Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings

Monecke, T., Petersen, Sven and Hannington, M. D. (2014) Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings Economic Geology, 109 (8). pp. 2079-2101. DOI 10.2113/econgeo.109.8.2079.

[img] Text
EG_109_8_Monecke et al_2014.pdf - Published Version
Restricted to Registered users only

Download (513Kb) | Contact

Supplementary data:

Abstract

The results of three decades of seafloor research provide the most reliable information on the importance of water depth in massive sulfide formation. Available data from over 130 occurrences show that water depths of seafloor vent sites vary with plate tectonic setting and the regional magmatic and volcanic environment. The shallowest hydrothermal systems in subduction-related settings are hosted by arc volcanoes. These shallow vent sites have a number of features in common with subaerial epithermal systems. Massive sulfide occurrences in arc-related rifts, the most likely setting for many ancient analogs, are generally restricted to water depths from ~700 to 2,000 m, with rifts developing within old arc crust at the deeper end of this range. Back-arc spreading centers proximal to arcs host massive sulfide deposits at depths of ~1,500 to 2,000 m. The deepest hydrothermal systems occur along mature back-arc spreading centers distal to volcanic arcs where water depths range from ~2,000 to 3,700 m. These deeper vent sites probably represent the best modern analogues of ophiolite-hosted massive sulfide deposits.

Boiling of the hydrothermal fluids is common at volcanic arcs and in arc-related rifts. In these environments, elevated magmatic gas contents of the hydrothermal fluids can contribute to the widespread occurrence of phase separation and associated gas loss. By contrast, the high ambient pressures in deep marine hydrothermal systems along mature back-arc spreading centers prevent fluids from boiling during their ascent to the seafloor. Boiling controls the maximum temperature at which hydrothermal fluids discharge at the seafloor and, therefore, influences the metal content of seafloor sulfide deposits. Copper-rich massive sulfides typically occur at water depths exceeding ~1,000 m, whereas Zn- and Pb-rich occurrences may form at any water depth. Boiling can be an important control on Ag and Au grades but is not the only factor controlling precious metal enrichment in massive sulfides. Shallow marine hot spring deposits can be highly enriched in trace metals such as As, Hg, and Sb.

Submarine volcanic arc and back-arc settings are geologically complex and significant variations in water depth can occur over short distances. Paleoenvironmental reconstruction of these environments in ancient volcanic terranes is hampered by the lack of unequivocal volcanological or sedimentological criteria that indicate water depth. The relationships established here using modern seafloor observations provide important constraints on the paleoenvironmental setting of ancient volcanic-hosted massive sulfide deposits.

Document Type: Article
Additional Information: WOS:000345545100002
Keywords: seafloor massive sulfides, hydrothermal activity, magmatic input, back-arc basins
Research affiliation: OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-MUHS Magmatic and Hydrothermal Systems > Marine Mineralische Rohstoffe
Kiel University
OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-MUHS Magmatic and Hydrothermal Systems
OceanRep > The Future Ocean - Cluster of Excellence
Refereed: Yes
DOI etc.: 10.2113/econgeo.109.8.2079
ISSN: 0361-0128
Projects: Future Ocean
Date Deposited: 10 Nov 2014 12:08
Last Modified: 07 Mar 2017 08:01
URI: http://eprints.uni-kiel.de/id/eprint/25998

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...