al., 1978), thus, leading to an esti-
mated carbon and nitrogen content per M. leidyi egg of
0.012 mg C egg21 and 0.003 mg N egg21. This is �5%
of the C and N content measured directly in this study.
Our measured carbon content of eggs is similar to direct
carbon measurements of 0.26 mg C for 500 mm M. leidyi

larvae from NE USA (Sullivan and Gifford, 2004). In an

ecological perspective, M. leidyi eggs have the same nutri-
tional value and comparable size range as, e.g. copepod
nauplii, echinoderm larvae, gastropod veligers and
bivalve larvae (Martinussen and Båmstedt, 1995) and
might therefore be an important food source for, e.g.
pelagic filter feeders. Therefore, predation could contrib-
ute to high mortality rates of M. leidyi eggs observed in
intermediate saline waters of northern Europe (Jaspers
et al., 2013). However, predator prey investigations are
necessary to enlighten direct interactions.

The carbon : nitrogen ratio for eggs measured in this
study is 3.1, while the ratio for a large range of M. leidyi

size classes is consistently �4 (Kremer, 1976a). This indi-
cates that although the carbon per unit weight of M. leidyi

changes with size, hence throughout its life (Reeve et al.,
1989), the carbon-to-nitrogen ratio remains constant
apart from the egg phase, where the C : N ratio is lower.

Due to the previously underestimated egg carbon con-
centrations of M. leidyi, egg production has so far been
suggested to be a small and negligible fraction of the
daily carbon demand (Kremer, 1976b, 1982; Reeve et al.,
1989). Even though several thousand eggs may be pro-
duced over a few days, they have been estimated to re-
present ,2% of the carbon biomass of the ctenophores
per day (Kremer, 1976b; Reeve et al., 1989), which is less
than one-third of the respiratory carbon demand
(Kremer, 1982). We show that large sized animals
produce up to 11 232 eggs ind21 day21 in invaded nor-
thern European waters, which is nearly four times more
than previously shown for northern Europe (Javidpour
et al., 2009) and in the same range as for the Black Sea
and other native habitats (Baker and Reeve, 1974;
Kremer, 1976a; Graham et al., 2009). Therefore, SEP in

Fig. 1. Carbon and nitrogen content of Mnemiopsis leidyi eggs. The average is 0.22+0.016 mg C egg21 and 0.07+0.005 mg N egg21,
respectively.
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northern Europe for largest sized animals is around 7–10%
day21 of the body carbon. This is four times higher than
previously documented, due to the underestimation of

carbon concentrations of M. leidyi eggs. This demonstrates
that egg production should be taken into account in
energy and carbon budgets of M. leidyi in native and
invaded habitats.
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