Current and Oxygen Variability in the Tropical North East Atlantic

J. Hahn, P. Brandt, R. J. Greatbatch, G. Krahmann, A. Körtzinger

24.10.2013

TAV-PIRATA Meeting 2013, Venice, Italy
1. Motivation

2. Data

3. Results
 3.1 O_2 mooring time series / dominant time scales of O_2 fluctuations
 3.2 Seasonal cycle
 3.3 Velocity and O_2 fluctuations / O_2 flux

4. Summary
1. Motivation

Oxygen Distribution in the Tropical Atlantic

O$_2$ distribution, top view (depth 300m - 500m)

Brandt et al. (2010)

O$_2$ cross section

Brandt et al. (2010)
1. Motivation

Analysis of repeated ship sections

Mean O_2

O_2 variance

sources for O_2 variance?

- stirring by mesoscale eddies / diapycnal mixing

- (zonal) current variability
1. Motivation

Lumpkin and Garzoli (2005)

Zonal currents

characteristic mean field (surface and near surface currents)

Brandt et al. (2010)

Zonal speed, 23-33°W

seasonal cycle of surface currents (shaded regimes: eastward velocity)

Lumpkin and Garzoli (2005)
Seasonal cycle of oxygen from CTD/O$_2$ data

Stramma et al. (2008)
1. Motivation

2. Data

3. Results

4. Summary

Goals

Goal I: Identify characteristic time scales of oxygen variability.

• Is there pronounced variability at defined time scales, e.g. seasonal or intraseasonal variability?

Goal II: Identify the physical processes that are responsible for the ventilation of the Tropical North East Atlantic.

• Does a seasonal cycle in zonal velocity contribute to the O_2 flux / O_2 supply?
1. Motivation

2. Data

3. Results
 3.1 O₂ mooring time series / dominant time scales of O₂ fluctuations
 3.2 Seasonal cycle
 3.3 Velocity and O₂ fluctuations / O₂ flux

4. Summary
Moored observations along 23°W

background: O_2 distribution at 400m depth from *World Ocean Atlas 2009*
2. Data

Moored observations along 23°W

(O$_2$ distribution: update from Brandt et al. (2010))

Moored observations along 23°W (O$_2$ distribution: update from Brandt et al. (2010))
2. Data

Moored observations along 23°W

(O₂ distribution: update from Brandt et al. (2010))

Copyright Teledyne RD Instruments
3. Results

3.1 O₂ mooring time series / dominant time scales of O₂ fluctuations

3.2 Seasonal cycle

3.3 Velocity and O₂ fluctuations / O₂ flux

4. Summary
3. Results

Moored observations
3. Results

O₂ time series

300m
11.5°N

8°N

5°N

4°N

500m
11.5°N

8°N

5°N

4°N

[σ²(O₂)] = μmol² kg⁻²
3. Results

O_2 time series, lowpass $>90d$

300m

$[\sigma^2(O_2)] = \mu\text{mol}^2\text{kg}^{-2}$ (% total σ^2)

$87.8\ \mu\text{mol}^2\text{kg}^{-2}$ (67%)

500m

$3.0\ \mu\text{mol}^2\text{kg}^{-2}$ (35%)

$64.3\ \mu\text{mol}^2\text{kg}^{-2}$ (42%)

$34.6\ \mu\text{mol}^2\text{kg}^{-2}$ (52%)

$56.1\ \mu\text{mol}^2\text{kg}^{-2}$ (33%)

$92.1\ \mu\text{mol}^2\text{kg}^{-2}$ (64%)

$42.2\ \mu\text{mol}^2\text{kg}^{-2}$ (51%)
O₂ time series, bandpass (10d – 90d)

300m

- **11.5°N**
- 2009 | 2010 | 2011 | 2012
- [24.1 µmol² kg⁻² (18%)]

500m

- **11.5°N**
- 2009 | 2010 | 2011 | 2012
- [1.9 µmol² kg⁻² (23%)]

8°N

- 2009 | 2010 | 2011 | 2012
- [44.6 µmol² kg⁻² (29%)]

8°N

- 2009 | 2010 | 2011 | 2012
- [19.0 µmol² kg⁻² (29%)]

5°N

- 2009 | 2010 | 2011 | 2012
- [45.1 µmol² kg⁻² (31%)]

5°N

- 2009 | 2010 | 2011 | 2012
- [45.1 µmol² kg⁻² (31%)]

4°N

- 2009 | 2010 | 2011 | 2012
- [44.7 µmol² kg⁻² (26%)]

4°N

- 2009 | 2010 | 2011 | 2012
- [19.7 µmol² kg⁻² (24%)]
3. Results

3.1 O$_2$ mooring time series / dominant time scales of O$_2$ fluctuations

3.2 Seasonal cycle

3.3 Velocity and O$_2$ fluctuations / O$_2$ flux

4. Summary
3. Results

O$_2$ seasonal cycle at 300m along 23°W

4°N

5°N

8°N

11.5°N
3. Results

O_2 seasonal cycle at 300m along 23°W

4°N

O_2 [μmol kg$^{-1}$]

5°N

O_2 [μmol kg$^{-1}$]

8°N

O_2 [μmol kg$^{-1}$]

11.5°N

O_2 [μmol kg$^{-1}$]

blue/red:
monthly means of individual years

GEOMAR
Helmholtz Centre for Ocean Research Kiel
3. Results

O$_2$ seasonal cycle at 300m along 23°W

4°N

5°N

8°N

11.5°N

blue/red:
monthly means of individual years

black:
monthly means of all years

GEOMAR
Helmholtz Centre for Ocean Research Kiel
3. Results

O$_2$ seasonal cycle at 500m along 23°W

4°N

5°N

8°N

11.5°N

blue/red: monthly means of individual years
3. Results

\(O_2 \) seasonal cycle at 500m along 23°W

\[4°N \]

\[5°N \]

\[8°N \]

\[11.5°N \]

\(O_2 \) [\(\mu \text{mol kg}^{-1} \)]

\begin{align*}
\text{month} & : 2 & 4 & 6 & 8 & 10 & 12 \\
\end{align*}

\text{blue/red: monthly means of individual years}
3. Results

O₂ seasonal cycle at 500m along 23°W

indication for persistent seasonal variability

blue/red: monthly means of individual years

black: monthly means of all years
1. Motivation

2. Data

3. Results

3.1 O$_2$ mooring time series / dominant time scales of O$_2$ fluctuations

3.2 Seasonal cycle

3.3 Velocity and O$_2$ fluctuations / O$_2$ flux

4. Summary
3. Results

O₂ time series
O₂ and velocity time series at 5°N, 500m, lowpass >90 days

O₂ and u

O₂ and v

u, v leading O₂
3. Results

O₂ flux at 5°N

O₂ and v, lowpass > 10d (500m)

Analysis from Hahn et al. (subm.)

Meridional O₂ flux based on time series anomalies

F = \langle v' O₂' \rangle

Hahn et al. (subm.)

O₂ and u, lowpass > 90d (500m)

Zonal O₂ flux based on annual harmonic: of order O(F) = 1 \cdot 10^6 \text{μmol kg}^{-1} \text{m yr}^{-1}
1. Motivation

2. Data

3. Results
 3.1 O_2 mooring time series / dominant time scales of O_2 fluctuations
 3.2 Seasonal cycle
 3.3 Velocity and O_2 fluctuations / O_2 flux

4. Summary
Summary

- O\textsubscript{2} mooring time series provide a reliable data set to manifest the complexity of O\textsubscript{2} fluctuations.

- The Tropical Atlantic is rich of O\textsubscript{2} variability on seasonal (30% - 60%) and intraseasonal (up to 30% of total O\textsubscript{2} variance) time scales.

- No well-defined seasonal cycle at 300m / some indication for a seasonal cycle at 500m.

- Seasonal variability of zonal currents might contribute to O\textsubscript{2} supply of the southern OMZ boundary.
This study was founded by the Sonderforschungsbereich SFB754 ‘Climate-Biogeochemistry Interactions in the Tropical Ocean’.

Oxygen mooring time series were acquired in cooperation with the PIRATA project as well as the SFB754.

Thank you for your attention!