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ABSTRACT
Workload generation is essential to systematically evaluate
performance properties of application systems under con-
trolled conditions, e.g., in load tests or benchmarks. The
definition of workload specifications that represent the real
workload as accurately as possible is one of the biggest chal-
lenges in this area. This paper presents our approach for the
modeling and automatic extraction of probabilistic work-
load specifications for load testing session-based application
systems. The approach, called Wessbas, comprises (i.) a
domain-specific language (DSL) enabling layered modeling
of workload specifications as well as support for (ii.) au-
tomatically extracting instances of the DSL from recorded
sessions logs and (iii.) transforming instances of the DSL to
workload specifications of existing load testing tools. During
the extraction process, different groups of customers with
similar navigational patterns are identified using cluster-
ing techniques. We developed corresponding tool support
including a transformation to probabilistic test scripts for
the Apache JMeter load testing tool. The evaluation of the
proposed approach using the industry standard benchmark
SPECjEnterprise2010 demonstrates its applicability and the
representativeness of the extracted workloads.

Categories and Subject Descriptors
C.4 [Performance of Systems]: measurement techniques,
modeling techniques

1. INTRODUCTION
For essentially any measurement-based software performance
evaluation activity—e.g., load, stress, and regression test-
ing, or benchmarking—it is necessary to expose the system
under test (SUT) to synthetic workload [3, 5, 6, 7], i.e., au-
tomatically generating requests to system-provided services.
Workload generation tools—also called workload drivers—

are used to emulate a multitude of concurrent system users
based on workload specifications, ranging from manually de-
fined scenarios over recorded traces to analytical models [1].
This paper focuses on analytical model-based workload gen-
eration for session-based systems, i.e., systems that are used
by users in time-bounded sessions of interrelated requests
and think times between subsequent requests [8].

Approaches have been proposed for specifying and generat-
ing workloads for this type of systems (e.g., [6, 7, 8]). How-
ever, one of the biggest challenges is how to obtain workload
specifications that produce workload characteristics similar
to a system’s production usage profile, e.g., arrival rates of
sessions and requests to system-provided services. Further,
the extraction and specification of workloads strongly de-
pends on the used workload generation tool. Because of that
the workload must be extracted for each tool and specified
into a specific structure.

In response to these challenges, this paper presents our Wess-
bas1 approach for specifying and extracting probabilistic
workloads for session-based application systems. A domain-
specific language (DSL), called Wessbas-DSL, is introduced
which enables the system- and tool-agnostic modeling of
these workload specifications. Recorded session logs from
the systems are used as basis for the automatic extraction
of Wessbas-DSL instances. Different groups of customers
showing similar navigational patterns are identified during
the creation of these instances. Wessbas-DSL instances
are transformed to workload specifications for load genera-
tion tools. Finally, a transformation to the common load
testing tool Apache JMeter, including the Markov4JMeter
extension developed in our previous work [14], is presented
in this paper. Figure 1 provides an overview of the Wessbas
approach.

To summarize, the contribution of this paper is our Wess-
bas approach for automatic extraction of probabilistic work-
load specifications of session-based application systems, com-
prising (i.) a DSL for modeling session-based probabilistic
workload specifications, (ii.) an automatic extraction of DSL
instances from recorded sessions logs including the cluster-
ing of navigational patterns, (iii.) transformations from DSL

1WESSBAS is an acronym for Workload Extraction and
Specification for Session-Based Application Systems
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Figure 1: Overview of the WESSBAS approach

instances to JMeter Test Plans, and (iv.) tool support for
this approach. The tool support serves as an extensible im-
plementation of the approach, including the DSL, the ex-
traction, as well as a proof-of-concept transformation from
the DSL to JMeter Test Plans. Supplementary material for
this paper, including the developed tools, models, and ex-
perimental results, is publicly available online.2

2. BACKGROUND AND RELATED WORK
The approach described in this paper builds on our previ-
ous work on generating probabilistic and intensity-varying
workloads [11, 14] for session-based systems—particularly
the workload modeling formalism that extends the work by
Menascé et al. [8] and Krishnamurthy et al. [6]. This sec-
tion introduces the concepts needed for the remainder of this
paper, including a brief discussion of related work.

The workload modeling formalism (Workload Model) com-
prises two different types of models, which will be detailed
below [14]: (i.) an Application Model, specifying allowed se-
quences of service invocations and SUT-specific details for
generating valid requests; and (ii.) a weighted set of Behav-
ior Models, each providing a probabilistic representation of
user sessions in terms of invoked services and think times
among subsequent invocations. Additionally, the Workload
Model includes a function specifying the number of active
sessions during the workload generation execution. We de-
veloped a publicly available extension, called Markov4JMeter
[14], for the well-known load generator Apache JMeter, al-
lowing to define and execute these Workload Models.

2http://markov4jmeter.sf.net/valuetools14/

The Application Model is a two-layered hierarchical finite
state machine (FSM), consisting of a Session Layer and a
Protocol Layer. Inspired by the work by Krishnamurthy
et al. [6], the Session Layer is a finite state machine, in which
states refer to system-provided services and allowed transi-
tions among these–possibly labeled with guards and actions.
A guard is a boolean expression, defining the condition un-
der which the related application transition fires. An action
is a list of statements to be executed, in case the related ap-
plication transition fires. For each Session Layer state, the
Protocol Layer contains an associated FSM, which models
the sequence of protocol-level requests to be executed when
the Session Layer state is executed. The transitions define
the valid sequences from one state to another.

A Behavior Model roughly corresponds to the Customer Be-
havior Model Graphs (CBMGs) introduced by
Menascé et al. [8]. A Behavior Model BA is defined as a
tuple (S ∪ {$}, P, z0, ftt). S specifies the set of states con-
tained in the Behavior Model with initial state z0 ∈ S and
exit state $. P = [pi,j ] is an n × n-matrix of transition
probabilities, with n = |S ∪ {$}|. A matrix entry pi,j de-
fines the probability for a transition from state i to state
j. The distribution function ftt specifies the think time as-
sociated with a transition. Think times can, for instance,
be modeled by using random values. The Behavior Mix is
a set {(B0, r0), . . . , (Bm−1, rm−1)}, which assigns a relative
frequency ri to the Behavior Model Bi. A tuple (Bi, ri) in-
dicates that sessions that correspond to the Behavior Model
Bi are generated with a relative frequency of ri ∈ [0, 1]. Dur-
ing the workload generation process to a SUT, the Behavior
Mix determines the user type to be emulated next by select-
ing the corresponding Behavior Model based on the assigned
relative frequencies.

In the proposed approach, workload specifications represent-
ing the measured usage profiles of session-based systems are
extracted. A similar approach, yet focusing on the afore-
mentioned CBMGs, has been proposed by Menascé et al. [7,
8]. The authors extract CBMGs from HTTP server logs,
including K-means clustering to identify CMBGs for similar
types of users. In contrast, in our work an advancement of
the K-means algorithm, called X-means is applied.

Our approach focuses on the specification of the behavior of
users and offers basic support for modeling workload intensi-
ties. An approach focusing on the definition of the workload
intensities can be found in [13]. It allows a DSL-based def-
inition of variable and dynamic load profiles and workload
scenarios over time.

3. WESSBAS-DSL
The Wessbas domain-specific language (DSL), referred to
as Wessbas-DSL, follows the Markov4JMeter workload mod-
eling formalism [14] introduced in the previous section and
therewith denotes a language for expressing such models.
In our approach, the Wessbas-DSL is used as an inter-
mediate language between the construction of SUT-specific
but tool-agnostic workload models on the one side, and the
generation of corresponding inputs to load testing tools on
the other side. The Wessbas-DSL is implemented as an
Ecore-based meta-model, using the benefits and tool support
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Figure 2: Overview of the Wessbas-DSL

of the widely spread Eclipse Modeling Framework (EMF).3

The meta-model is enriched with a comprehensive amount of
constraints (specified in the common Object Constraint Lan-
guage, OCL), for checking the validity of model instances.
The Wessbas-DSL structure offers a high degree of flexi-
bility and extensibility. The remainder of this section intro-
duces the core concepts of the Wessbas-DSL. Details are
also provided by Schulz [10].

As a language for the Markov4JMeter workload modeling
formalism, the Wessbas-DSL includes the essential compo-
nents of that model, in particular the Application Model,
the (Behavior) Mix of Behavior Models, and the workload
intensity, as introduced in Section 2. Figure 2a gives an
overview of the Wessbas-DSL class structure.

The representation of the Application Model corresponds
to the two-layered structure of that component, including
FSMs for the Session Layer and the Protocol Layer as well.
States of the Session Layer FSM, shortly referred to as Ap-
plication States, are associated with services and Protocol
Layer FSMs. States of the Protocol Layer FSMs are as-
sociated with protocol-specific requests, which might be of
type HTTP, Java, JUnit, BeanShell, SOAP, etc.; the set of
currently supported request types can be extended easily by
deriving additional subclasses from the common base class.
Mention should be made of the difference between properties

3http://www.eclipse.org/modeling/emf/

and parameters of a request: properties correspond to the
information which is required for sending a request, e.g., do-
main, path, or port number of a targeted server; parameters
denote values to be sent with the request, e.g., input data
for a web form. Behavior Models are modeled as FSMs, with
(Markov) States being associated with services. Figure 2b il-
lustrates the class structure of Behavior Models. Transitions
are labeled with probabilities and think times, whereas think
times follow a certain type. Currently supported think times
are of type Gaussian, that is, they underlie a normal distri-
bution, indicating mean and (standard) deviation values as
parameters. Exit states are modeled explicitly, as they are—
in contrast to Markov States—not associated with services.
Each Behavior Model is associated with a relative frequency,
stored as a double value in a dedicated class. These frequen-
cies are contained in the Behavior Mix, whose corresponding
class denotes a further component of the workload model.
Session Layer and Protocol Layer FSMs are modeled analo-
gous to Behavior Models, with transitions being labeled with
guards and actions. The formula for the workload intensity
is stored as a string attribute in a dedicated class that also
serves as a base class for all types of workload intensity. This
facilitates a simple installation of according formulas, which
might be provided by appropriate tools (e.g., [13]).

Even though the Wessbas-DSL is independent of specific
testing tools, it includes all core information required for
generating workload specifications that build on the
Markov4JMeter workload modeling formalism. In this pa-
per, we exemplify this by generating JMeter Test Plans
through passing Wessbas-DSL models as input to a trans-
formation tool. This will be further discussed in Section
5. The implementation of the Wessbas-DSL as an Ecore
meta-model offers the benefits of EMF tools such as EMF
Form Editors or serialization support. In particular, Wess-
bas-DSL instances can be viewed, validated, and modified
in an editor, before being passed as input to any transfor-
mation process. The EMF Form Editor offers a constraint
Live-Validation option, which facilitates the maintenance of
Wessbas-DSL models. The extensibility of the Wessbas-
DSL is given through its class structure: additional types of
workload intensity, requests, or think times can be simply
implemented by deriving appropriate subclasses from the
related base classes.

4. EXTRACTING WESSBAS-DSL INSTANCES
The extraction of Wessbas-DSL instances is based on so-
called session logs obtained from raw session information,
recorded from a running application system. Raw session
information is usually provided by a request log generated by
monitoring facilities, comprising the associated requests to
system-provided services with a session identifier and times-
tamps for the request and completion time. A typical ex-
ample is the HTTP request log provided by common web
servers [8], or tracing information obtained from application-
level monitoring tools [15]. The session log groups the re-
quests by the session identifier, giving access to the sequence
and timing information of subsequent service requests within
a session. We will not detail the process of obtaining session
logs from request logs any further but refer to existing works
[8] and assume that a session log in the Wessbas format
is available. The remainder of this section details the two-
step procedure to obtain a Wessbas-DSL instance, compris-



ing the (i.) clustering-based extraction of the Behavior Mix
(Section 4.1), and the (ii.) generation of a complete Wess-
bas-DSL instance from the Behavior Mix (Section 4.2).

4.1 Clustering-Based Behavior Mix Extraction
During the transformation of a session log to a Wessbas-
DSL instance, the Behavior Mix is determined by identifying
different groups of customers with similar navigational pat-
terns. As proposed in [8], clustering methods can be used to
support this task. The identification of different customer
groups has several advantages. First, the system can be
optimized upon these navigational patterns. Further, the
impact of different Behavior Mixes on the performance can
be evaluated, e.g., investigating the performance impact of
an increased fraction of heavy buyers. To reduce the com-
plexity and to increase the comprehensibility of the resulting
Behavior Mix, the goal of the clustering is to obtain a rela-
tive small number of clusters.

In this paper, we focus on clustering with the centroid-based
X-means algorithm, which is an advancement of the well-
known K-means algorithm [9]. The advantage of X-means
over K-means is, that it is not mandatory to specify the num-
ber of clusters K in advance by the user. The user provides a
minimum and a maximum number of resulting clusters and
the algorithm determines how many clusters are best suited.
The evaluation of K-means clustering is very costly as the
results of the K-means must repeatedly be evaluated with
different numbers of K [2]. Further, the X-means algorithm
scales better and the risk of finding local minima is lower.
The X-means clustering algorithm is integrated into our pro-
posed approach using the data mining framework Weka [4].
Other algorithms can be integrated accordingly.

Input instances for the clustering are absolute Behavior Mod-
els, each representing a n × n-matrix of absolute transition
frequencies of one user session. Think times are not part of
the clustering as they have no impact on the navigational
patterns. Each matrix is transformed into a vector, as Weka
cannot handle matrices as clustering input. Therefore, the
values of a matrix is transformed into a vector by concate-
nating the rows of the matrix. In a first step, a central vec-
tor, called centroid, is determined randomly for each clus-
ter. Each centroid represents a cluster and is the mean of
the instances in that cluster. Then, the clustering algorithm
iterates several times over the dataset and assigns instances
to the nearest cluster centroid, until no instance changes the
cluster anymore.

The distance between the instances is calculated using the
Euclidean distance metric. During the calculation of a dis-
tance, the attributes of the instances can be normalized to
a value between zero and one. Without data normalization,
attributes with highest variance are driving the clustering.
That means in our case, that high transition counts have a
high influence on the clustering. In order to figure out the
best settings, both the normalized and the non-normalized
Euclidean distance will be evaluated in Section 6.3.

Having executed the clustering, each attribute of a centroid
represents the mean of the respective attribute values of all
instances within this cluster. As a result, the centroids rep-
resent the absolute Behavior Model of the corresponding

cluster. Think times per cluster centroid are determined by
calculating the sum of the think times per transition of the
respective cluster instances. Finally, the resulting Behavior
Mix is calculated like proposed in [8]. It consists of the (rel-
ative) Behavior Models, the mean think times per transition
and the relative frequencies of the Behavior Models.

4.2 Generating WESSBAS-DSL Instances
The next task is to transform the extracted Behavior Mod-
els and the determined Behavior Mix to a valid Wessbas-
DSL instance, which can be further transformed to any test
script format. Therefore, our dedicated Java-based imple-
mentation, namely Wessbas-DSL Model Generator (Fig-
ure 1), performs the following three steps: (i.) construction
of an Application Model, based on SUT-specific states and
transitions, (ii.) integration of the determined Behavior Mix
including the extracted Behavior Models, and (iii.) integra-
tion of the workload intensity definition.

The construction of an Application Model builds on SUT-
specific information, particularly validness of service exe-
cution sequences for the Session Layer FSM and protocol-
specific information for the Protocol Layer FSMs. The range
of such information differs as well as the format it might be
provided in; consequently, extensions might be necessary. In
our approach, the Behavior Model Extractor tool (Figure 1)
outputs a list of all available services associated with any
states of Behavior Models. (Note that SUT-specific Behav-
ior Models are defined on a common set of services.) A small
script converts this list into a format that can be processed
by the Wessbas-DSL Model Generator. This information
can be enriched with transition specifications; currently, our
script generates all possible transitions between services, as-
suming all sequences of service executions are valid. In par-
ticular, neither transition guards nor actions are considered.

After reading the appropriately-formatted input data, the
Wessbas-DSL Model Generator builds a corresponding Ses-
sion Layer FSM and assigns Protocol Layer FSMs to the
Markov States. Assuming that a (virtual) user provides
valid input only, the structure of our Protocol Layer FSMs
remains trivial with exactly one Protocol State per FSM,
indicating exactly one request being sent in a Markov State.
A DSL that allows the definition of more complex, protocol-
specific FSMs, e.g., failed user logins, denotes a future work
issue.

The integration of Behavior Mix and Behavior Models in-
cludes the construction of corresponding Wessbas-DSL frag-
ments. As the Application Layer includes all available ser-
vices, corresponding Behavior Models can be derived, to be
equipped with probabilities and think times provided by the
extracted Behavior Models. Finally, the workload intensity
is read as a formula string from a properties file, to be in-
cluded into the resulting model. For further processing, the
resulting Wessbas-DSL model is serialized to an XMI file,
using dedicated Ecore techniques. That file can be loaded
into an EMF Form Editor to be validated and analyzed,
before being passed to the next transformation module.

5. GENERATING JMETER TEST PLANS
The final task of the extraction process is to transform a
given Wessbas-DSL instance into a corresponding JMeter



Table 1: Mapping of Wessbas-DSL concepts to
(Markov4)JMeter elements

Wessbas-DSL Markov4JMeter Elements

Session Layer FSM Markov States (+ outgoing transitions)
Protocol Layer FSMs JMeter Elements (Markov State children)
Workload Intensity MSC (Session Arrival Controller)
Behavior Mix MSC (frequency table)
Behavior Models MSC (frequency table) → CSV-files

MSC = Markov Session Controller

Test Plan. Our Java-based implementation, namely Test
Plan Generator (Figure 1), reads a serialized Wessbas-DSL
instance from file and constructs a further XMI structure,
which can be processed by the JMeter tool. The XMI out-
put is generated via the JMeter API and denotes a JMeter-
typical tree structure of Test Plan elements, including Mar-
kov4JMeter-specific elements, namely Markov States and
Markov Session Controller, that are provided by the Mar-
kov4JMeter add-on for JMeter. The core transformation
process builds on a mapping between Wessbas-DSL con-
cepts and (Markov4)JMeter Test Plan elements. An over-
view of the underlying mappings is given in Table 1.

A Session Layer FSM in the Wessbas-DSL is mapped to a
corresponding set of Markov States in JMeter. Each Markov
State includes its individual set of outgoing transitions with
guards and actions, for defining the validity of state execu-
tion sequences. The name of a Markov State in the resulting
JMeter Test Plan corresponds to the name of the state’s as-
sociated service in the Wessbas-DSL instance. Protocol
Layer FSMs are modeled as child elements of Markov States
in the tree-structured result. They are constructed with the
use of JMeter controllers and samplers as well, according
to their related Wessbas-DSL structure. The workload in-
tensity is stored as a formula string in the Session Arrival
Controller sub-component of a Test Plan’s (unique) Markov
Session Controller. That controller additionally includes a
table for Behavior Mix frequencies, to be filled with accord-
ing values of the input Wessbas-DSL instance. Behavior
Models are stored separately—indicated by a separation line
in Table 1—in CSV-files, which are referred by the frequency
table of the Markov Session Controller.

Besides the Test Plan elements that result from the core
transformation process for a given Wessbas-DSL instance,
several JMeter elements are added to a generated Test Plan
by default. This step is required for making a Test Plan’s
structure accessible for the JMeter tool and providing addi-
tional functionality, such as handling of HTTP session cook-
ies. Currently, the Test Plan structure is predefined, tar-
geting HTTP-based tests only; an appropriate mechanism
for specifying alternative structures, particularly for differ-
ent types of requests, denotes a future work issue.

6. EVALUATION
In this evaluation, we apply our proposed extraction ap-
proach and tooling to the industry-standard benchmark
SPECjEnterprise2010.This serves as an investigation of (i.)
the practicality of the approach and tooling support and (ii.)
the representativeness of the extracted workload specifica-
tions. With respect to (ii.) we particularly investigate the
following two research questions: (RQ 1) How accurately do

the clustering results match the input Behavior Mix? and
(RQ 2) What is the impact of the clustering results on the
workload characteristics? Section 6.1 describes the exper-
imental setting. The SPECjEnterprise2010 deployment is
explained in Section 6.2. The results for RQ 1 and RQ 2 are
detailed in Sections 6.3 and 6.4.

6.1 Evaluation Methodology
An instrumented version of SPECjEnterprise20104 is exe-
cuted with three different Behavior Mixes to obtain a ses-
sion log, from which instances of the Wessbas-DSL are ex-
tracted and transformed into JMeter Test Plans. For the
Behavior Model extraction we applied different configura-
tions of the X-means clustering. A basic Application Model
is automatically generated from the obtained Behavior Mod-
els. Its Session Layer comprises the superset of all states
from the Behavior Models, assuming that all transitions be-
tween all states are allowed (no guards and actions). The
Protocol Layer comprises a mockup HTTP request per state.
The transformation from the instances to JMeter Test Plans
is performed according to Section 4. In order to measure
the characteristics of extracted workload models, we devel-
oped a web application that is instrumented according to the
SPECjEnterprise2010. Hence, the same session log analysis
infrastructure can be applied to both the session informa-
tion obtained from the SPECjEnterprise2010 runs and the
JMeter runs for the synthetic workloads of the extracted
workload specifications. The reason why we do not execute
the extracted workload against the SPECjEnterprise2010 is
that currently input parameters for the workload are not
extracted automatically.

The accuracy of the clustering (RQ 1) is evaluated based on
the fraction of misclassified sessions over all classifications of
the clustering for a benchmark run. The impact of the clus-
tering on the workload characteristics (RQ 2) is evaluated
based on (i.) two session-based metrics, session length as
number of requests per sessions and number of distinct ses-
sion types, as well as (ii.) a request-based metric, namely the
relative invocation frequency of all request types. Note that
due to the nature of the SPECjEnterprise2010 workload we
do not consider timing-related metrics such as think times or
arrival rates, even though they are correctly extracted and
executed by our approach. Conclusions about the arrival
rates of requests can be drawn by looking at the invocation
frequencies of requests.

6.2 SPECjEnterprise2010 Deployment
SPECjEnterprise2010 is a Java EE application representing
a business case that combines customer relationship manage-
ment (CRM), supply chain management (SCM), and manu-
facturing. It includes a workload specification and a dataset
needed for the execution of load tests. The workload is gen-
erated by the Faban Harness and Benchmark Driver.5 The
benchmark consists of three different application domains,
namely Orders domain (CRM), Manufacturing domain, and

4
SPECjEnterprise is a trademark of the Standard Performance Evalu-

ation Corp. (SPEC). The SPECjEnterprise2010 results or findings in
this publication have not been reviewed or accepted by SPEC, there-
fore no comparison nor performance inference can be made against
any published SPEC result. The official web site for SPECjEnter-
prise2010 is located at http://www.spec.org/osg/Enterprise2010.
5http://java.net/projects/faban/
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Supplier domain (SCM). In this work we consider only
the Orders domain, which represents a typical web-based
application that provides e-commerce functionality to the
customers—in this case automobile dealers. The customers
are able to purchase and sell cars, to manage their accounts
and dealership inventory, and to browse the catalogue of
cars. The Orders domain represents the SUT.

6.2.1 Workload Description
SPECjEnterprise2010 defines three different transaction types
which are executed by automobile dealers: Browse (B), Man-
age (M), and Purchase (P). Within Browse, the benchmark
driver navigates to the catalogue of available cars and browses
the catalogue for a constant number of times. Manage de-
scribes a scenario where open orders are canceled and ve-
hicles are sold. In the more complex transaction type Pur-
chase, orders are placed and immediately purchased or de-
ferred. The shopping cart is either cleared or items are re-
moved one by one until only one item remains. Each of these
transaction types is a sequence of HTTP requests. In to-
tal, 13 different HTTP request types are defined. Within the
transactions, no think times are defined, i.e., each HTTP ac-
tion is executed directly after its previous request has been
completed. Therefore, the evaluation of think times extrac-
tion is out of scope for this paper. Figure 3 depicts the
structure of the three transaction types as Behavior Models
obtained by applying our Wessbas extraction approach.

In the original benchmark workload, automobile dealers log
in to the system, execute multiple instances of the three
transactions types, and log out. Each of the three trans-
action types is executed with a specified probability. The
standard transaction mix is 50% Browse, 25% Manage, and
25% Purchase. We modified the dealer driver such that each
transaction starts with a login and ends with a logout. This
way each transaction corresponds to a unique session, and
the transaction mix corresponds to the Behavior Mix.

6.2.2 Benchmark Execution and Monitoring
Three different transaction mixes are used to evaluate the
proposed approach. For each mix, one of the transaction
types is executed with a probability of 50% and the other
two with 25% each. A load of 800 concurrent users is exe-
cuted, resulting in a moderate CPU utilization of the SUT
of approximately 40%. Each benchmark run is executed for
ten minutes after a four minute ramp-up phase and before
a four minute ramp-down phase.

In order to obtain the raw session information, the SUT
was instrumented using Kieker [15]. For each request the
requested URL, the query string, the session ID, and the
server-side entry and exit timestamp are recorded. After-
wards, the raw log data is transformed to a session log.
During the transformation, the sessions within the ramp-up
and ramp-down phase are not taken into account. In order
to be able to evaluate the clustering results of the trans-
action types, the name of the transaction type is added as
additional parameter to the login HTTP action.

6.3 Accuracy of Clustering
The evaluation of clustering accuracy (RQ 1) is split into
two steps. In the first step, the accuracy of the clustering
is determined based on the assumption that the number of
resulting clusters is known in advance. For this reason, the
number of resulting clusters is fixed to three. As the num-
ber of clusters is usually not known in advance, we let the
X-means algorithm determine the number of clusters in a
second step. As the seed value for the random selection of
the initial centroids can have a high impact on the clustering
results, multiple clustering runs with different seed values
between one and twelve are executed. Afterwards, the run
with the lowest sum of squared error value [9] is selected.

The results of the clustering are presented in Table 2. For
each transaction mix (TM), the clustering shows for each
transaction type (T) the cluster (Cx) where a transaction is
assigned to, and the percentage of misclassified (MC) trans-
actions. The left side shows the results of exactly three pre-
defined clusters (step one); the right side shows the results
letting X-means determine the number of clusters between
two and twenty (step 2). The number of transactions (N)
clustered for each transaction mix is around 61, 000.

The results using exactly three clusters indicate that the
clustering using normalized Euclidean distance (NED) is
able to cluster all transactions correctly (100%) resulting in
the Behavior Models shown in Figure 3. The clustering using
Euclidean distance (ED) without normalization classifies the
transactions Browse and Manage correctly, whereas a frac-
tion of transactions of type Purchase is assigned mistakenly
to the same cluster as the Manage transactions. In the sec-
ond transaction mix, the fraction of Purchase transactions
is higher than in the other mixes. Hence, the percentage of
misclassified transactions is with 15.98% relatively high.

The clustering without predefining the correct number of
clusters, results in two clusters using ED and four clusters
using NED. As clustering with ED always merges transac-
tions of type Purchase and Manage, the percentage of mis-
classified transactions is around 25% for all mixes. It is
assumed that the transaction type with the lower number of



Table 2: Clustering Results

X-means (min 3 cluster, max 3 cluster) X-means (min 2 cluster, max 20 cluster)

ED NED ED NED

TM T C1 C2 C3 MC C1 C2 C3 MC C1 C2 MC C1 C2 C3 C4 MC N

50 B 0 0 31,060

2.91%

0 31,060 0

0%

0 31,060

24.62%

0 0 0 31,060

1.03% 61,50025 M 15,298 0 0 15,298 0 0 15,298 0 632 14,666 0 0

25 P 1,789 13,353 0 0 0 15,142 15,142 0 0 0 15,142 0

25 B 15,091 0 0

15.98%

15,091 0 0

0%

0 15,091

24.96%

0 15,091 0 0

15.30% 60,08925 M 0 0 15,000 0 15,000 0 15,000 0 0 0 707 14,293

50 P 0 20,397 9,601 0 0 29,998 29,998 0 21,513 8,485 0 0

25 B 0 15,231 0

2.99%

15,231 0 0

0%

0 15,231

25.16%

0 0 0 15,231

1.86% 61,11850 M 30,510 0 0 0 30,510 0 30,510 0 29,375 1,135 0 0

25 P 1,824 0 13,553 0 0 15,377 15,377 0 0 0 15,377 0

instances merged within one cluster count as missclassified.
The clustering using NED always correctly classifies Browse
transactions. Manage transactions are always split into two
clusters whereas Purchase is only split into two clusters in
the second transaction mix. Hence, the percentage of mis-
classified transactions is again relatively high (15.3%) in the
second transaction mix.

Transactions of type Browse seem to be homogeneous in a
way that they were clustered correctly among all clustering
runs. This can be explained as Browse transactions are exe-
cuted with a constant number of actions without probabilis-
tic behavior. NED is better suited to cluster the different
transaction types than the non-normalized version. The nor-
malization has the effect that high transaction counts and
therefore also the length of the sessions has a lower impact
on the clustering. Thus, the structure of the transactions
in terms of the number of different HTTP requests grows in
significance. As each of the three transaction types consist
of different HTTP request types (except for login, home and
logout), the clustering results are significantly better.

6.4 Accuracy of Workload Characteristics
To evaluate the accuracy of the extracted workload speci-
fications (RQ 2), we compare the server-side session-based
and request-based metrics mentioned in Section 6.1 for the
original measurements with the corresponding metrics ob-
tained by executing extracted workload specifications using
JMeter. Due to space limitations, we present only the re-
sults of the original benchmark Behavior Mix (25% P, 50%
B, and 25% M), using the X-means clustering algorithms
results with 2 (ED), 3 (NED), and 4 (NED) clusters (entries
for the bottom TM in Table 2). The original workload in-
cludes 61, 500 sessions and 847, 927 HTTP requests. These
numbers served as an approximate stopping criteria during
the execution of the synthetic workload with JMeter (cf.
Figure 4b and Figure 5b).

6.4.1 Session Length and Distinct Sessions
Statistics about the session length distributions of the origi-
nal and the three synthetic workloads are listed in Figure 4.
Looking only at the mean values and the 0.95 confidence in-
terval (Figure 4b), one may conclude that the session length
distributions of the three synthetic workloads exactly match
the distribution of the original workload. However, partic-
ularly the violin plot (Figure 4a) indicates that the syn-
thetic distributions are similar but differ considerably from
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(a) Violin plot (combination of box and density plot)

Min. Q1 Med. Mean CI0.95 Q3 Max. N

Orig. 4 10 17 14.23 [14.19,14.26] 17 26 61,500
ED-2 4 7 10 14.24 [14.15,14.33] 18 147 60,957
NED-3 4 7 10 14.24 [14.15,14.33] 18 130 62,054
NED-4 4 7 10 14.26 [14.17,14.35] 18 166 59,971

(b) Summary statistics

Figure 4: Session length statistics for the original workload
(Orig.) and the synthetic workloads (ED-2, NED-3, NED-4)

the original workload. The quartile-based statistics in Ta-
ble 4b confirm this observation. It can be observed that for
the synthetic workloads, very long sessions are generated.
While for the original workload the longest sessions com-
prise 26 requests, the synthetic sessions reach maximums of
147, 130, and 166. Looking at the individual session lengths,
11% of the synthetic sessions are longer than the longest ses-
sions of the original workload.

In the original workload, we identified 78 distinct sessions.
The number of distinct sessions in the synthetic workloads is
considerably higher, namely 2, 126 (2 clusters), 2, 144 (3 clus-
ters), 1, 996 (4 clusters). The relatively low number of dis-
tinct session types is caused by the fact that the original
SPECjEnterprise2010 workload contains only few probabilis-
tic elements, which are all bounded in the number of max-
imum iterations. Hence, the maximum number of possible
distinct sessions is countable. After having described the
session length distributions of the synthetic workloads, the
high number of distinct sessions is not surprising. Inspect-
ing the structure of the synthetic sessions, we observed the
following recurring patterns: (i.) sell inventory+, (ii.) inven-
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(a) Relative counts (common to all workloads)

Request Orig. ED-2 NED-3 NED-4 Rel.

1 add to cart 63,761 63,316 64,250 61,838 0.07
2 cancel order 632 607 634 591 0.00
3 clear cart 6,047 5,941 6,140 5,843 0.01
4 defer order 6,782 6,799 6,863 6,651 0.01
5 home 59,934 60,957 62,054 59,971 0.07
6 inventory 30,596 30,212 31,378 29,808 0.03
7 login 61,500 60,957 62,054 59,971 0.07
8 logout 59,934 60,957 62,054 59,971 0.07
9 purchase cart 8,360 8,328 8,351 8,139 0.01

10 remove 3,027 2,993 3,044 3,064 0.00
11 sell inventory 66,679 65,413 67,691 64,794 0.08
12 shopping cart 9,074 8,934 9,184 8,907 0.01
13 view items 498,601 492,675 499,983 485,611 0.57∑

874,927 868,089 883,680 855,159 1.00

(b) Absolute and relative counts

Figure 5: Request count statistics

tory+, (iii.) view items+, (iv.) (view items, add to cart)+,
(v.) (view items, add to cart, shopping cart, clear cart)+.
These patterns can be explained by the corresponding tran-
sitions with high probabilities already indicated by the prob-
abilities of the original workload depicted in Figure 3.

Considering the setting for SPECjEnterprise2010, the fol-
lowing conclusions can be drawn about the impact of the
clustering results on the session-based metrics session length
and number of distinct session types. No statistically signif-
icant differences between the synthetic workloads for 2, 3,
and 4 clusters can be observed. Both the session length dis-
tributions and the number of distinct sessions deviate from
the characteristics of the original workload. The deviation of
the session length distributions is mainly caused by a num-
ber of synthetic long sessions. The mean value shows no
statistically significant difference.

6.4.2 Request Counts
Figure 5 depicts statistics about the frequency of invoked
requests. Based on the absolute numbers of requests to the
13 SPECjEnterprise2010 request types. We computed the
relative frequencies for the original workload and the three
synthetic workloads. An exact match of the relative fre-
quencies could be observed. That is, the deviation, e.g., in
form of the sum of squared errors, is zero. Hence, from the
server-perspective, the synthetic workloads provide repre-
sentative workloads in terms of the distributions of requests.
A barplot, which looks the same for each of the four work-
loads, is shown in Figure 5a.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented our Wessbas approach for the
systematic extraction and specification of probabilistic work-
loads for session-based systems including a transformation
to the load testing tool Apache JMeter. To address the chal-
lenge of specifying workloads for different workload tools, we
first introduced a domain-specific language that describes
the structure of a workload in a generalized way. Addition-
ally, we demonstrated how groups of customers with similar
behavioral patterns can be identified using clustering algo-
rithms. Finally, the evaluation with the standard industry
benchmark SPECjEnterprise2010 demonstrated the practi-
cality and high accuracy of the proposed approach.

As future work, we plan to further automate the genera-
tion of Application Models, including Protocol Layer and
test data, as well as automatic learning of guards and ac-
tions [12]. We want to extend the set of supported logging
formats and load testing tools. The measurement-based
approach will be combined with model-based performance
evaluation approaches [16] by generating workload speci-
fications of performance models from WESSBAS-DSL in-
stances. Moreover, the evaluation of other clustering algo-
rithms and the integration of approaches for the generation
of varying workload intensities [13] will be investigated.
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