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INTRODUCTION

Population biology and the study of pairwise inter-
specific interactions provide detailed information
about community dynamics. At a larger scale, eco-
system studies describe the system-level, macro-
scopic properties of nature (Lindeman 1942). The
objectives of macroscopic descriptions are simplifica-
tion (e.g. network unfolding, Whipple & Patten 1993;
dominator tree, Allesina & Bodini 2004), cross-system

comparability (Baird & Ulanowicz 1993), and gener-
alization (Ulanowicz & Kemp 1979, Hirata & Ulano -
wicz 1985). It is both important and challenging to try
to connect the 2 levels, i.e. to understand the role
individual species and single interactions play in the
whole ecosystem (Jones & Lawton 1995). Studies on
keystone species (Power et al. 1996, Libralato et al.
2006, Jordán 2009, Ortiz et al. 2013) and ecological
redundancy (Bond 1994) provide some useful back-
ground for how to approach this problem. Related
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studies have quantified the similarity between the
roles species play in ecological systems, based on
topological equivalence measures (regular equiva-
lence, Luczkovich et al. 2003), Jaccard-similarity of
feeding (trophospecies, Yodzis & Winemiller 1999),
or the overlap of the neighborhood (trophic overlap,
Jordán et al. 2009, Lai et al. 2012). For simplicity,
hereafter we will make use of the term ‘species’ as an
equivalent of ‘trophic group’ and ‘component.’

Large ecosystem models found in modern online
databases are highly complex, especially when indi-
rect effects are accounted for. Due to this complexity,
in many trophic network models it is difficult to
examine whether species x has a larger effect on
 species y or vice versa, and the study of their flow
structure contributes to unveiling unexpected bene-
ficial effects of predators upon their prey (Ulanowicz
& Puccia 1990, Bondavalli & Ulanowicz 1999). Sev-
eral methods of quantitative modeling have been
used for determining key species and interactions,
ranging from loop analysis (Briand & McCauley
1978, Bodini 1991, Ortiz & Wolff 2002, Ortiz & Levins
2011) to indices based on flow analysis (Hirata &
Ulanowicz 1985, Vasas et al. 2007, Borrett 2013).
These near-equilibrium approaches provide qualita-
tive or quantitative results and predictions.

Structural models can be complemented by dy -
namical analysis, either of analytical nature or using
simulations with realistic parameters. In certain cases,
mass equations can be used to realistically describe
eco-dynamics (e.g. phytoplankton blooms), but these
approaches make unrealistic assumptions when ap -
plied to the dynamics of small populations of large-
bodied animals. The latter case calls for the use
of individual-based techniques (Melián et al. 2011),
which incorporate information on demography, build-
ing better links between ecological and evolutionary
processes and offering a better view on rare species.
A complementary way to investigate the mechanistic
details of trophic dynamics is based on individual-
based simulations (Kazanci et al. 2009, Livi et al.
2011). These approaches need to be integrated in
order to better understand how local effects (particu-
lar species and interactions) scale up and shape
global eco-dynamics.

In this paper, we present a modeling and simula-
tion framework that helps to identify and quantify the
most asymmetrical relationships between the species
of a marine ecosystem. We show and discuss the most
asymmetrical inter-specific relationships (direct inter -
actions and indirect effects) in the Prince William
Sound ecosystem and, based on these, we present a
graph of asymmetrical relationships of the ecosys-

tem, inspired by the backbone of trophic transfers
suggested by Lindeman (1942) (the Lindeman spine;
see Baird & Ulanowicz 1993). Most importantly,
many of these relationships exist between species
directly unlinked in the food web. Instead of focusing
on key species, we identify the key interactions in the
ecosystem. This approach has been seriously under-
emphasized in the literature. Finally, we discuss the
indicator value of this method for conservation and
management.

METHODS

Study system

The Prince William Sound (Gulf of Alaska) eco -
system was described in great detail (Okey & Pauly
1999) and modeled by the EcoPath with EcoSim
(Christensen & Walters 2004) toolkit in order to deter-
mine key species by sensitivity analysis (Okey &
Wright 2004). The trophic network model contains
48 living groups, and the architecture of  prey−
predator interactions defines the food web topology
(i.e. the structure of the trophic network). The
weighted version of the food web is also available;
interaction strengths are quantified in terms of bio-
mass flows (US tons of wet weight km−2 yr −1; see
Okey 2004).

Food web

Between the N = 48 species there are L = 355
 realized trophic interactions (prey−predator carbon
transfers). This corresponds to 2L = 710 realized
direct pairwise effects (both bottom-up and top-down
between the prey−predator pairs of species). If indi-
rect effects are also considered, almost everything
can affect everything else, so we can list N (N − 1) =
2256 directed pairwise effects and N (N − 1)/2 = 1128
undirected pairwise relationships in the community
(i.e. only self-loop effects are excluded). Our aim is to
identify the most important directed pairwise rela-
tionships that dominate the dynamics of the ecosys-
tem. The key of our methodology is (1) to structurally
quantify the strength of pairwise interactions and
the asymmetry of pairwise effects (using the binary
structure of food web interactions, but also referring
to the weighted food webs, with interaction strength
quantified through carbon transfers), (2) to simulate
network dynamics and also dynamically quantify the
strength and asymmetry of these inter-specific effects,
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(3) to single out the most asymmetrical simulated
effects, and (4) to study the network position of spe-
cies in the graph of the most asymmetrical relation-
ships and characterize the properties of these most
asymmetrical links.

Network analysis: structure

Several centrality indices have been used to quan-
tify the positional (i.e. structural) importance of spe-
cies in food webs. From the simplest ones (e.g. node
degree, Wasserman & Faust 1994) to more compli-
cated ones (i.e. communicability, Estrada 2007), there
is a range of possibilities to choose the appropriate
tool for addressing a particular problem. Since we
also focus on the importance of interactions starting
from the food web topology, we decided to use the
topological importance index (TI): this allows quan-
tification of the structural importance (centrality) of
network nodes and of the relative strength and asym-
metry of the interactions (see Jordán et al. 2003). For
this index, we define an,ij as the effect of j on i when i
can be reached from j in n steps. The simplest
method of calculating an,ij is when n = 1 (i.e. the effect
of j on i in 1 step): a1,ij = 1/Di, where Di is the degree
of node i (i.e. the number of its direct neighbors
including both prey or predatory species). We
assume that indirect chain effects are multiplicative
and additive. For instance, if we were to determine
the effect of j on i in 2 steps in a hypothetical network
with two 2-step pathways from j to i: one is through k
and the other is through h. The effect of j on i through
k is defined as the product of 2 direct effects (i.e. a1,kj

× a1,ik), hence the term ‘multiplicative.’ Similarly, the
effect of j on i through h equals a1,hj,1 × a1,ih. To deter-
mine the 2-step effect of j on i (a2,ij), we simply sum
up those 2 individual 2-step effects (i.e. a2,ij = a1,kj ×
a1,ik + a1,hj × a1,ih), hence the term ‘additive.’

When the effect of step n is considered, we define
the effect received by species i from all species in the
same network as:

(1)

which is equal to 1 (i.e. each species is affected by the
same unit effect). Furthermore, we define the n-step
effect originating from species i as:

(2)

which may vary among different species (i.e. effects
originating from different species can be different).

We define the topological importance of species i
when effects up to n steps are considered as:

(3)

which is simply the sum of effects originating from
species i up to n steps (1 + 2 + 3…up to n; m =
number of steps) averaged by the maximum num-
ber of steps considered (i.e. n).

Between each ij ordered pair of nodes, the topo -
logical constraint on the strength and the TI3

asymm(ij)

asymmetry of the interaction were calculated (their
structural connectedness). We used the TI index
for up to 3 step long indirect effects (TI3): 3 steps
are generally considered to be a meaningful and
relevant range for indirect effects in food webs,
with typi cally no major difference found for longer
pathways (e.g. Jordán et al. 2003, Brose et al.
2005).

For the weighted version of the network, we used
the mixed trophic impact analysis (Ulanowicz & Puc-
cia 1990). We measured direct and indirect trophic
impacts from trophic flow data. The dietary coeffi-
cient gij quantifies the effect of prey i upon predator j
(defined as the proportion of i within the menu of j).
The effect of predator j on its prey i (fji) is measured
by the fraction of net output from prey i (respiratory
output is excluded) that is consumed by predator j.
The net impact of i upon j equals gij − fji and is
defined as the 1-step (direct) effect of i on j. Its values
range from −1 to +1. Taking every pair of the N
nodes, we calculated the direct net impacts and com-
puted the N × N net impact matrix, [Q]. The total
(direct and indirect) is summarized in the mixed
trophic impact matrix [M] that is calculated by sum-
ming up all the integer powers h of [Q]:

[M] = Σ∞
h=1 [Q]h (4)

using the following equation known from the input-
output theory:

[M] = {[I] – [Q]}–1 – [I] (5)

where [I] is the identity matrix. Summing the rows of
[M] provides a measure of node importance: we con-
sidered the absolute values of effects (called IMA) in
order to quantify the interactive power of a group
(Vasas & Jordán 2006). Keystones can be of high
importance because of both positive and negative
effects on others. Since summing up strong negative
and strong positive effects might result in an aggre-
gate value around 0, we considered absolute values
of effects.
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Network simulation: dynamics

For dynamical simulations, we used the BlenX pro-
cess algebra language and stochastic simulation plat-
form (Dematté et al. 2008) already adapted for simu-
lating marine food web dynamics (Jordán et al.
2011). To calculate the mutual sensitivity of all spe-
cies, we built a balanced food web model, simulated
it using a master parameter set, and then used that as
the baseline for our sensitivity analysis. All reference
simulation runs were sampled at time t. At time t, the
mean population size of all species was registered,
based on R simulations. To estimate the effect of spe-
cies i on the mean population size of species j, we first
defined the reference value of population density for
species j (Aj), in the absence of any perturbation (i.e.
the initial population size of each species was set
according to the value estimated from empirical data,
and then simulations were carried out; see Okey
2004):

(6)

where R simulations are performed, and, for each run
k, the population size of species j in the undisturbed
system (ak,j) is recorded at time t. As a perturbation,
the initial number of individuals belonging to a given
species was halved, and the mean population size of
all other species recorded after time t. For each spe-
cies in the food web, we applied the same perturba-
tion by carrying out R simulations (we note that other
disturbance regimes can also be studied, see Scotti et
al. 2012). The value of population density for species
j after disturbing species i is:

(7)

and the relative response (rr) of species j to disturb-
ing species i is:

(8)

The relative response is normalized (nrr) over all
 species (N):

(9)

The community importance of species i equals:

(10)

The normalized relative response metric refers to
changes on average population sizes (M); it measures
the sensitivity of the system to disturbing component i
(IH, where H stands for the Hurlbert response func -
tion: Hurlbert 1997). These simulation-based values
are dynamical measurements of community-level im -
portance. The Hurlbert response index was already
used with the Prince William Sound network model
for identifying the most vulnerable and most dominat-
ing species (Livi et al. 2011), quantifying indirect inter -
action modules (Gjata et al. 2012), and char acterizing
weak interactions (Scotti et al. 2012). The individual
effect of species i on species j corresponds to eij, the
largest value of each pair of eij and eji effects corre-
sponds to maxeij, and the simulated asymmetry is:

Cij = |eij – eji | (11)

which is the absolute value of the difference between
the 2 simulated effects between 2 species.

We identified the most asymmetrical Cij values (i.e.
top 5%). We did not consider relationships that are
strong in both directions: this kind of symmetry makes
inter-specific relationships unclear and un predictable,
while asymmetrical relationships may provide more in -
sights about the flow of indirect effects in ecosystems.

It is important to emphasize that any type of effect
(weak or strong, symmetrical or asymmetrical) can be
important in nature and also during the simulation ex-
periments. For example, the potential importance of
weak links has been reported several times (McCann
et al. 1998, Scotti et al. 2012). Here, we only aimed to
simplify complexity by looking at the  clearest rela-
tionships (most asymmetrical, typically strong in one
direction and weak in the other), as suggested by sto-
chastic simulations. Note that asymmetry has also
been used in a different sense in the literature, de-
scribing the relative importance of energy channels
(Rooney et al. 2006, Rooney & Mc Cann 2012).

In the graph of the most asymmetrical relationships,
we quantify the positional importance of individual
nodes by directed topological importance up to 3 steps
(TI3). In this network, we can define source, sink, and
intermediate as well as isolated nodes. We emphasize
the difference between our view on dominance and
the major alternative approach based on the dominator
tree. The dominator tree (Allesina & Bodini 2004) con-
siders only bottom-up effects (i.e. it relies on a donor-
based perspective), it is a static analysis, and it is based
only on direct interactions. The dominance measure
we suggest is based on  simulations and considers indi-
rect effects spreading in any direction (including top-
down). Most importantly, the graph of the most asym-
metrical relationships is not necessarily a tree.
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Relationships between structure and dynamics

Finally, we compared the centrality of species (TI3)
in the graph of the most asymmetrical relationships
with other properties: (1) trophic position (TP); (2) the
Hurlbert response function related to changes in the
population size of each species (IH(M)); (3) total direct
and indirect effects estimated using the weighted
food web (IMA); (4) population size, on a natural log-
arithmic scale (ln(N)). The effective TP index charac-
terizes the trophic height of individual species (Okey
2004). TP stands for the weighted average distance of
species from primary producers (Scotti et al. 2006)
and is computed as the sum of the fractions of trophic
activity that each species performs at different (dis-
crete) trophic levels.

RESULTS

By selecting only the top 5% most asymmetrical
relationships, 56 out of 1128 potential effects were
included in the asymmetry graph. Fig. 1 shows the
rank of asymmetry values and marks interactions

over and below the 5% threshold with different
shades. Fig. 2 shows the graph of the most asymmet-
rical relationships. The graph is composed of a large
component of 42 species, while 6 isolated species are

93

0 200 400 600 800 1000

0.0

0.1

0.2

0.3

No. of interactions

C
ij

Fig. 1. Rank of the asymmetry values for all ij interactions,
according to stochastic food web simulations. The most
asymmetrical relationships (i.e. 56 interactions that repre-
sent the top 5%) are shown in grey and appear in the asym-
metry graph (Fig. 2). Less asymmetrical relationships are
shown in black; these are not part of this network. The
y-axis shows the asymmetry values of ij and ji effects quanti-
fied by the Cij index. See ‘Methods’ for definitions of terms

Fig. 2. Asymmetry graph. Interactions of the 56 most asymmetrical relationships (i.e. top 5%; grey area in Fig. 1) for the Prince
William Sound ecosystem, estimated by stochastic simulations. This hierarchical layout shows the species at the bottom who
are at the root of the clearest relationships. Note that the interactions are directed here, so we only consider the stronger one of
the pair of ij and ji effects (see ‘Methods’ for definitions of terms). Isolated nodes (shallow large epibenthos, deep epibenthos,
sea otters, pinnipeds, sleeper sharks, and resident orca) with no strongly asymmetrical interactions are not depicted. Interac-
tion width is proportional to the strength of asymmetry; colors represent different types of effects: blue = bottom-up, red = top-
down, yellow =  indirect. Node codes (ordered according to trophic position of species, starting from primary producers): 1 =
macroalgae; 2 = offshore phytoplankton; 3 = nearshore phytoplankton; 4 = nearshore herbivorous zooplankton; 5 = shallow
large infauna; 6 = herbivorous zooplankton; 7 = shallow small epibenthos; 8 = deep large infauna; 9 = meiofauna; 10 = shallow
small infauna; 11 = omnivorous zooplankton; 12 = deep small infauna; 13 = nearshore omnivorous zooplankton; 14 = jellies;
15 = juvenile herring; 16 = sandlance; 17 = invertebrate-eating birds; 18 = age 0 pollock; 19 = adult herring; 20 = capelin; 21 =
eulachon; 22 = squid; 23 = nearshore demersals; 24 = salmon fry 0–12 cm; 25 = baleen whales; 26 = rockfish; 27 = age 1+ pollock;
28 = deep demersals; 29 = seabirds; 30 = octopods; 31 = avian predators (eagles and falcons); 32 = spiny dogfish; 33 = juvenile
 arrowtooth; 34 = sablefish; 35 = pacific cod; 36 = adult salmon; 37 = adult arrowtooth; 38 = lingcod; 39 = porpoise; 40 = halibut; 

41 = salmon sharks; 42 = transient orca
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not involved in any strongly asymmetrical relation-
ship (i.e. shallow large epibenthos, deep epibenthos,
sea otters, pinnipeds, sleeper sharks, and resident
orca). This network is a directed acyclic graph
(DAG). However, by applying the same analytical
approach to other food webs, we might not necessar-
ily obtain DAGs. The major source of the DAG is hal-
ibut, so this fish is proposed to ultimately dominate
the asymmetrical relationships in the ecosystem (for
its keystone role, see Seitz et al. 2007). Other minor
source nodes include spiny dogfish, age 1+ pollock,
and deep demersals. These species are not strongly
in fluenced by others. Important sinks include jellies,
baleen whales, and squid: these groups have no
major asymmetrical effect on others, but some of
them are strongly influenced by a series of asym -
metrical links.

From a food web perspective, the most asymmetri-
cal links can be quite mixed: the longest chain (8
steps in length) in the asymmetry graph starts with
halibut that dominates sablefish. These 2 species are
linked through an indirect effect. The following
interactions, after sablefish, involve adult arrowtooth
(indirect), juvenile herring (top-down), herbivorous
zooplankton (top-down), adult herring (bottom-up),
rockfish (indirect), shallow large infauna (indirect),
and shallow small infauna (indirect).

Fig. 3 presents a classification of the most asym-
metrical interactions. Direct bottom-up (blue) and
top-down (red) as well as indirect (yellow) effects are
marked differently. We tested for a positive associa-
tion between effect type and asymmetry by applying
a 1-tailed Fisher’s exact test and found no positive
correlation between effect type (bottom-up, p = 0.323;

top-down, p = 0.133; indirect, p = 0.946) and the
asymmetry graph.

Fig. 4 shows how Cij is correlated with max eis

(Fig. 4a), the asymmetry of TI3 effects (Fig. 4b), and
mixed trophic impact (Fig. 4c). Strong simulated in-
teractions are generally more asymmetrical as well
(Fig. 4a), but strong structural asymmetry does not
predict dynamical asymmetry (Fig. 4b), also when the
information concerning the strength of biomass flows
is considered (Fig. 4c). For a more complete compari-
son of the relationships between structural and dy-
namical indices, see Jordán et al. (2008). Based on
Fig. 4, large structural asymmetries can be dynami-
cally symmetrical, and structurally symmetrical rela-
tionships can result in dynamically highly asymmetri-
cal interactions. If the simulation model is correct, this
may show the limitations of topological studies on
food webs. It is of interest to determine the trophic
height of key species (Scotti & Jordán 2010). We ob-
served a significant and positive correlation between
species importance in the asymmetry graph and TP
(Spearman’s rho = 0.494; p = 0.001; see Fig. 5a). This
illustrates how species feeding higher in the trophic
chain may play a possible central role in eco-dynamics.
However, species at intermediate trophic positions
are involved in strongly asymmetrical relationships
as well (Fig. 5a). In our simulations, we observe a cer-
tain top-down dominance of community control, even
if this trend is not confirmed by statistical analysis
(Fisher’s exact test, p = 0.133). From a conservation
perspective, it is interesting to note how important
rare (meaning ‘small population size’) species are in
eco-dynamics. In this analysis, we did not  identify
any significant correlation between population size
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Fig. 3. The 56 most asymmetrical ef-
fects (i.e. top 5%), ranked and classi-
fied according to whether they are in-
direct (yellow) or direct (bottom-up in
blue, top-down in red). Based on simu-
lations, the most asymmetrical relation-
ships are not significantly associated
with any of these categories. Indirect
effects include all of the ij effects that
are not shown directly in the food
web (e.g. trophic cascade, exploitative
and apparent competition). The y-axis
shows the Cij asymmetry values of ij
and ji effects. This figure represents a
zoom of the grey area in Fig. 1. See 
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and importance of species in the asymmetry graph
(Spearman’s rho = −0.204; p = 0.214; see Fig. 5d).

We can also see that the TI3 of nodes in the asym-
metry graph is correlated with their effective TP
(Fig. 5a) and the simulated importance (IH(M))
(Fig. 5b), while no clear and significant patterns link
the position of species in the asymmetry graph to the
relevance estimated through the mixed trophic
impact (IMA; Fig. 5c) and the natural logarithm of
population size (ln(N); Fig. 5d). The importance of
species increases with trophic height, but many
 species at intermediate trophic positions may also be
relevant. No clear evidence connects the population
size of species to the asymmetry graph. Being rare
does not automatically translate into a high asym-
metrical simulated impact.

DISCUSSION

Even if we have more and more information about
the strength of trophic interactions between prey and
predators (e.g. McCann et al. 1998), it still remains
unclear who is really influencing whom in a pairwise
interaction. Beyond recognizing strong interactions,
we also need to understand more precisely whether
the strength is symmetrical in bottom-up and top-
down directions. We performed food web simulation
experiments and, following sensitivity analysis, de -
termined each ij effect between pairs of species. We
also quantified the asymmetry of ij and ji interactions
and considered the most asymmetrical relationships
(i.e. top 5%). We then studied the graph of these
dominant effects. As an illustrative case study, we
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used the weighted trophic flow network of the Prince
William Sound ecosystem (Okey & Wright 2004).

The suggested method is just one of several ap -
proaches that could be applied to identify and quan-
tify the relative importance of inter-specific effects
in ecosystems (as an alternative method, see mixed
trophic impact, Ulanowicz & Puccia 1990, also used
for conservation purposes: Bondavalli & Ulanowicz
1999). The main feature of our Cij index and the TI3

values of nodes in the asymmetry graph is that these

clearly show the most understandable effects (i.e.
strongly asymmetrical interactions) between species.
Strong links identified by other tools (e.g. path ana -
lysis, Wootton 1994) may be symmetrical (both ij
and ji are strong), and in these cases it may remain
unclear what exactly the mechanistic details of the
relationship are.

The most central species in the asymmetry graph of
the ecosystem (high directed TI3) feed at higher
trophic levels, but are not necessarily top predators.
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(IH(M); Spearman’s rho = 0.588; p < 0.001), (c) cumulative effect estimated from mixed trophic impact matrix (IMA; Spearman’s
rho = −0.116; p = 0.466), and (d) the natural logarithm of their population sizes (ln(N); Spearman’s rho = −0.204; p = 0.214; N is 

the number of individuals)
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This suggests a top-down control type of dominance,
at least in the food web studied here. The species
most influenced by others (low directed TI3) are
found at lower than average trophic levels (Fig. 5a).
This might imply a general top-down control in the
ecosystem. Species seem to belong to 2 clusters
based on the relationship between their importance
and simulated relative importance (Fig. 5b): the few
really important interactors are also relevant, while
the mass of other species shows minor differentia-
tions and less significance.

The finding that large populations may (e.g. adult
salmon, adult arrowtooth) or may not (e.g. capelin)
be very important in the asymmetry graph is inter -
esting (see Fig. 5d), especially because we also rec-
ognize small populations of surprisingly high im -
portance (e.g. transient orca, salmon shark). The
generally positive relationship between population
size and importance sounds quite intuitive from an
ecological point of view, but it may seem counter-
intuitive for conservation practice: in conservation
parlance, ‘rarity’ is often used as an equivalent of
‘importance.’ We still need to learn a lot about the
relationship between rarity and importance, and we
suggest that computational approaches may be help-
ful for a community-based characterization of the
role of rare species.

Future developments include using more advanced
network approaches for better understanding of the
structural correlates of asymmetrical relationships.
The weighted network offers alternative approaches,
for example, using weighted degree or the weighted
topological importance index (WI) (Scotti et al. 2007).
Also, it will be an important development to add non-
trophic interactions to this purely trophic model, as
their relevance is being increasingly recognized
(Whipple & Patten 1993, Vasas & Jordán 2006).
Finally, here we did not consider the strength and
importance of self-loops. This would be essential in
the future, especially because there are important
relationships between interaction symmetry, feed-
back, and self-loops.

This approach, focusing only on the graph of the
most asymmetrical relationships, was proposed in the
spirit of Lindeman (1941 see his ‘basic dependencies’).
It offers a simplified view on the most predictable,
understandable effects dominating eco-dynamics and
helps to single out the possibly clearest relationships
in the community.
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