A key source area and constraints on entrainment for basin-scale sediment transport by Arctic sea ice

Hajo Eicken
Geophysical Institute, University of Alaska, Fairbanks, Alaska

Josef Kolatschek and Johannes Freitag
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

Frank Lindemann and Heidemarie Kassens
Geomar Research Center, Kiel, Germany

Igor Dmitrenko
Arctic and Antarctic Research Institute, St. Petersburg, Russia

Abstract. Combining field measurements, remote sensing and numerical modelling, a key site for ice entrainment and basinwide dispersal of sediments by sea ice has been identified near the New Siberian Islands. The total ice-bound sediment export of 18.5 x 10^6 t for an entrainment event documented in 1994/95 is of the same order of magnitude as annual sediment supply to the deep sea sector of the Eurasian Arctic and the Greenland Sea. Satellite imagery and ancillary data indicate that ice advection from this source may play an important role in sedimentation downstream in the Transpolar Drift.

1. Introduction

Rafting of sediments by Arctic sea ice is surmised to be a major mode of particulate transport in the Arctic Ocean at present [Pfirman et al., 1990, Hebbeln and Wefer, 1991, Reimnitz et al., 1992] and during the past 5 Ma [Clark and Hanson, 1983, Bischof and Darby, 1995], with potential importance also for the dispersal of pollutants. Given the sparsity of mostly opportunistic shipboard observations [Nünberg et al., 1994, Eicken et al., 1997] and problems in inferring source areas from sedimentological data [Bischof and Darby, 1997, Pfirman et al., 1997], there is a need for comprehensive, quantitative assessments of entrainment and transport to help interpret Arctic sediment records and delimit the geological and climatological impact of sea-ice rafting of particulates. The present study focusses on entrainment and export of sediments by sea ice in the East Siberian Arctic. Combining field measurements, remote sensing and numerical modelling, we have determined the quantitative importance of a single entrainment event, elucidated constraints on sediment entrainment and assessed the role of sea-ice particulate rafting in a wider context.

2. Highly sediment-laden sea ice in the East Siberian Arctic

The Laptev Sea has been identified as a region of high ice production and potential source of sediment-laden sea ice. During two expeditions in July-October 1995, field measurements based on tentative identification of heavily sediment-laden sea ice in Advanced Very High Resolution Radiometer (AVHRR) satellite imagery were carried out in this sector of the Siberian Arctic (Fig. 1, Fig. 2). Aerial surveys and ground-truth data revealed high sediment concentrations (geometric mean core-averaged concentration of suspended particulate matter, SPM, in 11 cores of 191.6 g m^3, median 141.6 g m^3, Table 1) throughout a highly deformed first-year ice cover. The assessment of ice age (<1 year) is supported by the sediment distribution, ice morphology, ice salinity data and stratigraphic analysis (for methods see Eicken [1998]). The latter also indicates that entrainment was associated with frazil ice formation, with the high mean ice thickness of 3.23 ± 1.79 m (8 profiles 50 to 200 m long) a result of rafting and ridging of decimeter-thick floes.

The highly sediment-laden ice is significantly depleted in oxygen-18 (δ¹⁸O mode of -3.5 %, 10 cores, Fig. 1) compared to sediment-laden ice further west (Fig. 2, central region with mode 0.5 %, 11 cores, with a median SPM of 23.8 g m^3, 10 cores, and sediment composition similar to that of the westernmost region), indicating a substantial contribution by river discharge [Bauch et al., 1995, Eicken et al., 1997]. Parent water-mass salinities have been derived for individual sediment-laden ice segments from a mixing model. The composition of Atlantic and Lena water is based on coastal ice and water samples (Fig. 1) and data by Bauch et al. [1995] (Fig. 3), with a growth-rate dependent fractionation coefficient estimated as 1.5 % [Eicken, 1998]. Stable-isotope data and clay-mineral composition of sediments obtained from ice floes (Fig. 1) suggest a source area in the illite-rich eastern Laptev Sea or near the New Siberian Islands [Silverberg, 1972, Lindemann, 1999]. While clay minerals do not exclude the East Siberian shelf as a source area, the surface hydrography of the Laptev Sea in September 1994 and the comparatively small discharge by eastern Siberian rivers, support ice formation in fresher waters that extended.
northeast from the Lena Delta towards the New Siberian Islands (Fig. 2).

3. Reconstructing sediment entrainment and subsequent dispersal by sea ice

To help constrain estimates of ice origin, backtrajectories were obtained from a large-scale dynamic/thermodynamic sea-ice model [Kreyscher et al., 1997] for the period April to July 1995, when the sediment-laden ice drifted in deeper waters at greater distance from the coast (Fig. 2). Since interaction with the coastline limits model predictions, the October-March trajectories have been derived from 85 GHz SSM/I passive microwave satellite data (National Snow and Ice Data Center, Boulder) through tracking of features such as leads, large ice floes and deformed ice distinguished by emissivity contrasts (Kolatschek [1998]; the total, maximum displacement error based on monthly motion vectors is estimated as 90 to 180 km). The reconstructed trajectories indicate ice formation and sediment entrainment to have occurred in the vicinity of the New Siberian Islands in less than 30 m waterdepth (<17 m south of the islands) during September-October 1994 (Fig. 2), which is in good agreement with the field data. Ice formation and export were promoted by winds averaging 7.1 ± 3.0 m s⁻¹ (Kotelnyy weather station data, September 15 to October 31 1994, with 10 % of all observations >10 m s⁻¹ and 74 % from the southerly sector).

Table 1. Areal extent and sediment load of ice classes derived from remote-sensing and ice-core SPM data

<table>
<thead>
<tr>
<th>Ice type</th>
<th>Area, km²</th>
<th>Sed. load, 10⁶ t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min. a</td>
<td>Best estim. b</td>
</tr>
<tr>
<td>Open water, melt ponds</td>
<td>230,000</td>
<td>0</td>
</tr>
<tr>
<td>Clean ice, low sed. load</td>
<td>309,000</td>
<td>0</td>
</tr>
<tr>
<td>Medium sed. load</td>
<td>63,000</td>
<td>8.8</td>
</tr>
<tr>
<td>High sed. load</td>
<td>21,000</td>
<td>3.0</td>
</tr>
<tr>
<td>Total</td>
<td>623,000</td>
<td>11.8</td>
</tr>
</tbody>
</table>

a: Based on geometric mean sed. conc. of 111 core segments (89 g m⁻³) of upper 1.57 m of ice for medium and high sed. load areas
b: Based on geom. mean sed. load of bottom 50% of cores for medium sed. load (87 g m⁻³) and top 50% for high load (617 g m⁻³)
c: Based on geom. mean sed. load of bottom 75% of cores for medium sed. load (179 g m⁻³) and top 25% for high load (972 g m⁻³), i.e. assuming same frequency distribution as determined from satellite data (numbers do not change, if percentiles are defined by the sed. conc. in uppermost 0.2 m, the layer visible in satellite imagery)
Earlier attempts at estimating transport by ice rafting were hampered by the patchy occurrence of sediment-laden ice. In order to overcome these limitations, the extent of sediment-laden ice has been mapped with a multispectral classification technique based on AVHRR data covering the entire study area [Kolatschek, 1998]. From coincident ground measurements of spectral albedo, SPM data, aerial photography and SPOT satellite imagery, spectral endmembers for different ice classes have been derived for the AVHRR visible-range frequency bands (channels 1 and 2). Sensitivity studies with a radiative-transfer model [Light et al., 1998] lend further support to this approach. Based on the classification of AVHRR data and ground measurements of sea-ice SPM, the total sediment load has been derived as $18.5 \times 10^6 \text{ t}$ (Fig. 2, Table 1).

To put this assessment into perspective, it has been compared with estimates of the current sedimentation rates in the Eurasian Arctic Basin and the Greenland Sea, where mass fluxes range between 2 and 10 g m$^{-2}$ yr$^{-1}$ [Bischof and Darby, 1997, Norgaard-Pedersen et al., 1998] and around 20 g m$^{-2}$ yr$^{-1}$ [Eisenhauer et al., 1990], respectively. Distributing between 65 and 80% of the total sediment load ($18.5 \times 10^6 \text{ t}$) throughout $3 \times 10^6 \text{ km}^2$ in the Transpolar Drift (based on estimates of sediment loss from sea ice during summer melt by Freitag [1999]) and depositing the remaining 20 to 35% over $0.5 \times 10^6 \text{ km}^2$ in the ice-covered Greenland Sea, results in mass fluxes of 4-5 g m$^{-2}$ yr$^{-1}$ and 7-13 g m$^{-2}$ yr$^{-1}$ respectively. Owing to significant uncertainties in the sedimentation rates and derived sediment loads, these numbers merely provide a first, rough estimate of the potential importance of export events and their role in the sediment budget of the Arctic Ocean.

While longer time series are required to improve this assessment, the combination of field measurements, remote sensing and modelling clearly indicates the waters surrounding the New Siberian Islands to be a unique site, potentially of basin-wide importance, for present-day sediment entrainment and export. Sediment supply from coastal erosion, supplemented by long-range transport from the Lena Delta, is at a maximum in this part of the Laptev Sea and amounts to at least $20-40 \times 10^6 \text{ t yr}^{-1}$ [Gorsline et al., 1996, Are, 1999]. Shallow waterdepths, wind and tidal forcing, and lowered surface salinities promote sediment entrainment as well as ice production and export in early fall. Satellite imagery from 1965 and 1994-1997 and field observations in 1992 [Dethloff et al., 1993] and 1994 [Anderson, pers. comm., 1998] northeast and south of the New Siberian Islands indicate that comparable events have occurred frequently. Less definite indications of the importance of this region have also been provided by sedimentological and ice-drift data [Pfirman et al., 1997]. The high illite content in the clay fraction of surface sediments downstream in the Transpolar Drift matches those found in the source area; it contrasts with lower illite fractions in sediments from the Kara and western/central Laptev Seas [Pfirman et al., 1997].

5. Conclusions

Based on our findings, we hypothesize that present-day sedimentation in the Eurasian Arctic is significantly influenced by sea-ice rafting of particulates originating in the vicinity of the New Siberian Islands. However, placing events such as the one portrayed in this study in the larger context of Arctic Ocean sedimentation requires a more comprehensive approach integrating process studies, modelling and sedimentological analysis. Attributing basin-wide importance to sediment entrainment at few key sites such as the New Siberian Islands is commensurate with the patchy distribution of sedi-
mental-laden ice [Pfirman et al., 1990, Nürnberg et al., 1994], corresponding to temporal and regional limitations in ice production, entrainment and export. While such patchiness may restrict generalizations based on individual studies, the present work demonstrates that a combination of techniques can help resolve the dilemma by improving and extending the scant database of present-day sea-ice transport of particulates.

The massive release of particulates over a comparatively small area during summer ice melt results in a high sedimentation-rate variability on short time scales and explains the order-of-magnitude differences in ice-derived lithogenic fluxes observed in Greenland Sea sediment traps [Hebbeln and Wefer, 1991]. The trajectory shown in Fig. 1 demonstrates such far-field transport linkages between the eastern Siberian Arctic and the Nordic Seas. Domination of ice-derived sedimentation by a small number of source areas of disproportionate importance greatly increases its variability on geologic time scales. Hence, intermittent changes in the sedimentation regime of the Arctic Basin [Norgaard-Pedersen et al., 1998], may well be due to changes in the balance of processes controlling entrainment and export at confined sites such as the New Siberian Islands. Recent studies have shown changes in atmospheric circulation in this region and a corresponding decrease in ice extent [Maslanik et al., 1996]; future work will have to elucidate whether the Arctic sediment record provides information on past variability of land-ocean-atmosphere interaction in such a key location.

Acknowledgments. Financial support from the German and Russian Ministry of Research, the U.S. National Science Foundation and help from colleagues and the crews of vessels Polarstern and Kapitan Dranitsyn is gratefully acknowledged. C. Haas provided ice thickness data. Comments by R. Macdonald, S. Pfirman, E. Reimnitz, and two anonymous reviewers helped to improve the manuscript.

References

Freitag, J., The hydraulic properties of Arctic sea ice - Implications for the small-scale particle transport (in German), Ber. Polarforsch., 325, 1999.
Kolatschek, J. S., Sea-ice dynamics and sediment transport in the Arctic: results from field measurements, remote sensing and modelling (in German), Ph. D. Thesis, University of Bremen, Germany, 1998.