Peculiarities of trace element geochemistry of the Gaussberg leucitites (West Antarctica)

MIGDISOVA N.A.1, SOBOLEV A.V.2, PORTNYAGIN M.V.3 AND SUSHCHEVSKAYA N.M.1

1Vernadsky Institute for geochemistry and analytical chemistry RAS. 119991, Russian Federation, Moscow, Kosygin str., 19. nat-mig@yandex.ru
2Institut des Sciences de la Terre (ISTerre) Université J. Fourier-CNRS, Maison des Géosciences, Grenoble, France
3Dynamik des Ozeanbodens (FB4) Helmholtz-Zentrum für Ozeanforschung (GEOMAR), Kiel, Germany

Crystal fractionation is one of the major processes affecting the composition of magmas. Investigations in lamproitic magmatism are important for understanding the geochemically anomalous reservoirs in mantle. Gaussberg leucitites are the rocks with unusual petrologic composition (K2O>Al2O3; high SiO2 content at given MgO) implying non-uniform melting source [1, 2]. Mineral assemblage is 60% Lct, 30% Ol, 10% Cpx. Trace element patterns of Gaussberg quenched glass samples have extreme enriched character. Maxima on Ba, La, Pb and Zr-Hf maxima are typical features of continental lithosphere [1].

In this study we report the Gaussberg mineral collection [3]. Two types of Cpx phenocrysts were detected in Gaussberg: (1) high TiO2, low Al2O3 group and (2) low TiO2, high Al2O3 group. Detailed electron probe microanalysis (ISTerre Université J. Fourier-CNRS, Grenoble, France) revealed the inverted zone character of Cpx grains – the core is enriched in FeO and depleted in Al2O3 while the rim is enriched in Al2O3 and depleted in FeO. Obviously Cpx imprinted the mix of two different melts. These melts can indicate the two stages of crystallization in Gaussberg magmatic system.

Leucite is the most abundant phenocryst in Gaussberg lavas. Leucite fractionation is restricted in near surface magma chambers. Gauss leucites are enriched in Na2O (0,1-0,28 wt%) and depleted in K2O (20,7-20,2 wt%) and FeO (0,7-1,2 wt%) compared to the leucites from another lamproite provinces.

Gaussberg olivine is high magnesium (up to Fo93). Coefficients of olivine/liquid distribution were calculated based on new high precision data on minor elements (Li, Al, Ca, Cu, Zn, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Ga, Ge, Sr, Y, Zr, Mo, Ce, Nd, Gd, Dy, Er, Yb) in olivine and corresponding quenched glasses (GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany). Determined coefficients KD Ol/Liq are the larger for Ni (73) > Co (5) > Mn (1,2) > Zn (0,8) > Li (0,5) > Cu (0,02) and other non compatible lithophile elements. Gaussberg olivine has high Ni/Co ratios (20-40) implying the melting under the thickened lithosphere [4]. These results make a contribution to lamproite’s database expanding the data for weakly studied (due to their rarity) leucitite rocks.