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Abstract: Monitoring of a software system provides insights into its runtime behavior,
improving system analysis and comprehension. System-level monitoring approaches
focus, e.g., on network monitoring, providing information on externally visible sys-
tem behavior. Application-level performance monitoring frameworks, such as Kieker
or Dapper, allow to observe the internal application behavior, but introduce runtime
overhead depending on the number of instrumentation probes.

We report on how we were able to significantly reduce the runtime overhead of the
Kieker monitoring framework. For achieving this optimization, we employed micro-
benchmarks with a structured performance engineering approach. During optimiza-
tion, we kept track of the impact on maintainability of the framework. In this paper, we
discuss the emerged trade-off between performance and maintainability in this context.
To the best of our knowledge, publications on monitoring frameworks provide none or
only weak performance evaluations, making comparisons cumbersome. However, our
micro-benchmark, presented in this paper, provides a basis for such comparisons.

Our experiment code and data are available as open source software such that
interested researchers may repeat or extend our experiments for comparison on other
hardware platforms or with other monitoring frameworks.

1 Introduction

Software systems built on and around internal and external services are complex. Their

administration, adaptation, and evolution require a thorough understanding of their struc-

ture and behavior at runtime. Monitoring is an established technique to gather data on

runtime behavior and allows to analyze and visualize internal processes.

System monitoring approaches, such as Magpie [BIMN03] or X-Trace [FPK+07], are

minimal invasive and target only network and operating system parameters. Although

these approaches have the advantage of minimal performance impact, they are not able to

provide a view of internal application behavior.

A solution to these limitations is application level monitoring, as provided by SPASS-

meter [ES14], Dapper [SBB+10], or Kieker [vHWH12]. However, application-level mon-

itoring introduces monitoring overhead depending on the number of monitored operations

and the efficiency of the monitoring framework. For a detailed view of a software system’s

internal behavior, monitoring must be all-embracing, causing significant performance im-



Figure 1: UML component diagram of a top-level view on the Kieker framework architecture

pact. While many monitoring frameworks are claiming to have minimal impact on the

performance, these claims are often not backed up with a concise performance evaluation

determining the actual cost of monitoring.

Two of our recent projects, ExplorViz [FWWH13] and iObserve [HHJ+13], use monitor-

ing to evaluate distributed cloud systems. They need detailed information on the internal

behavior of these systems. Therefore, they rely on a high-throughput monitoring frame-

work which is easy to adapt and maintain. Furthermore, the framework must be able to

transport logged data from the observed system components and aggregate it on a remote

analysis system.

The Kieker monitoring framework has been developed in our research group over the past

years. We evaluated this monitoring framework with a micro-benchmark to assess its

capability as high-throughput framework and used a structured performance engineering

approach to minimize its overhead while keeping the framework maintainable.

In this paper, we present our monitoring micro-benchmark MooBench and its application

in a structured performance engineering approach to reduce the monitoring overhead of the

Kieker framework. We report on our exploration of different potential optimization options

and our assessment of their impact on the performance as well as the maintainability and

usability of the framework. While high-throughput is very important to observe distributed

systems, the maintainability trade-off should be minimal. Otherwise the framework may

become unusable for a broader audience, effectively rendering the optimization useless.



In summary, our main contributions are:

• a micro-benchmark for monitoring frameworks,

• an example of a structured performance engineering activity for tuning the through-

put of monitoring frameworks using a micro-benchmark,

• and an evaluation of the trade-off between performance and maintainability in a

high-throughput monitoring framework.

Besides our approach and evaluation, we provide the research community with all sources

to repeat and validate our benchmarks and our results in our download area.1 These down-

loads include our results in a raw data format, statistical analyses, and generated diagrams.

The rest of the paper is organized as follows. In Section 2, we introduce software quality

terms and the Kieker monitoring framework. Our benchmark developed for overhead eval-

uation of monitoring frameworks is presented in Section 3. Our performance tunings and

our evaluations are described in Section 4, Finally, related work is discussed in Section 5,

while we draw the conclusions and present future work in Section 6.

2 Foundations

This paper evaluates performance advances realized for the Kieker framework in conjunc-

tion with their impact on maintainability. For a better understanding of these two charac-

teristics we provide a brief description of the used software quality attributes (Section 2.1)

and an overview of the Kieker framework (Section 2.2) in this section.

2.1 Software Quality

The ISO/IEC 25010 [ISO11] standard, the successor of the well-known ISO/IEC 9126

[ISO01] standard, defines software quality over eight distinct characteristics and 23 sub-

characteristics. In this paper we mainly focus on performance efficiency and maintainabil-
ity supplemented by functional completeness, as these characteristics are used to evaluate

different modifications of our monitoring framework.

Performance efficiency, as defined in [ISO11], comprises time behavior, resource utiliza-
tion, and capacity, as sub-characteristics for the degree of requirement fulfillment. For our

evaluation we focus on processing and response time in combination with throughput.

Maintainability is very important for a monitoring framework to be applicable in different

software projects. It is characterized by modularity, reusability, analyzability, modifiabil-
ity, and testability. However, maintainability, especially if realized by modularization or

generalization, can lead to a reduction in performance. Therefore, optimizations for these

two characteristics are conflicting requirements.

1http://kieker-monitoring.net/overhead-evaluation/



2.2 Kieker Monitoring Framework

The Kieker2 framework [vHWH12, vHRH+09] is an extensible framework for applica-

tion performance monitoring and dynamic software analysis. The framework includes

measurement probes for the instrumentation of software systems and monitoring writers

to facilitate the storage or further transport of gathered data. Analysis plug-ins operate on

the gathered data, and extract and visualize architectural models, augmented by quantita-

tive observations.

In 2011, the Kieker framework was reviewed, accepted, and published as a recommended

tool for quantitative system evaluation and analysis by multiple independent experts of the

SPEC RG. Since then, the tool is also distributed as part of SPEC RG’s tool repository.3

Although originally developed as a research tool, Kieker has been evaluated in several

industrial systems [vHRH+09].

Kieker Architecture

The Kieker framework provides components for software instrumentation, collection of

information, logging of collected data, and analysis of this monitoring data. A top-level

view of its architecture is presented in Figure 1. Each Kieker component is extensible and

replaceable to support specific project contexts.

The general Kieker architecture is divided into two parts: The Kieker.Monitoring com-

ponent for monitoring software systems and the Kieker.Analysis component for analysis

and visualization of gathered data. These two components are connected by a Monitoring
Log or Stream, decoupling the analysis from the monitoring and providing the means to

perform the analysis on a separate system resulting in a reduced performance impact on

the monitored system.

The focus of this paper is on the Kieker.Monitoring component, see the left side in Fig-

ure 1. It is realized by three subcomponents for data collection, monitoring control, and

data delivery. Data collection is performed by MonitoringProbes which are technology

dependent, as they are integrated into the monitored software system. The Monitoring-
Controller plays a central role in the monitoring side of Kieker. To handle record data,

it accepts MonitoringRecords from probes and delivers them to the MonitoringWriter.
Kieker comes with different MonitoringWriters addressing different needs for monitoring

data handling, like logs and streams. Asynchronous MonitoringWriters contain a separate

WriterThread to decouple the overhead of writing from the monitored software system.

In this case, MonitoringRecords are exchanged and buffered via a configurable (block-

ing) queue. All interfaces of Kieker.Monitoring are well defined, allowing to add new

components or to augment functionality in a transparent way.

2http://kieker-monitoring.net
3http://research.spec.org/projects/tools.html



Figure 2: UML sequence diagram for method monitoring with the Kieker framework [WH13]

3 MooBench Benchmark

Benchmarks are used to compare different platforms, tools, or techniques in experiments.

They define standardized measurements to provide repeatable, objective, and comparable

results. In computer science, benchmarks are used to compare, e. g., the performance of

CPU, database management systems, or information retrieval algorithms [SEH03]. In this

paper, we use the MooBench benchmark to measure the overhead caused by monitoring

a method, to determine relevant performance tuning opportunities, and to finally evaluate

the impact of the optimization in the Kieker framework.

In this section, we first introduce the notion of monitoring overhead and provide a partition

into three causes of monitoring overhead (Section 3.1). Next, we provide a benchmark to

measure these portions of monitoring overhead (Section 3.2).

3.1 Monitoring Overhead

A monitored software system has to share some of its resources with the monitoring frame-

work (e. g., CPU-time or memory), resulting in the probe effect [Jai91]. The probe effect

is the influence on the behavior of the system by measuring it. This influence includes

changes to the probabilities of non-deterministic choices, changes in scheduling, changes

in memory consumption, or changes in the timing of measured sections. Here, we take a

look at the overhead causing parts of the probe effect.

Monitoring overhead is the amount of additional usage of resources by a monitored exe-

cution of a program compared to a normal (not monitored) execution of the program. In



Listing 1: MonitoredClass with monitoredMethod()

c l a s s M o n i t o r e d C l a s s {

ThreadMXBean threadMXBean = ManagementFactory

. getThreadMXBean ( ) ;

long moni toredMethod ( long methodTime , i n t r e c D e p t h ) {

i f ( r e c D e p t h > 1) {

re turn t h i s . moni toredMethod ( methodTime , recDepth −1);

} e l s e {

f i n a l long e x i t T i m e = t h i s . threadMXBean

. g e t C u r r e n t T h r e a d U s e r T i m e ( ) + methodTime ;

long c u r r e n t T i m e ;

do {

c u r r e n t T i m e = t h i s . threadMXBean

. g e t C u r r e n t T h r e a d U s e r T i m e ( ) ;

} whi le ( c u r r e n t T i m e < e x i t T i m e ) ;

re turn c u r r e n t T i m e ;

}

}

}

this case, resource usage encompasses utilization of CPU, memory, I/O systems, and so

on, as well as the time spent executing. Monitoring overhead in relation to execution time

is the most commonly used definition of overhead. Thus, in the following, any reference to

monitoring overhead concerns overhead in time, except when explicitly noted otherwise.

3.1.1 Causes of Monitoring Overhead

In Figure 2, we present a simplified UML sequence diagram representation of the control

flow for monitoring a method execution in the Kieker monitoring framework.Although

this diagram is tailored to the Kieker framework, other application level monitoring frame-

works usually have a similar general behavior. As annotated in red color in the diagram,

we propose a separation into three different portions of monitoring overhead while moni-

toring an application [WH12].

These portions are formed by three common causes of application level monitoring over-

head: (1) the instrumentation of the monitored system itself (I), (2) collecting data within

the system, e. g., response times or method signatures, (C), and finally (3) either writing

the data into a monitoring log or transferring the data to an analysis system (W ). These

three causes and the normal execution time of a monitored method (T ) are further detailed

below:

T The actual execution time of the monitoredMethod(), i. e., the time spent executing

the actual code of the method if no monitoring is performed, is denoted as T .



In Figure 2 this time is annotated with a red T . Although sequence diagrams provide

a general ordering of before and after, the depicted length of an execution carries

no meaning. Thus, for reasons of space and clarity, the illustration of the actual

execution time T in the figures is small compared to the sum of the three overhead

timings. However, note that in actual systems the execution time T is often large

compared to the sum of overhead.

I Before the code of the monitoredMethod() in the MonitoredClass is executed,

the triggerBefore() part of the MonitoringProbe is executed. Within the probe,

isMonitoringEnabled() determines whether monitoring is activated or deactivated

for the monitoredMethod(). If monitoring is currently deactivated for the method,

no further probe code will be executed and the control flow immediately returns to

the monitoredMethod(). Besides these operations of the monitoring framework,

I also includes any overhead caused by the used instrumentation. For instance,

when performing aspect-oriented instrumentation with AspectJ, similar calls to our

triggerBefore() are performed internally.

In Figure 2, I indicates the execution time of the instrumentation of the method

including the time required to determine whether monitoring of this method is acti-

vated or deactivated.

C If monitoring of the monitoredMethod() is active, the MonitoringProbe will col-

lect some initial data with its collectData() method, such as the current time and

the method signature, and create a corresponding MonitoringRecord in memory

(duration C1). After this record is forwarded to the MonitoringWriter, the control

flow is returned to the monitoredMethod().

When the execution of the actual code of the monitoredMethod() finished with

activated monitoring, the triggerAfter() part of the MonitoringProbe is executed.

Again, some additional data, such as the response time or the return values of the

method, is collected and another corresponding MonitoringRecord is created in

main memory. Finally, this record is forwarded to the MonitoringWriter, too.

In Figure 2, the time needed to collect data of the monitoredMethod() and to create

the MonitoringRecords in main memory is C = C1 + C2.

W Each created and filled MonitoringRecord r is forwarded to a MonitoringWriter
with the method writeMonitoringData(r). The MonitoringWriter in turn stores

the collected data in an internal buffer, that is processed asynchronously by the

WriterThread into the Monitoring Log/Stream.

Depending on the underlying hardware and software infrastructure and the avail-

able resources, the actual writing within this additional thread might have more or

less influence on the results. For instance, in cases where records are collected faster

than they are written, the internal buffer reaches its maximum capacity and the asyn-

chronous thread becomes effectively synchronized with the rest of the monitoring

framework. Thus, its execution time is added to the caused runtime overhead of W .

In other cases, with sufficient resources available, the additional overhead of the

writer might be barely noticeable [WH12].



Listing 2: Benchmark thread calling monitoredMethod()

M o n i t o r e d C l a s s mc ; / / i n i t i a l i z e d b e f o r e
long s t a r t _ n s , s t o p _ n s ;

f o r ( i n t i = 0 ; i < t o t a l C a l l s ; i ++) {

s t a r t _ n s = System . nanoTime ( ) ;

mc . moni toredMethod ( methodTime , r e c D e p t h ) ;

s t o p _ n s = System . nanoTime ( ) ;

t i m i n g s [ i ] = s t o p _ n s − s t a r t _ n s ;

}

In Figure 2, W = W1 +W2 is the amount of overhead caused by placing the mon-

itoring data in an exchange buffer between the MonitoringWriter and the Writer-
Thread as well as possibly the time of actually writing the collected monitoring

data into a monitoring log or into a monitoring stream.

3.1.2 Measures of Monitoring Overhead

In this paper, we are focussed on improving the monitoring throughput, i. e., the number

of MonitoringRecords sent and received per second, instead of the flat monitoring cost

imposed per MonitoringRecord, i. e., the actual change in a monitored method’s response
time. This response time and the monitoring throughput are related: improving one mea-

sure usually also improves the other one. However, with asynchronous monitoring writers

(as in the case of Kieker and our experiments) the relationship between throughput and

response time can become less obvious.

In order to measure the maximal monitoring throughput, it is sufficient to minimize T
while repeatedly calling the monitoredMethod(). Thus MonitoringRecords are pro-

duced and written as fast as possible, resulting in maximal throughput. As long as the

actual WriterThread is capable of receiving and writing the records as fast as they are

produced (see description of W above), it has no additional influence on the monitored

method’s response time. When our experiments reach the WriterThread’s capacity, the

buffer used to exchange records between the MonitoringWriter and the WriterThread
blocks, resulting in an increase of the monitored method’s response time.

3.2 Our Monitoring Overhead Benchmark

The MooBench micro-benchmark has been developed to quantify the three portions of

monitoring overhead under controlled and repeatable conditions. It is provided as open

source software.4 Although the benchmark and our experiments are originally designed for

the Kieker framework, they can be adapted to other monitoring frameworks by exchanging

the used monitoring component and its configuration.

4http://kieker-monitoring.net/MooBench



Figure 3: Benchmark engineering phases [WH13]

In order to achieve representative and repeatable performance statistics for a contempo-

rary software system, benchmarks have to eliminate random deviations. For instance,

software systems running on managed runtime systems, such as the Java VM (JVM), are

hard to evaluate because of additional parameters influencing the performance, such as

class loading, just-in-time compilation (JIT), or garbage collection [GBE07]. Therefore, a

benchmark engineering process with guidelines to produce good benchmarks is required.

Our benchmark engineering process is partitioned into three phases [WH13] (see Fig-

ure 3). For each phase, a good benchmark should adhere to several common guidelines.

For instance, it should be designed and implemented to be representative and repeat-
able [Gra93, Kou05, Hup09]. Similar guidelines should be followed during the execu-

tion and analysis/presentation of the benchmark [GBE07], i. e., using multiple executions,

a sufficient warm-up period, and an idle environment. Furthermore, a rigorous statistical
analysis of the benchmark results and a comprehensive reporting of the experimental setup

are required in the analysis and presentation phase. Refer to [WH13] for an overview on

our employed guidelines.

In the following, we detail the three benchmark engineering phases of our micro-benchmark

for monitoring overhead. First, we describe our design and implementation decisions to

facilitate representativeness and repeatability. Next, we give guidelines on the execution

phase of our benchmark, focussing on reaching a steady state. Finally, we describe the

analyses performed by our benchmark in the analysis & presentation phase.

3.2.1 Design & Implementation Phase

The architecture of our benchmark setup is shown in Figure 4. It consists of the Bench-
mark System running in a JVM, and an External Controller initializing and operat-

ing the system. The Benchmark System is divided into two parts: First, the Moni-
tored Application, consisting of the Application instrumented by the Monitoring com-

ponent. Second, the Benchmark, consisting of the Benchmark Driver with one or more

active Benchmark Threads accessing the Monitored Application. For benchmarking

the Kieker framework, the Monitoring is realized by the Kieker.Monitoring component

(see Figure 1). For benchmarking of other monitoring frameworks, this component would

be replaced accordingly.

For our micro-benchmark, the Monitored Application is a basic application core, consist-

ing of a single MonitoredClass with a single monitoredMethod() (see Listing 1). This

method has a fixed execution time, specified by the parameter methodTime, and can sim-

ulate recDepth nested method calls (forming one trace) within this allocated execution

time. During the execution of this method, busy waiting is performed, thus fully utiliz-



Figure 4: Architecture of the benchmark setup

ing the executing processor core. The loop of the method cannot be eliminated by JIT

compiler optimizations, thus avoiding common pitfalls in benchmark systems. In order

to correctly simulate a method using the CPU for a period of time despite the activities

of other threads in the system, we use getCurrentThreadUserTime() of JMX’s Thread-
MXBean. The operating system and the underlying hardware of the Benchmark System
have to provide a sufficient accuracy of the method in order to get stable and repeatable

results. In the case of single threaded benchmarks on an otherwise unoccupied system we

could use calls of System.nanoTime() or System.currentTimeMillis() instead.

The Benchmark Driver initializes the Benchmark System, then starts the required num-

ber of Benchmark Threads, and collects and persists the recorded performance data.

One or more concurrently executing Benchmark Threads call the monitoredMethod()
while recording its response time with calls to System.nanoTime() (see Listing 2). Each

thread is parameterized with a total number of calls, as well as the method time and the

recursion depth of each call. The total number of calls has to be sufficiently large to

include the warm-up period and a sufficient portion of the steady state. Execution time

and recursion depth can be utilized to control the number of method calls the monitoring

framework will monitor per second.

The External Controller calls the Monitored Application with the desired parameters

and ensures that the Monitoring component is correctly initialized and integrated into the

Monitored Application.



Each experiment consists of four independent runs, started by the external controller on

a fresh JVM invocation. Each individual portion of the execution time is measured by

one run (see T , I , C, and W in Figure 2). This way, we can incrementally measure the

different portions of monitoring overhead as introduced in the previous Section 3.1. For

instance, we can use this information to guide our optimizations.

1. In the first run, only the execution time of the chain of recursive calls to the moni-
toredMethod() is determined (T ).

2. In the second run, the monitoredMethod() is instrumented with a Monitoring Probe,

that is deactivated for the monitoredMethod(). Thus, the duration T + I is mea-

sured.

3. The third run adds the data collection with an activated Monitoring Probe without

writing any collected data (T + I + C).

4. The fourth run finally represents the measurement of full monitoring with the addi-

tion of an active Monitoring Writer and an active Writer Thread (T + I + C +W ).

In summary, this configurable benchmark design allows for repeatable measurements of

monitoring overhead, that are representative for simple traces.

3.2.2 Execution Phase

The actual benchmark execution is controlled by the provided External Controller. Each

independent experiment run to determine a portion of overhead can be repeated multiple

times on identically configured JVM instances to minimize the influence of different JIT

compilation paths. Furthermore, the number of method executions can be configured to

ensure steady state.

In order to determine the steady state of experiment runs, the benchmark user can analyze

the resulting data stream as a time series of averaged measured timings. Such a typical

time series diagram for experiments with Kieker is presented in Figure 5. To visualize the

warm-up phase and the steady state, invocations are bundled into a total of 1,000 bins. The

benchmark calculates the mean values of each bin and uses the resulting values to generate

the time series diagram.

Our experiments as well as our analyses of JIT compilation and garbage collection logs

of benchmark runs with the Kieker framework on our test platform suggest discarding the

first half of the executions to ensure a steady state in all cases (the grey-shaded part of

Figure 5 illustrates this). We propose similar analyses with other monitoring frameworks,

configurations, or hard- and software platforms to determine their respective steady states.

Furthermore, the Benchmark Driver enforces the garbage collection to run at least once at

the beginning of the warm-up phase.Our experiments suggest that this initial garbage col-

lection reduces the time until a steady state is reached. The regular spikes in the measured

execution times, seen in Figure 5, correspond to additional garbage collections.



Figure 5: Time series diagram of measured timings

Finally, the benchmark user should ensure that the hard- and software environment, used

to execute the experiments, is held idle during the experiments. Thus, there should be no

perturbation by the execution of background tasks.

3.2.3 Analysis & Presentation Phase

In accordance with Georges et al. [GBE07], in the statistical analysis of the results of the

benchmark runs, our benchmark provides the mean and median values of the measured

timings across all runs instead of reporting only best or worst runs. In addition, it includes

the lower and upper quartile, as well as the 95% confidence interval of the mean value.

Of note is the calculation of the monitoring throughput within the benchmark. As men-

tioned in the benchmark design phase, our benchmark collects the response times of the

MonitoredMethod(). These response times measurements are collected in a number of

bins, each containing one second worth of method executions. The number of response

times per bin corresponds to the reported throughput of method executions per second.

To facilitate repetitions and verifications of our experiments, the benchmark user has to

provide a detailed description of the used configurations and environments.

3.3 Evaluations of MooBench

Our proposed micro-benchmark has already been evaluated with the Kieker framework in

multiple scenarios. In [vHRH+09], we performed initial single-threaded measurements of

the Kieker framework and demonstrated the linear scalability of monitoring overhead with



increasing recursion depths. In [WH12], we compared the monitoring overhead of several

multi-threaded scenarios, of different writers, and of different hardware architectures with

each other. In [vHWH12], we complemented additional results of our micro-benchmark

by measurements of the SPECjEnterprise®2010 macro-benchmark. A detailed compari-

son of several different releases of Kieker as well as of different monitoring techniques and

writers has been performed in [WH13]. Finally, in [FWBH13], we extended the bench-

mark to measure the additional overhead introduced by an online analysis of monitoring

data concurrent to its gathering.

In order to broaden our evaluation basis, we intend to perform similar measurements with

further available monitoring framework. Furthermore, we plan to validate our results by

performing similar measurements with additional, more extensive benchmark suites and

macro-benchmarks. Finally, it is of interest to compare further hard- and software config-

urations, e. g., different heap sizes, JVMs, or platforms as well as, e. g., different instru-

mentation techniques.

4 Overhead Reduction and its
Impact on Maintainability

This section provides an evaluation of the monitoring overhead of Kieker with the Moo-

Bench micro-benchmark. The benchmark is used to measure the three individual portions

of monitoring overhead. The results of the benchmark are then used to guide our per-

formance tunings of Kieker. The tuned version is again evaluated and compared to the

previous one with the help of our benchmark. Thus, we provide an example how micro-

benchmarks can be used to steer a structured performance engineering approach.

In the rest of the section, we first provide a description of our experimental setup (Sec-

tion 4.1) to enable repeatability and verifiability for our experiments. Next, we describe

our base evaluation of the Kieker framework without any tunings (Section 4.2). The next

four sections (4.3 –4.6) describe our incremental performance tunings (PT). Finally, we

discuss threats to the validity of our conducted experiments (Section 4.7).

4.1 Experimental Setup

Our benchmarks are executed on the Java reference implementation by Oracle, specifi-

cally an Oracle Java 64-bit Server VM in version 1.7.0_25 running on an X6270 Blade

Server with two Intel Xeon 2.53 GHz E5540 Quadcore processors and 24 GiB RAM with

Solaris 10 and up to 4 GiB of available heap space for the Java-VM.

In our experiments, we use modified versions of Kieker 1.8 as the monitoring framework

under test. All modifications are available in the public Kieker Git repository with tags

starting with 1.8-pt-. Furthermore, access to these modifications and to the prepared ex-

perimental configurations and finally to all results of our experiments are available online.5

5http://kieker-monitoring.net/overhead-evaluation/



Table 1: Throughput for basis (traces per second)

No instr. Deactiv. Collecting Writing

Mean 1 176.5k 757.6k 63.2k 16.6k

95% CI ± 25.9k ± 5.5k ± 0.1k ± 0.02k

Q1 1 189.2k 756.6k 63.0k 16.2k

Median 1 191.2k 765.9k 63.6k 16.8k

Q3 1 194.6k 769.8k 63.9k 17.2k

AspectJ release 1.7.3 with load-time weaving is used to insert the particular Monitor-
ing Probes into the Java bytecode. Kieker is configured to use a blocking queue with

10,000 entries to synchronize the communication between the MonitoringWriter and the

WriterThread. The employed TCP writer uses an additional buffer of 64 KiB to re-

duce network accesses. Furthermore, Kieker is configured to use event records from the

kieker.common.record.flow package and the respective probes.

We use a single benchmark thread and repeat the experiments on ten identically configured

JVM instances with a sleep time of 30 seconds between all executions. In all experiments

using a disk writer, we call the monitoredMethod() 20,000,000 times on each run with

a configured methodTime of 0 μs and a stack depth of ten. We discard the first half of

the measured executions as warm-up and use the second half as steady state executions to

determine our results.

A total of 21 records are produced and written per method execution: a single TraceMeta-
Data record, containing general information about the trace, e. g., the thread id or the host

name, and ten BeforeOperationEvent and AfterOperationEvent records each, contain-

ing information on the monitored method, e. g., time stamps and operation signatures. This

set of records is named a trace.

We perform our benchmarks under controlled conditions on a system exclusively used for

the experiments. Aside from this, the server machine is held idle and is not utilized.

To summarize our experimental setup according to the taxonomy provided by Georges et al.

[GBE07], it can be classified as using multiple JVM invocations with multiple benchmark

iterations, excluding JIT compilation time and trying to ensure that all methods are JIT-

compiled before measurement, running on a single hardware platform with a single heap

size and on a single JVM implementation.

However, the benchmark can be adapted to other scenarios, such as using replay compila-

tion [GEB08] to avoid JIT compiler influence, a comparison of different JVMs [EGDB03],

varying heap sizes [BGH+06], or different hardware combinations.

4.2 Base Evaluation

In this section, we present the results of our base evaluation of Kieker. We use the

Kieker 1.8 code without the performance tunings mentioned in the following sections. The

results from this base evaluation are used to form a baseline for our tuning experiments.



Table 2: Throughput for PT1 (traces per second)

No instr. Deactiv. Collecting Writing

Mean 1 190.5k 746.3k 78.2k 31.6k

95% CI ± 4.1k ± 4.1k ± 0.1k ± 0.1k

Q1 1 191.0k 728.1k 78.3k 28.1k

Median 1 194.1k 756.6k 78.5k 32.5k

Q3 1 195.1k 763.7k 78.7k 34.7k

The overhead of writing monitoring data (W ) is measured in the fourth experiment run of

each experiment. Writing requires the transport of the produced MonitoringRecords out

of the probe into a remote site via a network connection.

We use the TCP writer, intended for online analysis of monitoring data, i. e., the Moni-
toringRecords are transported to a remote system, e. g., a storage cloud, to be analyzed

while the monitored system is still running. In the case of our experiments, we used the

local loopback device for communication, to avoid further perturbation and capacity limits

by the local network. Per method execution 848 bytes are transmitted.

Experimental Results & Discussion

The results of our base evaluation are presented in Table 1 and the response times for the

four partitions of monitoring overhead of the TCP writer are shown in Figure 6.

For the uninstrumented benchmark system (first experiment run to measure the method

time (T )), we measured an average of 1,176.5 k traces per second. Adding deactivated

Kieker probes (second experiment run to measure (T+I)) resulted in an average of 757.6 k

traces per second.

Activating the probes and collecting the monitoring records without writing them (third

experiment run to measure (T + I +C)) further reduced the average throughput to 63.2 k

traces per second. The fourth experiment run with the addition of an active monitoring

writer (measuring (T+I+C+W )) exceeds the writer thread’s capacity (see Section 3.1.2),

thus causing blocking behavior.

The TCP writer for online analysis produces an average of 31.6 k traces per second. Fur-

thermore, the 95% confidence interval and the quartiles suggest very stable results, caused

by the static stream of written data.

4.3 PT1: Caching & Cloning

As is evident by our analysis of the base evaluation, i. e., by the response times presented

in Figure 6 and by the throughputs in Table 1, the main causes of monitoring overhead

are the collection of data (C) and the act of actually writing the gathered data (W ). Thus,

we first focus on general performance tunings in these areas. We identified four possible

performance improvements:



First, our preliminary tests showed that certain Java reflection API calls, like constructor

and field lookup, are very expensive. These calls are used by Kieker to provide an exten-

sible framework. Instead of performing these lookups on every access, the results can be

cashed in HashMaps.

Second, the signatures of operations are stored in a specific String format. Instead of

creating this signature upon each request, the resulting String can be stored and reused.

Third, a common advice when developing a framework is not to expose internal data struc-

tures, such as arrays. Instead of directly accessing the array, users of the framework should

only be able to access cloned data structures to prevent the risk of accidentally modifying

internal data. However, in most cases internal data is only read from a calling component

and not modified. For all these cases, copying data structures is only a costly effort with-

out any benefit. We omit this additional step of cloning internal data structures and simply

provide a hint in the documentation.

Finally, some internal static fields of classes were marked private and accessed by reflec-

tion through a SecurityManager to circumvent this protection. These fields were changed

to be public to avoid these problems when accessing the fields.

Experimental Results & Discussion

The resulting throughput is visualized in Table 2 and the response time is shown in Fig-

ure 6. As can be expected, the changes in the uninstrumented benchmark and with deacti-

vated probes are not significant. However, when adding data collection (C) we measured

an increase of 15 k additional traces per second compared to our previous experiments.

Finally, the TCP writer’s throughput almost doubled while still providing very stable mea-

surements (small confidence interval).

The improvement discussed in this section will be used in Kieker because of their minimal

influence on the maintainability and the great improvements in the area of performance

efficiency.

4.4 PT2: Inter-Thread Communication

From PT1 we conclude that the queue is saturated and the monitoring thread waits for a

free space in the queue, i. e., the writer thread to finish its work. Otherwise, the monitoring

thread should be able to pass the records into the queue and proceed with the method.

Therefore, our target is to decrease the writing response time. In this step, we want to

achieve this goal by optimizing the communication between monitoring and writer thread.

Internal communication is presently modeled with the Java ArrayBlockingQueue class.

It is used to pass monitoring records from the monitoring thread to the writer thread.

To improve the inter-thread communication performance, we use the disruptor frame-

work,6 which provides an efficient implementation for inter-thread communication. It

6http://lmax-exchange.github.io/disruptor/



Table 3: Throughput for PT2 (traces per second)

No instr. Deactiv. Collecting Writing

Mean 1 190.5k 757.6k 78.2k 56.0k

95% CI ± 3.6k ± 6.2k ± 0.1k ± 0.2k

Q1 1 190.5k 760.0k 78.1k 52.3k

Median 1 191.6k 766.8k 78.4k 53.9k

Q3 1 194.2k 771.4k 78.7k 61.0k

utilizes a ringbuffer to provide a higher throughput than, for instance, the Java Array-
BlockingQueue class.

The evaluation uses Kieker 1.8 with the designated disruptor ringbuffer. Again, we mea-

sure the record throughput per second and the average response time.

Experimental Results & Discussion

The resulting throughput is visualized in Table 3 and the response time is shown in Fig-

ure 6. Again, the no instrumentation and deactivated run is roughly the same from the

previous experiments. Since we did not improve the collecting phase of Kieker, the re-

sponse time and throughput for this part is approximately the same as in PT1. The writing

response time decreased from 16.35 μs to 6.18 μs which is a decrease of about 62%. The

decrease in the response time is accompanied with an increase in the average throughput

rate from 31.6k to 56.0k traces per second (77%).

Therefore, our goal of decreasing the writing response time is achieved. The disruptor

framework speeds up the transfer into the buffer and also the reading from the buffer

resulting in the decreasing of the response time in the writing phase. However, the response

time of the writing phase still suggests that the monitoring thread is waiting for the buffer

to get an empty space for record passing.

The maintainability of Kieker is unharmed by this optimization because the disruptor

framework can be abstracted to provide a single put method into the buffer and the writer

components can be easily rewritten to the designated observer pattern of the disruptor

framework. It even improves the maintainability of the code since the thread management

and message passing is conducted by the disruptor framework. Therefore, this improve-

ment will be used in Kieker.

4.5 PT3: Flat Record Model

As discussed in PT2, the monitoring thread is waiting for the writer thread to finish its

work. Therefore, we want to further decrease the writing response time in this optimiza-

tion. In contrast to PT2, we aim for reducing the work which has to be conducted by the

writer thread.



Table 4: Throughput for PT3 (traces per second)

No instr. Deactiv. Collecting Writing

Mean 1 176.5k 729.9k 115.7k 113.2k

95% CI ± 2.1k ± 4.4k ± 0.2k ± 0.5k

Q1 1 186.0k 726.5k 115.8k 113.1k

Median 1 187.1k 734.5k 116.2k 114.3k

Q3 1 189.2k 739.7k 116.5k 115.0k

The main work, which has to be conducted by the TCP writer, is the serialization of in-

coming MonitoringRecord objects into a byte representation and writing this byte repre-

sentation into a ByteBuffer. The root of the object serialization challenge is the creation

of the MonitoringRecords which are only created to pass them to the writer thread which

serializes them. No calculation is conducted with those records. Therefore, we can also

write the required monitoring information directly into a ByteBuffer and pass it into the

writer thread. This optimization imposes several performance advantages. First, the object

creation and thus garbage collection for those objects is avoided. Furthermore, the Byte-
Buffers passed into the disruptor framework are fewer objects than passing thousands of

MonitoringRecord objects. Since less work has to be conducted by the disruptor frame-

work, the inter-thread communication should be even faster.

For the evaluation we use Kieker 1.8 with the enhancement of directly writing the monitor-

ing information into a ByteBuffer. Again, we measure the record throughput per second

and the average response time.

Experimental Results & Discussion

The resulting throughput is shown in Table 4 and the response time is visualized in Fig-

ure 6. The no instrumentation and deactivated phase are the same as in the previous exper-

iments. In the collecting phase, the response time decreased from 11.44 μs to 7.23 μs and

the throughput increased from 78.2k to 115.7k traces per second. The writing response

time decreased from 6.18 μs to 0.2 μs. The average throughput for the writing phase in-

creased from 56.0k to 113.2k traces per second.

The decrease in the writing response time is rooted in the reduction of the work of the

writer thread. This work is reduced to sending the ByteBuffer to the network interface and

therefore the ringbuffer does not fill up most of the time. The remaining 0.2 μs overhead

for the writing phase is mainly found in the putting of the ByteBuffer into the ringbuffer.

The collecting phase also became more efficient. The response time decreased since no

MonitoringRecord objects are created and therefore less garbage collection takes place.

This improvement will not be used in Kieker because it is harder for the framework user

to add own MonitoringRecord types with this optimization. If she wants to add a Mon-
itoringRecord type, she would be forced to write directly into the ByteBuffer instead of

just using object-oriented methods. Thus, the optimization would hinder the modularity

and reusability of the code.



Table 5: Throughput for PT4 (traces per second)

No instr. Deactiv. Collecting Writing

Mean 1 190.5k 763.3k 145.1k 141.2k

95% CI ± 2.0k ± 4.0k ± 0.2k ± 0.3k

Q1 1 187.4k 747.0k 144.2k 139.4k

Median 1 191.4k 762.5k 146.1k 142.7k

Q3 1 195.2k 778.4k 146.8k 144.2k

4.6 PT4: Minimal Monitoring Code

In PT3, we optimized the writing phase such that the monitoring thread does not need

to wait for the writer thread. Now, about 80% of the time consumed for monitoring the

software execution is spent in the collecting phase. Therefore, we try to optimize this

phase. As a further optimization, we deleted anything not directly related to pure monitor-

ing. For instance, we deleted interface definitions, consistence checks, and configurability.

Furthermore, we provide only five hard coded types of MonitoringRecords.

For the evaluation we use a newly created project, which only includes minimal code for

the monitoring. Again, we measure the record throughput per second and the average

response time.

Experimental Results & Discussion

The resulting response time is visualized in Figure 6 and the throughput is shown in Ta-

ble 5. The response time of the no instrumentation, deactivated, and writing phase are

roughly equal to the previous experiments. In the collecting phase, the response time

decreased and the throughput increased from 115.7k to 145.1k traces per second.

We attribute the decrease in the response time in the collecting phase mainly to the hard

coding of the monitoring since less generic lookups must be made. Furthermore, the

consistence checks had also an impact.

This improvement will not be used in Kieker because the monitoring tool now lacks im-

portant features for a framework, e.g., configurability and reusability.

4.7 Threats to Validity

In the experiments at least one core was available for the monitoring. If all cores were

busy with the monitored application, the results could be different. We investigated this

circumstance in [WH12].

Further threats involve our benchmark in general. Common threats to validity of micro-

benchmarks are their relevance and systematic errors. Our benchmark bases on repeatedly

calling a single method. However, by performing recursive calls, the benchmark is able



Figure 6: Overview of the tuning results in response time

to simulate larger call stacks. Additional comparisons of our results with more complex

benchmarks or applications are required for validation. If the configured method execu-

tion time is negligible compared to the overhead, these comparison may be inappropriate.

However, our experiments with different method execution times suggest that the results

are still valid.

Further threats are inherent to Java benchmarks. For instance, different memory layouts

of programs or JIT compilation paths for each execution might influence the results. This

is countered by multiple executions of our benchmark. However, the different compilation

paths of our four measurement runs to determine the individual portions of monitoring

overhead might threaten the validity of our results. This has to be countered by further

validation of our benchmark. All benchmark runs include multiple garbage collections

which might influence the results. However, this is also true for long running systems that

are typically monitored.

5 Related Work

Monitoring is an important part of administration and operation software systems, espe-

cially in distributed systems. It allows to determine online or offline bottlenecks or other

technical problems in a deployed software system or its neighboring systems which affect

the operation. To provide monitoring capabilities, approaches have targeted different lev-

els in the system. Early approaches monitor systems through network communication and

services. X-Trace [BIMN03], for example, aggregates such monitoring information and

builds system traces on that data. It is minimal invasive for the application, but cannot pro-

vide detailed information on machine or application internal behavior. Magpie [FPK+07]



is a framework for distributed performance monitoring and debugging which augments

network information with host level monitoring of kernel activities, for example. Both

approaches do not provide detailed information on their overhead, but data collection is

provided by network infrastructure and the operating system. Therefore only the logging

affects the overall system capacity. However, none of these approaches provided a detailed

performance impact analyses.

Dapper [SBB+10] and SPASS-meter [ES14] provide, like Kieker, application level moni-

toring providing insights into internal behavior of applications and its components. Caus-

ing a significant impact on the overall performance of those software systems. To reduce

the performance impact, Dapper uses sampling, which ignores traces during monitoring.

The sampling mechanism of Dapper observes the system load and changes the sampling

rate to limit the performance impact.

On systems, like search engines, the jitter of sampling may not have a big impact, as Sigel-

man et. al. [SBB+10] claim for their applications at Google. In such scenarios sampling

can be an approach to balance the monitoring performance trade-off. However, in many

scenarios, e.g., failure detection or performance forecasting, detailed monitoring data is

necessary to produce a comprehensive view of the monitored system. Therefore, sam-

pling, the reduction of probes, or limiting the scope of the observation to network or host

properties is not always an option to limit performance overhead of monitoring. Therefore,

we addressed the performance impact of the Kieker framework and minimized it.

Magpie provides a comparison of the impact of different observation methods in their

scenario, but no detailed analysis of the overhead. Dapper and X-Trace address the issue

of overhead as a characteristic of monitoring, which has to be considered when monitoring.

But to the best of our knowledge, no other monitoring framework has been evaluated with

a specialized monitoring benchmark targeting the overhead of monitoring itself.

6 Conclusions and Outlook

The paper presents our proposed micro-benchmark for monitoring frameworks. Further-

more, we introduce a structured performance engineering activity for tuning the through-

put of the monitoring framework Kieker. The evaluation was conducted by utilizing our

monitoring overhead benchmark MooBench. It demonstrates that high-throughput can be

combined with maintainability to a certain degree. Furthermore, it shows that our TCP

writer is the fastest writer and thus applicable for online analysis, which is required for our

upcoming ExplorViz [FWWH13] project.

Our performance tuning shows an upper limit for the monitoring overhead in Kieker. How-

ever, in productive environments, monitoring probes are usually configured in a way to

stay below the system’s capacity. Furthermore, the execution time of most methods (T) is

larger than the measured 0.85 μs. Refer to our previous publications for measurement of

the lower limit of monitoring overhead [WH12, vHWH12, vHRH+09]. Note, that these

previous measurements usually employed a stack depth of one compared to our used stack

depth of ten.



As future work, we intend to reduce the impact of deactivated probes by utilizing other

instrumentation frameworks than AspectJ, for instance, DiSL [MZA+12]. Furthermore,

we will evaluate whether a generator can handle the monitoring record byte serializa-

tion and thus PT3 might become applicable in Kieker without loosing maintainability and

usability for the framework users. In addition, we plan to measure Kieker with multi-

threaded versions of our monitoring benchmark and test further configurations. We also

plan to compare the benchmark results for Kieker to the resulting benchmark scores of

other monitoring frameworks.
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