Breakup Style and Magmatic Underplating West of the Lofoten Islands, Norway, Based on OBS Data

Breivik, Asbjorn J., Faleide, Jan Inge, Mjelde, Rolf, Murai, Yoshio and Flueh, Ernst R. (2014) Breakup Style and Magmatic Underplating West of the Lofoten Islands, Norway, Based on OBS Data [Talk] In: AGU Fall Meeting 2014, 15.-19.12.2014, San Francisco, USA.

Full text not available from this repository.

Abstract

The breakup of the Northeast Atlantic in the Early Eocene was magma-rich, forming the major part of the North Atlantic Igneous Province (NAIP). This is seen as extrusive and intrusive magmatism in the continental domain, and as a thicker than normal oceanic crust produced the first few million years after continental breakup. The maximum magma productivity and the duration of excess magmatism varies along the margins of Northwest Europe and East Greenland, to some extent as a function of the distance from the Iceland hotspot. The Vøring Plateau off mid-Norway is the northernmost of the margin segments in northwestern Europe with extensive magmatism. North of the plateau, magmatism dies off towards the Lofoten Margin, marking the northern boundary of the NAIP here. In 2003, as part of the Euromargins Program we collected an Ocean Bottom Seismometer (OBS) profile from mainland Norway, across the Lofoten Islands, and out into the deep ocean. Forward velocity modeling using raytracing reveals a continental margin that shows transitional features between magma-rich and magma-poor rifting. On one hand, we detect an up to 2 km thick and 40-50 km wide magmatic underplate of the outer continent, on the other hand, continental thinning is greater and intrusive magmatism less than farther south. Continental breakup also appears to be somewhat delayed compared to breakup on the Vøring Plateau, consistent with increased extension. This indicates that magmatic diking, believed to quickly lead to continental breakup of volcanic margins and thus to reduce continental thinning, played a much lesser role here than at the plateau. Early post-breakup oceanic crust is up to 8 km thick, less than half of that observed farther south. The most likely interpretation of these observations, is that the source for the excess magmatism of the NAIP was not present at the Lofoten Margin during rifting, and that the excess magmatism actually observed was the result of lateral transport from the south around breakup time.

Document Type: Conference or Workshop Item (Talk)
Research affiliation: OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-GDY Marine Geodynamics
Date Deposited: 03 Sep 2014 12:47
Last Modified: 03 Sep 2014 12:47
URI: http://eprints.uni-kiel.de/id/eprint/25565

Actions (login required)

View Item View Item