Mixing and the Tropical Oceans

Marcus Dengler
Motivation: Stirring and mixing of a tracer
 • Eddies and stirring
 • Turbulent mixing
Seasonal cycle of the tropical ocean
Eddies in the equatorial oceans
Turbulent mixing within the Equatorial Undercurrent
Mixed layer heat budget
Summary
Stirring and mixing of a tracer

- **Mixing in the ocean** is achieved by molecular diffusion at the scales of isotropic turbulence.

- **Smallest fluctuations**:
 - velocity: 2-5 cm
 - temperature: 1 cm
 - salinity: 1 mm

- Micro-scale gradients for molecular forces to act are generated by:
 - meso-scale eddies acting on a predominantly isopycnal mean gradient
 - turbulent motions acting on mean and meso-scale gradients

(Olbers, Willebrand and Eden, 2012)
Steering by eddies

- horizontal scales of a few km to several 1000 km
- mixes a tracer predominately along isopycnals (steering)
- steering creates contrast between water masses and enhances variability of the temperature-salinity (T-S) relationship

Eddies acting on a mean isopycnal tracer gradient
Turbulence and mixing

- largest horizontal scales of a few 100m and vertical scales of 50m, smallest scales of about 1cm (isotropic)
- turbulent motions predominately mix across isopycnals
- turbulence acts to homogenize different water masses and tightens the T-S relation
Concept: Triple decomposition

Transport equation of temperature variance using:

$$\theta = \theta_m + \theta_e + \theta_t$$

m - mean, e - eddy scale, t - turbulence scale

(extended Osborn-Cox model, Joyce, 1977; Davis, 1994; Garrett, 2001; Ferrari and Polzin, 2005)

1. **Variance production** by mesoscale eddies (along isopycnals)
2. **Variance production** by turbulence (across isopycnals)
3. **Transfer of variance** (mesoscale \rightarrow microscale) by turbulence
4. **Variance dissipation** on molecular scale

Concept requires scale separation which is not given in the ocean.
Eddy vs. turbulence variance production

\[
\langle u_e \theta_e \rangle \cdot \nabla_n \theta_m + \langle w_t \theta_t \rangle \cdot \nabla_n^\perp \theta_m = \kappa \langle |\nabla \theta_t|^2 \rangle / 2 \equiv \langle \chi \rangle / 2
\]

production by eddies production by turbulence dissipation of variance

\(\nabla_n \) denotes along-neutral-surface gradients

- evaluated from data collected in the eastern subtropical North Atlantic
- turbulent temperature variance production equates dissipation above 800m and below 1400m
- stirring by Mediterranean Water eddies dominates production between 800 and 1400m depth

(Ferrari and Polzin, 2005)
Turbulence and Mixing

- Turbulence is a fluid regime characterized by chaotic, stochastic property change.
- Its flow field is often rationalized as a superposition of many small eddies (billows).
- Momentum/energy is supplied to turbulence from internal waves or larger scale flow predominately through Kelvin-Helmholtz Instabilities.
Flow in the white layer is faster than flow in the dark layer

Necessary condition for Kelvin-Helmholtz Instability to develop:

$$Ri = \frac{N^2}{S^2} < 0.25$$

Ri - Richardson Number

$$N^2 = \frac{g \partial \rho}{\rho \partial z} \text{ stratification, } S^2 = \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 \text{ shear of background flow}$$
Velocity shear generates Kelvin-Helmholtz vortices (billows, eddies)

Break down of the large billow structure into small turbulent billows (few m to 1 cm) and chaotic turbulent flow.

At very small scales, these billows are isotropic (<20 cm).
Kelvin-Helmholtz Instability

Clouds visualizing the formation of Kelvin-Helmholtz Instability in the atmosphere

Strong shear in a long internal wave (400m horizontal scale) leads to Kelvin-Helmholtz instabilities (30m horizontal and 10m vertical scale)

(Moum et al. 2003)
The oceans' smallest movements

High-resolution instantaneous ocean velocities (30cm x 30cm)

- structure of small turbulent motions are also eddy-like
- there is a smallest eddy scale (i.e. there are no tiny eddies)

Two sample instantaneous velocity vector maps from particle imaging velocimetry. Vectors are shown with the mean velocities removed, and are superimposed on the vorticity fields. The two maps are of the same sample area, but separated in time by 0.6 s

(Nimmo Smith et al., 2002)
Billows become smaller

Wavenumber spectrum of turbulence

- instabilities of the background flow flux energy into largest turbulent billows (1m-40m)
- smaller turbulent billows are generated from interaction of larger billows (energy flux to smaller scales)
- viscous forces act on small billows having large shear passing their energy to molecular movements
Roadmap: Mixing and the Tropical Oceans

- Motivation: Stirring and mixing of a tracer
 - Eddies and stirring
 - Turbulent mixing
- Seasonal cycle of the tropical ocean
- Eddies in the equatorial oceans
- Turbulent mixing within the Equatorial Undercurrent
- Mixed layer heat budget
- Summary
Seasonal cycle of tropical marine ITCZ, SST and wind

January

April

July

October

SST color scale

contours show precipitation in mm/day
Annual-mean heat flux Q through the sea surface in Wm$^{-2}$ calculated from the ECMWF 40-year reanalysis (Kallberg et al., 2005)
Equatorial southeastern trade winds strengthen in Jun-Jul
Equatorial SST and thermocline depth

Warmest in MAM; coldest in JJA

Thermocline flat and “deep” in MAM and steep and “shallow” in JJA

Depth of thermocline (averaged between 3°S-2°N)

Scatter diagram of monthly mean SST (Mitchell and Wallace 1992)
Recall Peter Brandt's lecture: Interannual variability of ACT SSTs is tied to interannual variability of rainfall over the adjacent continents.

First EOF of interannual variability of boreal summer precipitation [mm/day]
Seasonal cycle of “equatorial upwelling”

Seasonal cycle of equatorial (a) zonal winds, (b) sea surface height, (c) sea surface temperature, and (d) chlorophyll-a

Why does the mixed layer cool during boreal summer?

(Grodsky et al. 2008)
Eastward undercurrents (EUC, SEUC, NEUC) supply recently subducted waters from the western boundary to the upwelling regions.
Equatorial circulation

The zonal current system at the equator cause elevated meridional and vertical velocity gradients

- **Westward currents:**
 - cSEC - central South Equatorial Current
 - nSEC - northern South Equatorial Current

- **Eastward:**
 - EUC - Equatorial Undercurrent
 - NECC - North Equatorial Countercurrent
 - SEUC - South Equatorial Undercurrent
 - NEUC - North Equatorial Undercurrent
Roadmap: Mixing and the Tropical Oceans

- Motivation: Stirring and mixing of a tracer
 - Eddies and stirring
 - Turbulent mixing
- Seasonal cycle of the tropical ocean
- Eddies in the equatorial oceans
- Turbulent mixing within the Equatorial Undercurrent
- Mixed layer heat budget
- Summary
Meso-scale eddy variability

Snap shot of sea surface temperature from the equatorial Pacific (30 October 2008). Surface signature of tropical instability noted as cusps north of equator at 10 degrees zonal wavelength.

(Moum et al. 2009)
Tropical instability waves

- Intraseasonal fluctuations with periods between 20-60 days and wavelength of 400-1500 km
- Propagate westward with velocities of 25-50 cms\(^{-1}\)
- Pronounced between May and October

Atlantic's sea surface temperature (TRMM-SSTs)

Chlorophyll distribution from Sea WIFS (July, 1999)

(Grodsky et al., 2005)

(Jochum et al., 2003)
Similar to the observations, TIWs in models are represented as anticyclonic eddies that propagate westward.
velocity measurements from ships and trajectories from floats were used to construct a synoptic data grid of a TIW at 140°W in the Pacific.

the anticyclonic vortex had a diameter of 500-600km and translated westward with at 30 cms⁻¹ (1/4° per day).

Associated currents were in the order of 40 cms⁻¹

(Kennan and Flament, 2000)
Tropical Instability Waves (Atlantic)

- Meridional velocity section along 10°W showing structure at the equator.
- In meridional velocity flow reversal at greater depth (>70m) indicates baroclinic structure.
TIW generation: Barotropic instability

- Strength of barotropic and baroclinic instability can be evaluated from numerical models.

- Barotropic instability in the eddy kinetic energy budget:

 \[S = -\overline{u'u'} \cdot \nabla \overline{U} - \overline{u'v'} \cdot \nabla \overline{V} \]

 \(\overline{U}, \overline{V} \) - mean velocity

 \(u', v' \) - deviation from seasonal mean

Seasonal maps of the barotropic instability production rate \(S \) in \([m^2s^{-3}] \) from a model simulation and averaged over the top 50 m. Negative sign denotes kinetic energy transfer from mean to eddies.

(von Schuckmann et al., 2009)
TIW generation: Baroclinic instability

- Baroclinic instability in the eddy kinetic energy budget:
 \[b'w' \]

 - \(b' \) - buoyancy deviation from mean
 - \(w' \) - vertical velocity deviation

 Seasonal maps of the baroclinic instability production rate \(b'w' \) in \([m^2 s^{-3}] \) derived from a model simulation and averaged over the top 50 m. Negative sign denotes transfer into the fluctuation.
Barotropic instability is elevated in the region of strong horizontal velocity shear between EUC and nSEC and between nSEC and NECC.

Baroclinic instability is elevated in the region of strong vertical shear (SEUC, upper EUC).

(a) Mean zonal velocity along 26W
(b) Barotropic production rate S averaged from 30°W to 10°W. Negative signs denote transfer into EKE.
(c) Corresponding average of the baroclinic production term $b'w'$. Negative signs denote transfer into EKE.
SSH variability and equatorial waves

- SSH variability (3°N-3°S) can be separated into an equatorial-symmetric and -antisymmetric component.
- Symmetric variability exhibits characteristics of an first meridional mode Rossby waves.
- Antisymmetric variability shows enhanced energy for baroclinic (3rd or high vertical mode) mixed Rossby-Gravity waves (Yanai waves).

(pers. comm. T. Farrar)
In the presence of horizontal gradients of temperature (e.g. during boreal summer when the cold tongue is pronounced), TIWs temporarily displace warm water into the region of cold water and vice versa. When the warm water has cooled when it is returned to its initial position after the TIW has passed, a net heat flux into the cold water region has occurred that can be expressed as

$$\left< U' \partial_h T' \right> \neq 0$$

U’-TIW velocity, T’-Temperature fluctuations
Observations suggest that steering by TIWs leads to a net meridional and to a lesser extend zonal flux of heat into the cold tongue.

The heat flux due to the TIW is in the order of 1°-2°/month in meridional and 0.5°-1°/month in zonal direction.

(Jochum et. al. 2007)
Advective and eddy heat fluxes in the mixed layer (model)

Annual mean trends by different processes (°C/month)

1. Zonal advection of heat by low frequency currents
 \[\langle -u \partial_x \bar{T} \rangle \]

2. Meridional advection by low frequency currents
 \[\langle -v \partial_y \bar{T} \rangle \]

3. High frequencies advection (<35 days), steering of TIWs
 \[-\langle u' \partial_x T' \rangle - \langle v' \partial_y T' \rangle + \langle D_1 \rangle \]

4. \(D_1 \)-lateral diffusion

(Peter et al., 2006)
Roadmap: Mixing and the Tropical Oceans

- Motivation: Stirring and mixing of a tracer
 - Eddies and stirring
 - Turbulent mixing
- Seasonal cycle of the tropical ocean
- Eddies in the equatorial oceans
- Turbulent mixing within the Equatorial Undercurrent
- Mixed layer heat budget
- Summary
Early turbulence observations within the equatorial belt

Equatorial Pacific
- Microstructure measurements from the upper thermocline in the late 70’s and 80’s revealed deep-cycle turbulence (Gregg et al., 1985, Moum and Caldwell, 1985)
- Numerous measurement programs since the late 70’s

Equatorial Atlantic
- 8 microstructure profiles sampled in 1976 indicated enhanced mixing above the EUC core (Crawford and Osborn, 1979)
- Le Noroit cruise by WHOI in late autumn 1994 to the eastern flank of the Mid-Atlantic Ridge (Romache Fracture Zone)
Ocean-microstructure observatories

Ship-based microstructure systems

Autonomous microstructure platforms

Instrumentation for moorings (χ-pods)
Microstructure shear sensors

Piezoceramic beam translates tangential force into a potential difference

Sampling frequency 500-1000Hz
Dissipation rate of turbulent kinetic energy is determined from microstructure shear:

\[\varepsilon = \nu \left(\frac{\partial u'_j}{\partial x_i} \right)^2 = 7.5 \nu \left(\frac{\partial u}{\partial z} \right)^2 \]

Dissipation rate of temperature variance can be fast-thermistor data:

\[\chi = 2D_T \left(\frac{\partial \theta'}{\partial x_i} \right)^2 = 6D_T \left(\frac{\partial \theta'}{\partial z} \right)^2 \]

Eddy diffusivities for buoyancy:

\[K_\rho = \Gamma \frac{\varepsilon}{N^2}, \quad \Gamma = \frac{R_f}{(1 - R_f)} \approx 0.2 \]

(Osborn, 1980)
Latitudinal distribution of upper ocean turbulence along 10°W

- elevated vertical shear of horizontal velocity at the base of the mixed layer extends from 3°S to 1.5°N
- elevated turbulence levels below mixed layer are found between 3°S and 1°N
- little mixing in stratified layer below MLD south of 4°N

(Hummels et al., 2013)
Ship-board microstructure measurements (2005-2011)

- Repetitive microstructure sections within the cold tongue region from 11 cruises during different seasons
- Individual stations with at least 3 profiles (>2000 profiles)
- Shipboard ADCP measurements
bursts of elevated turbulence in the upper thermocline occur sporadically and last up to a few hours
Shear variance $S^2 = (\frac{du}{dz})^2 + (\frac{dv}{dz})^2$

Turbulent dissipation rate ε

- elevated dissipation rates coincide with elevated shear variance
Equatorial turbulent dissipation rate time series

Atlantic (10°W):

Pacific (140°W):

- elevated mixing region extends deeper in the Pacific
- diurnal variability dominant in the upper thermocline

(EUCL core)

(Moum et al., 2009)
Diurnal cycle of temperature and ε

June, 10°W:

- Turbulence in the stratified upper ocean shows a 100-fold increase during night time (21:00-9:00) in the equatorial Atlantic.
Recall: Necessary condition for Kelvin-Helmholtz Instability to develop:

\[\text{Ri} = \frac{N^2}{S^2} < 0.25 \]

During most of the season (except in spring) the Richardson Number (Ri) above the core of the EUC and below the mixed layer is 0.25, i.e. marginally unstable!

(Smyth et al., 2013)
Solar heating causes daily cycle of temperature in the upper few meters (2-6m) of the ocean exceeding 0.5°C.

Intense mixing occurring in the mixed layer during local daytime (10:00-16:00)
Diurnal cycle of stratification and ε

- Intense daytime mixing occurs during period of strong stratification with the upper mixed layer
- Near-surface stratification inhibits vertical turbulent momentum flux and thus traps momentum input by winds to the top few meters generating strong shear below.
Deep cycle turbulence in the Pacific (140°W)

Shear variance
$$S^2 = (du/dz)^2 + (dvdz)^2$$

Descending stratification and shear in the afternoon observed in the Pacific.

Elevated mixing in the upper thermocline occurs after the shear layer passes a particular depth level

(Smyth et al., 2013b)
Dissipation rate of turbulent kinetic energy from a very-high resolution model simulations (LES) ($\Delta x, y = 1.25\text{m}$ and $\Delta z = 0.25\text{m}$) (Pham et al., 2013)
High resolution model simulation

- Very-high resolution model simulations (LES) also show downward propagation of shear layer
- Daytime trapped surface current between 0-4m depth has velocities of 1.5 m/s (Pham, pers. comm)

(Pham et al., 2013)
Turbulent heat flux into the deeper ocean at the equator

Atlantic

- Average heat loss of the mixed layer due to turbulence:
 - May (6 days) ~ 80 W/m²
 - June (21 day) ~ 60 W/m²
 - Nov. (6 days) ~ 15 W/m²

- Mixed layer heat is redistributed to the upper 40m of the thermocline

$$J_h = K_p \frac{\partial T}{\partial z} = \Gamma \varepsilon \frac{\partial T}{N^2 \partial z}$$

- K_p - turbulent diffusivity
- Γ - mixing efficiency (approx. 0.2)
- ε - turbulent dissipation rate
Turbulent heat flux into the deeper ocean at the equator

Pacific

- Seasonal average heat loss of the mixed layer due to turbulence (from moored observations)
- Mixed layer heat is redistributed to the upper 100m of the thermocline

Moun et al., 2013
TIWs and equatorial mixing

- turbulence float released within a TIW in the Pacific showed elevated average diapycnal heat flux of about 200 Wm$^{-2}$ over a period of 3 weeks
- model simulations agreed with the observations and attributed the enhanced fluxes to shear instability below the mixed layer

(Lien et al, 2008)
Motivation: Stirring and mixing of a tracer
 - Eddies and stirring
 - Turbulent mixing
Seasonal cycle of the tropical ocean
Eddies in the equatorial oceans
Turbulent mixing within the Equatorial Undercurrent
Mixed layer heat budget
Summary
Mixed layer heat budget

\[\rho c_p h \frac{\partial T}{\partial t} = q_{\text{net}} - \rho c_p h \mathbf{u} \cdot \nabla T - \rho c_p (\mathbf{u}' \cdot \nabla T') + \rho c_p (T - T_h) w_{\text{entrain}} - q_{-h} \]

- **Temporal changes**
 - mean advection
 - eddy steering
 - entrainment
 - diapycnal mixing

Net surface flux

(Hummels et al., 2013, 2014)
mixed layer heat balance in OGCMs

annual mean trends by different processes (°C/month)

zonal advection by low frequency currents
\(-\bar{u} \partial_x \bar{T}\)

meridional advection by low frequency currents
\(-\bar{v} \partial_y \bar{T}\)

high frequencies advection (<35 days)
effects of eddies
\(-\langle u' \partial_x T \rangle - h\langle v' \partial_y T \rangle + h\langle D_t \rangle\)

subsurface mixing (vertical advection, entrainment and turbulent mixing)
\(- (K_z \partial_z T)_{(z=h)} - (\partial_T + w_{(z=h)}) \langle T \rangle - T_{(z=h)}\)

atmospheric forcing
\(\frac{Q^* + Q_s (1 - f_{(z=h)})}{\rho_0 C_p h}\)

(Peter et al., 2006)
Seasonal SST variability in the equatorial Atlantic and Pacific is controlled by a diapycnal mixing occurring in the stratified layer below the mixed layer.

Eddies in the tropical regions warm the could tongue regions during its presents.

New autonomous observatories undisturbed measurements of the upper few meters of the ocean. New ideas are expected to result from these data sets.

The term “up-mixing region” would be more appropriate for the “equatorial upwelling regions” and perhaps for coastal upwelling regions, too?