
Connecting Partial Words and Regular
Languages

Jürgen Dassow1, Florin Manea2? and Robert Mercaş1

1 Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik,
PSF 4120, D-39016 Magdeburg, Germany,

dassow@iws.cs.uni-magdeburg.de, robertmercas@gmail.com
2 Christian-Albrechts-Universität zu Kiel, Institut für Informatik,

D-24098 Kiel, Germany,
flm@informatik.uni-kiel.de

Abstract. We initiate a study of languages of partial words related to
regular languages of full words. First, we study the possibility of ex-
pressing a regular language of full words as the image of a partial-words-
language through a substitution that only replaces the hole symbols of
the partial words with a finite set of letters. Results regarding the struc-
ture, uniqueness and succinctness of such a representation, as well as
a series of related decidability and computational-hardness results, are
presented. Finally, we define a hierarchy of classes of languages of partial
words, by grouping together languages that can be connected in strong
ways to regular languages, and derive their closure properties.
Keywords: partial word, regular language, finite automaton, language
of partial words.

1 Introduction

Two DNA strands attach one to the other, normally, in a complementary way
according to their nucleotides. That is, each purine, A or G, creates a hydrogen
bond with one complementary pyrimidine, T or C, respectively. But, sometimes,
it is the case that this process goes wrong, allowing G-T bonds. Starting from
this situation, and motivated by the need of having a way to recover (as much
as possible) and work with a correct DNA sequence, Berstel and Boasson [1]
suggested the usage of partial words as a suitable mathematical model. Partial
words are words that beside regular letters contain an extra “joker” symbol, also
called “hole” or “do-not-know” symbol, that matches all symbols of the original
alphabet, which were investigated already in the 1970s [3]. Going back to the
initial example, one could recover the information regarding a DNA sequence
from the badly bonded pair of DNA strands by associating actual letters to the
positions where the bonds were correct and holes to the positions where the
bonds were not correctly formed. Besides the above motivation, partial words
may find applications in other fields, as well; for instance, they can be seen

? The work of Florin Manea is supported by the DFG grant 582014.



2 Dassow, Manea and Mercaş

as data sequences that are corrupted either by white noise or other external
factor, or even incomplete or insufficient information, that one needs in some
process. In the last decade a lot of combinatorial and algorithmic properties
of partial words have been investigated (see the survey [2], and the references
therein). Surprisingly, so far, no study of classes of languages of partial words
(or sets of partial words that have common features) was performed. The only
work on a connected topic, that we are aware of, is [4]. There, the concept
of restoration of punctured languages and several similarity measures between
full-words-languages, related to this concept, were investigated. More precisely,
puncturing a word means replacing some of its letters with holes; from a language
of punctured words, its restoration was obtained by taking all the languages that
can be punctured to obtain the respective language. The results of [4] regarded
classes of full-words-languages defined by applying successively puncturing and
restoration operations to classes of languages from the Chomsky hierarchy.

The study of the class of regular languages, the most restrictive class of the
Chomsky-hierarchy, has been one of the central topics in theoretical computer
science. This class of languages, defined usually either as the class of languages
accepted by finite automata or as the class of languages described by regular
expressions, was extensively studied throughout the last seventy years (starting
from the early 1940s) and, besides its impact in theory (mostly in language
theory, but also in complexity theory, for instance), it was shown to have a
wide range of applications. Regular languages, and the various mechanisms used
to specify them, were used, for instance, in compilers theory, circuit design,
text editing, pattern matching, formal verification, DNA computing, or natural
language processing (see [7]).

In this work, we aim to establish a stronger connection between the attractive
notions mentioned above: partial words, on one side, and regular languages, on
the other side. First, we show how we can (non-trivially) represent every regular
language as the image of a regular language of partial words through a substi-
tution that defines the letters that may replace the hole (called �-substitution,
in the following). Moreover, we show that such a representation can be useful:
for some regular languages, there exist deterministic finite automata accept-
ing languages of partial words that represent the full-word-language and are
exponentially more succinct than the minimal deterministic finite automaton
accepting that language. Unfortunately, it may also be the case when the min-
imal non-deterministic finite automaton accepting a language is exponentially
more succinct than any deterministic automaton accepting a language of partial
words representing the same language. Generally, automata accepting languages
of partial words representing a given full-words language can be seen as inter-
mediate between the deterministic finite automata and the non-deterministic
automata accepting that language. We also present a series of algorithmic and
complexity results regarding the possibility of representing a regular language
as the image of a language of partial words through a �-substitution.

Motivated by the above results, that connect in a meaningful way languages
of partial words to regular languages of full words, and by the theoretical in-



Partial Words and Regular Languages 3

terest of studying systematically such languages, we define a series of classes of
languages of partial words. Each of these classes contains languages that can be
placed in a particular strong relation with the regular languages. Further, we
investigate these classes from a language theoretic point of view, show that they
form a hierarchy, and establish their closure properties.3

We begin the paper with a series of basic definitions. Let V be a non-empty
finite set of symbols called an alphabet. Each element a ∈ V is called a letter. A
full word (or, simply, word) over V is a finite sequence of letters from V while a
partial word over V is a finite sequence of letters from V ∪ {�}, the alphabet V
extended with the distinguished hole symbol �. The length of a (partial) word u
is denoted by |u| and represents the total number of symbols in u; the number
of occurrences of a symbol a in a (partial) word w is denoted |w|a. The empty
(partial) word is the sequence of length zero and is denoted by λ. We denote
by V ∗ (respectively, (V ∪ {�})∗) the set of words (respectively, partial words)
over the alphabet V and by V + (respectively, (V ∪ {�})+) the set of non-empty
words (respectively, non-empty partial words) over V . The catenation of two
(partial) words u and v is defined as the (partial) word uv. Recall that V ∗ (where
the alphabet V may include the � symbol) is the free monoid generated by V ,
under the operation of catenation of words; the unit element in this monoid is
represented by the empty word λ. A language L of full words over an alphabet V
is a subset of V ∗; a language of partial words L over an alphabet V (that does not
contain the � symbol) is a subset of (V ∪{�})∗. Given a language L we denote by
alph(L) (the alphabet of L) the set of all the letters that occur in the words of L;
for the precision of the exposure, we say that a language L of full (respectively,
partial) words is over V , with � /∈ V , if and only if alph(L) = V (respectively,
alph(L) = V ∪ {�}). For instance, L = {abb, ab�} has alph(L) = {a, b, �}, thus,
is a language of partial words over {a, b}. Note that the catenation operation
can be extended to languages; more precisely, if L1 and L2 are languages over
V , we define their catenation L1L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.

Let u and v be two partial words of equal length. We say that u is contained
in v, denoted by u < v, if u[i] = v[i] for all u[i] ∈ V ; moreover, u and v are
compatible, denoted by u ↑ v, if there exists a word w such that u < w and
v < w. These notions can be extended to languages. Let L and L′ be two
languages of partial words with alph(L) ∪ alph(L′) = V ∪ {�} and � /∈ V . We
say that L is contained in L′, denoted L < L′, if, for every word w ∈ L, there
exists a word w′ ∈ L′ such that w < w′. We say that L is compatible to L′,
denoted L ↑ L′, if, for each w ∈ L, there exists w′ ∈ L′ such that w ↑ w′ and,
for each v′ ∈ L′, there exists v ∈ L such that v′ ↑ v.

A substitution is a mapping h : V ∗ → 2U
∗

with h(xy) = h(x)h(y), for
x, y ∈ V ∗, and h(λ) = {λ}; h is completely defined by the values h(a) for all
a ∈ V . A morphism is a particular type of a substitution for which h(a) contains
exactly one element for all a ∈ V ; i.e., a morphism is a function h : V ∗ → U∗

with h(xy) = h(x)h(y) for x, y ∈ V ∗. A �-substitution over V is a substitution

3 A technical appendix containing full proofs of our results can be found at the web-
page: https://www.informatik.uni-kiel.de/zs/pwords.

https://www.informatik.uni-kiel.de/zs/pwords


4 Dassow, Manea and Mercaş

with h(a) = {a}, for a ∈ V , and h(�) ⊆ V . Here we assume that � can replace
any symbol of V .

In this paper, DFA stands for deterministic finite automaton and NFA for
non-deterministic finite automaton; the language accepted by a finite automaton
M is denoted L(M). Also, the set of all the regular languages is denoted by REG;
by REGfull, we denote the set of all the regular languages of full words. Further
definitions regarding finite automata and regular languages can be found in [7],
while partial words are surveyed in [2].

2 Definability by Substitutions

Let us begin our investigation by presenting several results regarding the way
regular languages can be expressed as the image of a language of partial words
through a substitution.

Lemma 1. Let L ⊆ (V ∪{�})∗{�}(V ∪{�})∗ be a language of partial words and
let σ be a �-substitution over V . There exists a language L′ such that σ(L) =
σ(L′) and |w|� = 1 for all w ∈ L′.

Lemma 2. Let L be a regular language over V and let σ be a �-substitution
over V . Then there exists a maximal (with respect to set inclusion) language
L′ ⊆ L which can be written as σ(L′′), where L′′ is a language of partial words
such that any word in L′′ has exactly one hole. Moreover, L′ and L′′ are regular
languages and, provided that L is given by a finite automaton accepting it, one
can algorithmically construct a finite automaton accepting L′ and L′′.

Proof. Let σ(�) = V ′.
We start by noting that a word w belongs to σ(L′′) for a language of partial

words L′′, whose elements contain at least one hole each, if and only if there
exist the words x and y such that w = xay, for some a ∈ V ′ and {x}V ′{y} ⊆ L.

Now let M = (Q,V, q0, F, δ) be a DFA accepting L.
Let q ∈ Q. We define the language Rq as follows. A word w of L is in Rq if and

only if there exists the partial word x�y, compatible with w, with δ(q0, x) = q,
S = δ(q, V ′) ⊆ Q, δ(S, y) ⊆ F . Basically, Rq is the set of the words for which
there exists a compatible partial word x�y with exactly one hole, such that x
labels a path from q0 to q in A and any word from {x}V ′{y} is in L.

Clearly, Rq = {x | x ∈ V ∗, δ(q0, x) = q}V ′{y | y ∈ V ∗, δ(q′, y) ∈ F for
all q′ ∈ δ(q, V )}. It follows that Rq is regular and an automaton accepting
this language can be constructed starting from M . Moreover, Rq = σ(Hq), for
Hq = {x | x ∈ V ∗, δ(q0, x) = q}{�}{y | y ∈ V ∗, δ(q′, y) ∈ F for all q′ ∈ δ(q, V )}.

Take now L′ = ∪q∈QRq and L′′ = ∪q∈QHq. Then L′ is regular, as all the
languages Rq are regular, and L′ = σ(L′′). We only have to show that L′ is
maximal. If there exists L1 ⊂ L and a language of partial words L2, whose
elements contain exactly one hole each, such that σ(L2) = L1, then for every
word w of L1 there exist the words x and y such that x�y ∈ L2 and w ∈ σ(x�y) =
{x}V ′{y} ⊆ σ(L2) = L1. Thus, w ∈ Rq for q = δ(q0, x). Therefore, L1 ⊆ L′. ut



Partial Words and Regular Languages 5

Note that the sets Rq with q ∈ Q are not a partition of L, as they are not
necessarily mutually disjoint.

Next we introduce two relations connecting partial-words-languages and full-
words-languages.

Definition 1. Let L ⊆ V ∗ be a language and σ be a �-substitution over V . We
say that L is σ-defined by the language L′, where L′ ⊆ (V ∪ {�})∗ is a partial-
words-language, if L = σ(L′). Moreover, we say that L is essentially σ-defined
by L′, where L′ ⊆ (V ′ ∪ {�})∗, if L = σ(L′) and every word in L′ contains at
least a �-symbol.

Obviously, for any regular language L over V , there is a regular language
L′ of partial words and a �-substitution σ over V such that σ(L′) = L, i.e.,
L is σ-defined by L′. For instance, take the set L′ of the words obtained by
replacing in the words of L some occurrences of a symbol a ∈ V by �, and the
�-substitution σ over V that maps � to {a}. More relevant ways of defining a
regular language, in the sense of Definition 1, are presented in this section. We
begin by characterizing the essentially definable languages.

Assume that the regular language L ⊆ V ∗ is essentially σ-definable for some
�-substitution σ over V . Then σ(L′) = L for some appropriate language L′ such
that any word of L′ contains at least a hole. By Lemma 1, we get that there is a
regular language L′′ of partial words such that σ(L′′) = σ(L′) and each word of
L′′ contains exactly one hole. Now by Lemma 2 and its proof we get immediately
the following characterisation of σ-definable languages.

Theorem 1. Let L be a regular language of full words over V and σ a �-
substitution over V . Then L is essentially σ-definable if and only if L =

⋃
q∈QRq

(where Rq is given in the proof of Lemma 2). ut

We also easily get the following decidability results.

Theorem 2. i) Given a regular language L over V and a �-substitution σ
over V , it is decidable whether L is essentially σ-definable.
ii) Given a regular language L over V , one can algorithmically identify all �-
substitutions σ for which L is essentially σ-definable.

Proof. By the previous results, testing whether L is essentially σ-definable is
equivalent to testing whether L and L′ = ∪q∈QRq are equal. Because the equality
of two regular languages is decidable, the first statement follows. The second
statement follows by an exhaustive search in the (finite) set of all �-substitutions
σ over V for those that essentially define L. ut

The following consequence of Lemma 2 is worth noting, as it provides a
canonical non-trivial representation of regular languages.

Theorem 3. Given a regular language L ⊆ V ∗ and a �-substitution σ over V ,
there exists a unique regular language L� of partial words that fulfils the following
three conditions: (i) L = σ(L�), (ii) for any language L1 with σ(L1) = L we have
{w | w ∈ L1, |w|� ≥ 1} < {w | w ∈ L�, |w|� ≥ 1}, and (iii) (L� ∩ V ∗) ∩ σ({w |
w ∈ L�, |w|� ≥ 1}) = ∅.



6 Dassow, Manea and Mercaş

Proof. Using the sets defined in Lemma 2, take L� = L′′∪(L\L′). The conclusion
follows easily. ut

Motivated by this last result, we now turn to the descriptional complexity
of representing a regular language of full words by regular languages of partial
words. We are interested in the question whether there is a regular language
L ⊆ V ∗, a regular language L′ ⊆ (V ∪{�})∗, and a �-substitution σ over V with
σ(L′) = L such that the minimal DFA accepting L′ has a (strictly) lower number
of states than the minimal DFA accepting L? In other words, are there cases
when one can describe in a more succinct way a regular language via a language
of partial words and a substitution that define it? Moreover, can we decide
algorithmically whether for a given regular language L there exist a language of
partial words and a substitution providing a more succinct description of L?

Let L be a regular language of full words over V . We denote by minDFA(L)
the number of states of the (complete) minimal DFA accepting L. Furthermore,
let minNFA(L) denote the number of states of a minimal NFA accepting L.
Moreover, for a regular language L let min�DFA(L) denote the minimum number
of states of a (complete) DFA accepting a regular language L′ ⊆ (V ∪ {�})∗
(where � is considered as an input symbol) for which there exists a �-substitution
σ over V such that σ(L′) = L.

We have the following relation between the defined measures.

Theorem 4. i) For every regular language L we have

minDFA(L) ≥ min�DFA(L) ≥ minNFA(L).

ii) There exist regular languages L such that

minDFA(L) > min�DFA(L) > minNFA(L).

By the previous result one can see that, for certain substitutions σ, minimal
DFAs accepting languages of partial words that σ-define a given full-words-
regular language can be seen as intermediate between the minimal DFA and the
minimal NFA accepting that language: they provide a succinct representation of
that language, while having a limited non-determinism.

In fact, one can show that the differences minDFA(L) − min�DFA(L) and
min�DFA(L)−minNFA(L) can be arbitrarily large; more precisely, we may have
an exponential blow-up with respect to both relations.

Theorem 5. Let n be a natural number, n ≥ 3. There exist regular languages
L and L′ such that min�DFA(L) ≤ n + 1 and minDFA(L) = 2n − 2n−2 and
minNFA(L′) ≤ 2n+ 1 and min�DFA(L′) ≥ 2n − 2n−2.

The following remark provides an algorithmic side of the results stated above.

Remark 1. Given a DFA accepting a regular language L we can construct al-
gorithmically a DFA with min�DFA(L) states, accepting a regular language of
partial words L′, and a �-substitution σ over alph(L), such that L is σ-
defined by L′. By exhaustive search, we take a DFA M with at most minDFA(L)



Partial Words and Regular Languages 7

states, whose transitions are labelled with letters from an alphabet included in
alph(L) ∪ {�}, and a �-substitution σ over alph(L). We transform M into an
NFA accepting σ(L(M)) by replacing the transitions labelled with � by |σ(�)|
transitions labelled with the letters of σ(�), respectively. Next, we construct the
DFA equivalent to this NFA, and check whether it accepts L or not (that is,
σ(L(M)) = L). From all the initial DFAs we keep those with minimal number
of states, since they provide the answer to our question. It is an open prob-
lem whether such a DFA can be obtained by a polynomial time deterministic
algorithm; however, we conjecture that the problem is computationally hard.

We conclude by showing the hardness of a problem related to definability.

Theorem 6. Consider the problem P : “Given a DFA accepting a language L of
full words, a DFA accepting a language L′ of partial words, and a �-substitution
σ over alph(L), decide whether σ(L′) 6= L.” This problem is NP-hard.

Proof. In [6], the following problem was shown to be NP-complete:
P ′: “Given a list of partial words S = {w1, w2, . . . , wk} over the alphabet V with
|V | ≥ 2, each partial word having the same length L, decide whether there exists
a word v ∈ V L such that v is not compatible with any of the partial words in S.”

We show here how problem P ′ can be reduced in polynomial time by a many-
one reduction to problem P . Indeed, take an instance of P ′: a list of partial words
S = {w1, w2, . . . , wk} over the alphabet V with |V | ≥ 2, each having the same
length L. We can construct in polynomial time a DFA M accepting exactly the
language of partial words {w1, w2, . . . , wk}. Also, we can construct in linear time
a DFA M ′ accepting the language of full words V L. It is clear that for L(M) and
the substitution σ, mapping the letters of V to themselves and � to V , we have
σ(L(M)) 6= V L (that is, the answer to the input M , M ′ and σ of problem P is
positive) if and only if the answer to the given instance of P ′ is also positive.
Since solving P ′ is not easier than solving P , we conclude our proof. ut

Theorem 6 provides a simple way to show the following well known result.

Corollary 1. The problem of deciding whether a DFA M and an NFA M ′ accept
different languages is NP-hard.

3 Languages of partial words

While the results of the last section study the possibility and efficiency of defining
a regular language as the image of a (regular) language of partial words, it seems
interesting to us to take an opposite point of view, and investigate the languages
of partial words whose images through a substitution (or all possible substitu-
tions) are regular. Also, languages of partial words compatible with at least one
regular language (or only with regular languages) seem worth investigating.

The definitions of the first three classes considered in this section follow the
main lines of the previous section. We basically look at languages of partial words
that can be transformed, via substitutions, into regular languages.



8 Dassow, Manea and Mercaş

Definition 2. Let L be a language of partial words over V .
1. We say that L is (∀σ)-regular if σ(L) is regular for all the �-substitutions σ
over alphabets that contain V and do not contain �.
2. We say that L is max-regular if σ(L) is regular, where σ is a �-substitution
over V ′ with σ(�) = V ′, and V ′ = V if V 6= ∅, and V ′ is a singleton with � /∈ V ′,
otherwise.
3. We say that L is (∃σ)-regular if there exists a �-substitution σ over a non-
empty alphabet V ′, that contains V and does not contain �, such that σ(L) is
regular.
The classes of all (∀σ)-regular, max-regular, and (∃σ)-regular languages are
denoted by REG(∀σ), REGmax, and, respectively, REG(∃σ).

We consider, in the following, two classes of languages of partial words that
are defined starting from the concept of compatibility.

Definition 3. Let L be a language of partial words over V .
4. We say that L is (∃)-regular if exists a regular language L′ of full words such
that L ↑ L′.
5. We say that L is (∀)-regular if every language L′ of full words such that L ↑ L′
is regular.
The class of all the (∃)-regular languages is denoted REG(∃), while that of (∀)-
regular languages by REG(∀).

According to the definitions from [4], the (∃)-regular languages are those
whose restoration contains at least a regular language, while (∀)-regular lan-
guages are those whose restoration contains only regular languages.

We start with the following result.

Theorem 7. For every non-empty alphabet V with � /∈ V there exist an unde-
cidable language L of partial words over V , such that:
i) σ(L) ∈ REG for all substitutions σ over V , and σ′(L) /∈ REG for the �-
substitution σ′ with σ′(�) = V ∪ {c}, where c /∈ V .
ii) every language L′ ⊆ V ∗ of full words, which is compatible with L, is regular
and there is an undecidable language L′′ ⊆ (V ′)∗, where V ′ strictly extends V ,
which is compatible with L.

Proof. Let L1 ⊆ V ∗ be an undecidable language (for instance, L1 can be con-
structed by the classical diagonalization technique L1 = {an | the nth Turing
machine in an enumeration of the Turing machines with binary input does not ac-
cept the binary representation of n}, where a ∈ V ) and L = V ∗∪{�w | w ∈ L1}.
Clearly, for any �-substitution σ over V , we have σ(L) = V ∗. However, if we
take a letter c /∈ V and the �-substitution σ′ which replaces � by V ∪ {c} we
obtain an undecidable language σ′(L). This concludes the proof of (i). To show
(ii) we just have to note that the only language contained in V ∗ compatible with
L is V ∗, and, if we take a letter c /∈ V and replace � by c (or, in other words,
if we see � as the conventional symbol c), we obtain an undecidable language
compatible with L. ut

We can now show a first result regarding the classes previously defined.



Partial Words and Regular Languages 9

Theorem 8. REG = REG(∀σ) ⊂ REGmax.

Proof. It is rather clear that REG(∀σ) ⊆ REGmax.
Since REG is closed to substitutions it follows that REG ⊆ REG(∀σ).
It is also not hard to see that REG(∀σ) ⊆ REG (given a language L in

REG(∀σ), one can take the special substitution that replaces � with a symbol
that does not occur in alph(L) and obtain a regular language; therefore L is a
regular language if � is seen as a normal symbol).

By Theorem 7, REGmax contains an undecidable language; indeed, given an
non-empty alphabet V , the language L defined in its proof for V is in REGmax

according to (i). The strictness of the inclusion REG ( REGmax follows. ut

The next result gives some insight on the structure of the class REGmax.

Theorem 9. Let L ∈ REGmax be a language of partial words over V 6= ∅
and σ the �-substitution used in the definition of REGmax. Then there exists a
maximal language (with respect to set inclusion) L0 ∈ REGmax of partial words
over V such that σ(L0) = σ(L). Moreover, given an automaton accepting L, an
automaton accepting L0 can be constructed.

It is also not hard to see that any language from REGmax whose words contain
only holes is regular.

The following relation also holds:

Theorem 10. REGmax ⊂ REG(∃σ) ⊂ REG(∃).

Proof. The non-strict inclusions REGmax ⊆ REG(∃σ) ⊆ REG(∃) are immedi-
ate. We show now that each of the previous inclusions is strict.

Take L = {(ab)n�b(ab)n | n ∈ N}. Considering σ a �-substitution as in the
definition of REGmax, we have σ(L) ∩ {w | w ∈ {a, b}∗, w contains bb} is the
language {(ab)nbb(ab)n} which is not regular. Thus, σ(L) is not regular, and
L is not in REGmax. However, it is clearly in REG(∃σ), as when we take the
substitution σ(a) = {a}, σ(b) = {b}, and σ(�) = {a}, we have σ(L) = {(ab)2n+1 |
n ∈ N}, which is a regular language. This shows that REGmax ⊂ REG(∃σ).

Now, take L = {(ab)n�b(ab)n | n ∈ N} ∪ {(ab)na�(ab)n | n ∈ N}. This
language is not in REG(∃σ) by arguments similar to above, but it is in REG(∃)
as it is compatible with {(ab)2n+1 | n ∈ N}. ut

As already shown, all the languages in REG(∀) are in REG = REG(∀σ);
however, not all the languages in REG are in REG(∀). The following statement
characterizes exactly the regular languages that are in REG(∀).

Theorem 11. Let L be a regular partial-words-language over V . Then L ∈
REG(∀) if and only if the set {w | |w|� ≥ 1, w ∈ L} is finite.

The previous result provides a simple procedure for deciding whether a reg-
ular partial-words-language is in REG(∀) or not. We simply check (taking as
input a DFA for that language) whether there are finitely many words that con-
tain � or not. If yes, we accept the input and confirm that the given language is
in REG(∀); otherwise, we reject the input.

Theorem 11 has also the following consequence.



10 Dassow, Manea and Mercaş

Theorem 12. REG(∀) ⊂ REG.

In many previous works (surveyed in [2]), partial words were defined by
replacing specific symbols of full words by �, in a procedure that resembles
the puncturing of [4]. Similarly, in [5], partial words were defined by applying
the finite transduction defined by a deterministic generalised sequential ma-
chine (DGSM) to full words, such that � appears in the output word. Accord-
ingly, we can define a new class of partial-words-languages, REGgsm, using this
automata-theoretic approach. Let L be a language of partial words over V , with
� ∈ alph(L); L is gsm-regular, and is in REGgsm, if there exists a DGSM M
and a regular language L′ such that L is obtained by applying the finite transduc-
tion defined by M to L′. It is not hard to show that REGgsm = REG\REGfull.

By the Theorems 8,10,11, and 12 we get the following hierarchies:

REGfull ⊂ REG(∀) ⊂ REG = REG(∀σ) ⊂ REGmax ⊂ REG(∃σ) ⊂ REG(∃)

REG \REGfull = REGgsm ⊂ REG = REG(∀σ)

Finally, the closure properties of the defined classes are summarized in the
following table. Note that y (respectively, n) at the intersection of the row asso-
ciated with the class C and the column associated with the operation ◦ means
that C is closed (respectively, not closed) under operation ◦. A special case is
the closure of REGmax under union and concatenation: in general this class
is not closed under these operations, but when we apply them to languages of
REGmax over the same alphabet we get a language from the same class.

Class ∪ ∩ ∩REG alph(L)∗ \ L ∗ · φ φ−1 σ

REG(∀) y y y n n n n n n
REG = REG(∀σ) y y y y y y y y y

REGmax n/y n n n y n/y n n n
REG(∃σ) n n n n y n n n n
REG(∃) y n n y y y n n n

References

1. J. Berstel and L. Boasson. Partial words and a theorem of Fine and Wilf. Theoretical
Computer Science, 218:135–141, 1999.

2. F. Blanchet-Sadri. Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, 2008.

3. M. J. Fischer and M. S. Paterson. String matching and other products. In Com-
plexity of Computation, SIAM-AMS Proceedings, volume 7, pages 113–125, 1974.

4. G. Lischke. Restoration of punctured languages and similarity of languages. Math-
ematical Logic Quarterly, 52(1):20–28, 2006.

5. F. Manea and R. Mercaş. Freeness of partial words. Theoretical Computer Science,
389(1-2):265–277, 2007.

6. F. Manea and C. Tiseanu. Hard counting problems for partial words. In LATA,
volume 6031 of Lect. Notes Comput. Sci., pages 426–438. Springer-Verlag, 2010.

7. G. Rozenberg and A. Salomaa. Handbook of Formal Languages. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1997.



Partial Words and Regular Languages 11

Technical Appendix

In the following we give complete proofs and a series of other remarks regarding
the results of the paper. They are grouped according to the results to which they
are connected. Any time we discuss the computational complexity of solving a
problem, we use the classical unit-cost RAM model.

4 Definability by Substitutions

Lemma 1

Proof. We take L′ = {w | w ∈ (V ∪ {�})∗, |w|� = 1 and there exists x ∈ L such
that x < w}. That is, we obtain the words of L′ in the following manner: for each
word x ∈ L, for each hole of x, we produce words which contain x by replacing
the other holes of x than the selected one in all the possible ways. For example,
if V = {a, b}, from x = a�b� we obtain the words aab�, abb�, a�ba, and a�bb.

It is clear that σ(L′) = σ(L).
It is worth noting that the language L′ defined in Lemma 1 has an infinite

number of words that contain �-symbols if and only if L has an infinite number
of words containing �-symbols. ut

Lemma 2.
The following remark completes the proof of this lemma.

Remark 2. We briefly analyse the complexity of constructing an NFA accepting
L′, given an automaton (NFA or DFA) accepting L. Let us denote |Q| by n.
DFAs accepting the languages Rq and Hq are constructed in time O(n|V

′||V |).
Indeed, constructing these automata assumes the construction of a DFA for
the language {w | w ∈ V ∗, δ(q0, w) = q} (that can be done in O(n|V |) time
by simply constructing a finite automaton that has the same structure as M
but has the final state q instead of the set of final states of M) and of an
automaton for {w′ | w′ ∈ V ∗, δ(q′, w′) ∈ F for all q′ ∈ δ(q, V )} (that can be
done in time O(|V |n|V ′|) by intersecting the |V ′| languages Rq,a = {w′ | w′ ∈
V ∗, δ(q′, w′) ∈ F for q′ = δ(q, a)} for a ∈ V ′, accepted respectively by finite
automata with n states each). Now we just have to construct an automaton
accepting the union of the sets Rq (respectively, Hq) and we get an automaton
accepting L′ (respectively, L′′). The overall time complexity of constructing an
NFA accepting L′ (respectively, L′′) is O(|V |n|V ′|+1) (and its number of states
is O(n|V

′|+1)).

Theorem 2.
Note, as a completion of Theorem 2, that one can decide similarly the following
properties:

– Given a regular language L and the substitution σ as in Theorem 2, is the
maximal subset of L that is σ-essentially definable finite or not?



12 Dassow, Manea and Mercaş

– Given a regular language L and the substitution σ as in Theorem 2, is
the difference between L and the maximal subset of L that is σ-essentially
definable finite or not?

Also, the test in the proof of Theorem 2 can be done algorithmically in time
O(|V |n|V ′|+2), as the time needed to determine the emptiness of the intersection
of the complementary of L with L′ is proportional with the product of |V |, n
(the number of states of a DFA accepting L) and O(n|V

′|+1) (the number of
states of an NFA accepting L′).
Theorem 4. i) For every regular language L we have

minDFA(L) ≥ min�DFA(L) ≥ minNFA(L).

Proof. We first show that min�DFA(L) ≥ minNFA(L). Let σ be a �-substitution
over V and L′ be a language of partial words such that σ(L′) = L. The number of
states in a complete DFA accepting L′ is always greater or equal to minNFA(L).
Indeed, the DFA accepting L′ can be transformed into a NFA accepting L by
replacing each transition labelled with � with transitions labelled with all letters
of σ(�) and deleting the error state of the DFA, when existing, and all the
transition towards it. Thus min�DFA(L) ≥ minNFA(L). Moreover, minDFA(L) ≥
min�DFA(L), since one can choose the substitution σ to be the �-substitution
over alph(L) that maps � to a, a symbol of V that appears in the words of L,
and L′ to be equal to L in which we replace all the occurrences of a with �.
Clearly, each DFA accepting L′ can be transformed in a DFA accepting L and
vice versa. Thus, min�DFA(L) is smaller than the number of states of a minimal
DFA accepting L′, which, in fact, equals the minDFA(L). ut

ii) There exist regular languages L such that

minDFA(L) > min�DFA(L) > minNFA(L).

Proof. Consider first the language L1 = {abbc, adbc, abbe, abde}. This language
is defined by L′ = {a�bc, ab�e} and the �-substitution σ over {a, b, c, d, e} that
maps � to {b, d}. The language L′ is accepted by a minimal complete DFA with
8 states, while the minimal complete DFA of L has 9 states. In fact, L′ is exactly
the language L� defined in Theorem 3, for the �-substitution σ defined above.
So, for this language we have minDFA(L1) = 9 and min�DFA(L1) = 8; also, it
is not hard to see that minNFA(L1) = 7. This language already exhibits the
example we were looking for in our statement; however, it is somehow trivial,
as the difference between the DFA accepting the language of partial words and
the NFA accepting the language of full words is given only by the fact that the
DFA is complete, thus, by the existence of an error state in the DFA. More
relevant examples can be constructed. To this end, take the language L2 =
{a′b′b′c′, a′d′b′c′, a′b′b′e′, a′b′d′e′}, where V ′ = {a′, b′, c′, d′, e′} and V ∩ V ′ = ∅.
This language is basically a copy of L1 so all the properties regarding the number
of states of automata accepting L1 are preserved for L2. Take now the language
L = L1L2. One can easily check that the minimal DFA for L has 16 states
(the final state of the DFA accepting L1 is put together with the initial state of



Partial Words and Regular Languages 13

the DFA accepting L2, and the new automata has only one error state). Also,
min�DFA(L) = 15; intuitively, as V ′ and V are disjoint, we can only map � to
either a subset of V or a subset of V ′, or we will accept words where letters from
V ′ occur before letters from V . When � is mapped to either {b, d} or {b′, d′} we
obtain DFAs with 15 states, while in all the other cases we obtain larger ones.
Finally, min�NFA(L) = 13 (by similar reasons as in the case of the DFAs). This
concludes our proof. ut

Theorem 5.
To show this result, we use the following lemmas:

Lemma 3. Let n be a number greater than 3 and M = (Q, {a, b}, δ, 1, {n}) the
non-deterministic finite automaton defined by

Q = {1, 2, . . . , n},
δ(i, a) = {i+ 1} for 1 ≤ i < n,

δ(i, b) = {i+ 1} for 1 < i < n− 1,

δ(n, a) = {1, 2}, δ(1, b) = {1}, δ(n− 1, b) = ∅, and δ(n, b) = {1}.

The minimal deterministic finite automaton accepting L(M) has 2n−2n−2 states.

Proof. The basic ideas of the proof are similar to those used in the proof of
Theorem 1 from [F. R. Moore. On the bounds for state-set size in the proofs
of equivalence between deterministic, nondeterministic, and two-way finite au-
tomata. IEEE Trans. Comput., 20:1211–1214, 1971.]
However, the overall discussion and most of the details are more complicated.

Let M ′ be the DFA obtained from M by applying the classical conversion
technique:

M ′ = (2Q, {a, b}, δ′, {1}, {S | S ∈ 2Q, S ∩ F 6= ∅})

with δ′(R, s) = ∪q∈Rδ(q, s) for s ∈ {a, b} and R ∈ 2Q.
Let us see which states are reachable from the initial state in M ′. Note first

that δ(1, b) = 1 and δ(t, a`) = {t + `} for 1 ≤ t ≤ n − 1 and 1 ≤ ` ≤ n − t.
Moreover, for t ≥ 2 we have δ(t, x) = {t+ |x|} when |x| ≤ n− t and x ends with
a.

We first show that all the states R = {q1, . . . , qk} ∈ 2Q\{n} with qi < qi+1

for 1 ≤ i ≤ k − 1 are reachable from the initial state {1}. This can be shown
by induction on k. We have already seen that the property holds for k = 1. If
k > 1, we analyse two cases.

In the first case, assume that q2−q1 = 1. Now, for R′ = {q′3, q′4, . . . , q′k, n−1},
we have δ′(R′, aq2) = R provided that q′` = q` − q2 for all 3 ≤ ` ≤ k. Indeed,

δ′(n− 1, aq2) = δ′(1, aq1−1) ∪ δ′(2, aq1−1) = {q1} ∪ {q1 + 1} = {q1, q2}

and δ′(q′`, a
q2) = {q′` + q2} = {q`}.

In the second case, q2 − q1 > 1. Let q2 − q1 = t; it is easy to see that
t ≤ n− 2. Take R′ = {q′3, . . . , q′k, n− 1}, where q′` = q` = q2, for 3 ≤ ` ≤ k, and



14 Dassow, Manea and Mercaş

x = a2bt−1aq1−1. Clearly, |x| = q2. We will show that δ(R′, x) = R. Indeed, we
first have

δ′(n− 1, x) = δ′(1, bt−1aq1−1) ∪ δ′(2, bt−1aq1−1)

= δ′(1, aq1−1) ∪ δ′(t+ 1, aq1−1)

= {q1} ∪ {t+ 1 + q1 − 1} = {q1, q2}

and, further, δ′(q′`, x) = {q′` + |x|} = {q`} for 3 ≤ ` ≤ k. These two cases
show that out property holds: each state R ∈ 2Q\{n} is reachable from a state
R′ ∈ 2Q\{n} such that |R′| = |R| − 1, so R is reachable from {1}, as well.

Further, we obtain that each state R ∈ 2Q\{1} is reachable from 1. Clearly,
a state R = {q1, . . . , qk}, with q1 > 1 and qk ≤ n, can be obtained as δ′({q1 −
1, . . . , qk−1}, a) and we already know that {q1 − 1, . . . , qk−1} is reachable.

Also, all the states R ∈ 2Q that contain {1, 2, n} are reachable. Indeed, a
state R = {1, 2, q1, . . . , qk, n}, with q1 > 2 and qk < n, can be obtained as
δ′({q1 − 1, . . . , qk − 1, n}, a) and we already know that {q1 − 1, . . . , qk − 1, n} is
reachable.

Finally, we show that the states R ∈ 2Q that contain {1, n} but do not
contain 2 are not reachable. Assume, for the sake of a contradiction that there
exists such a state R that is reachable. Clearly, in order to have that R contains
n there must exist a state R′ such that δ′(R′, a) = R. But, from 1 ∈ R we get
that n ∈ R′; from this it follows that 2 ∈ R, a contradiction.

Therefore, the states of M ′ that are reachable are either elements of 2Q\{n}∪
2Q\{1} or subsets of Q that contain {1, 2, n}; their number is 2n−1+2n−2+2n−3.
Denote by M ′′ the DFA obtained from M ′ by deleting all the unreachable states.
Further we minimise the automaton M ′′.

Take P and R two different states of M ′′. Take ` ∈ (P \R)∪ (R\P ). If ` 6= 1,
assume, without loss of generality, that ` ∈ P . We have that δ′(P, an−`) is final,
while δ(R, an−`) is not final. So, in this case, P and R are not equivalent with
respect to the congruence defined by the language L. If (P \R)∪ (R \ P ) = {1}
assume, without loss of generality, that 1 ∈ P ; we obtain that P = R ∪ {1}. If
n /∈ R, we have that δ′(P, bn−1an−1) is final, while δ′(R, bn−1an−1) is not final. If
n ∈ R, we have that δ(P, x) = δ(R, x); indeed, if x = ay we get that δ(P, ay) =
δ(R, ay) ∪ δ(1, ay) = δ(R, ay), as δ(1, ay) = δ(2, y) ⊆ δ(n, ay) ⊆ δ(R, ay). It
follows that two states P and R of M ′′ are equivalent if and only if P = R∪{1}
and n ∈ R.

Therefore, after we apply the minimization algorithm on M ′′ we obtain a
minimal DFA accepting L(M) that has exactly 2n−1 + 2n−2 states. ut

In the following we give the proof of Theorem 5. First, recall its statement:
Let n be a natural number, n ≥ 3.
1. There exists a regular language L such that min�DFA(L) ≤ n+1 and minDFA =
2n − 2n−2.
2. Also, there exists a regular language L′ such that minNFA(L′) ≤ 2n+ 1 and
min�DFA(L′) ≥ 2n − 2n−2.



Partial Words and Regular Languages 15

Proof. 1. Take the language L1 = L(M) defined in Lemma 3. Take the DFA
M� = (Q, {�, a, b}, δ′, 1, n) with

Q′ = {1, . . . , n, n+ 1},
δ′(1, a) = 2, δ′(1, b) = 1, δ′(1, �) = n+ 1,

δ′(i, �) = i+ 1 for 2 ≤ i ≤ n− 2,

δ(i, s) = n+ 1 for 2 ≤ i ≤ n− 2 and s ∈ {a, b},
δ(n− 1, �) = δ(n− 1, b) = n+ 1, δ(n− 1, a) = n,

δ(n, �) = 1, δ(n, b) = n+ 1, δ(n, a) = 2, and

δ(n+ 1, s) = n+ 1 for all s ∈ {a, b, �}.

Note that M can be obtained from M� be replacing all the transitions labelled
with � with transitions labelled with a and b, by deletion of the error-state n+ 1
and of all the transitions related to it. It is not hard to see that L1 is defined by
the language L(M�) of partial words and the substitution σ that maps a to {a},
b to {b}, and � to {a, b}.

Thus, we have min�DFA(L1) ≤ n + 1. However, from Lemma 3 we have
minDFA(L1) = 2n − 2n−2, and the conclusion follows.

2. Let L2 be the language f(L1), where f is a morphism mapping a to a′

and b to b′. The language L2 is accepted by an NFA with n states that can
be easily obtained from M (by replacing the transitions labelled with s with
transitions labelled with s′ for s ∈ {a, b}). Let L′ be the language defined as the
catenation of L1∪{c} and L2, that is L′ = (L1∪{c})L2; note that if L′ contains
a symbol a or b (respectively, a′ or b′) then it must contain at least n symbols
from {a, b} (respectively, {a′, b′}). Clearly, minNFA(L′) ≤ 2n+ 1. We show that
min�DFA(L′) ≥ 2n − 2n−2.

For simplicity, denote V = {a, b, c, a′, b′} and V� = V ∪ {�}. Let L� be a
regular language included in (V ∪ {�})∗ and σ be a substitution that maps the
elements of V to themselves and � to a subset of V , such that σ(L�) = L′. Let
M� be the minimal DFA accepting L�, and assume it has the transition function
δ� and the initial state q0.

Let us first analyse the case when c ∈ σ(�). We first assume that we have a
transition δ�(q1, �) = q2, q1 6= q0, and q2 is co-accessible (that is, it is a state from
which we can reach a final state of the automaton). As M� is minimal, it has
no inaccessible states, so q1 is also accessible. It follows that there exist a string
z�x ∈ L�, with z 6= λ; thus, in L′ = σ(L�) there is the string z′cx′ with z′ 6= λ, a
contradiction. So, whenever we have a transition labelled with � it either starts
from the initial state of M� or it leads to the only state that is not co-accessible
(once again, there is only one such state, as the automaton is minimal). Further,
assume that we have a transition δ�(q0, �) = q1 and q1 is co-accessible. It follows
that σ(�) ⊆ {a, b, c}, as otherwise we would have in L′ words that start with a′

or b′. Also, as c is always followed in L′ by a word from L2, the only transitions
that leave q1 and reach another state are labelled with letters from {a′, b′, c′};
but this means that σ(�) = {c}, as, otherwise, we may have in L′ words that



16 Dassow, Manea and Mercaş

begin with a letter from {a, b} which is immediately followed by a letter from
{a′, b′}. Assume now that δ�(q0, c) = r where r is not co-accessible. In this case,
the automaton obtained from M� by changing the initial state from q0 to q1 is a
DFA that accepts exactly L2. This means that M� has at least 2n− 2n−2 states.
If δ�(q0, c) = q2 and q2 is co-accessible, we delete from M� all the transitions
labelled with letters from {a′, b′, c, �} and we set as final states of the obtained
DFA the states of M� from which transitions labelled with a′ or b′ started. The
new automaton is a DFA accepting L1; therefore, it has at least 2n−2n−2 states.
So, in this case as well, M� has at least 2n − 2n−2 states.

We continue with the case when c /∈ σ(�). Assume first that σ(�)∩{a, b} 6= ∅
and σ(�) ∩ {a′, b′} 6= ∅. Let q1 = δ�(q0, c); it is not hard to notice that q1
is co-accessible. Note that there is no state q2, accessible from q1, such that
there is a transition labelled with a, b, or � leaving from q2; indeed, if such a
transition would exist then we would have a word in L′ that has a or b after c,
a contradiction. It follows that the automaton obtained from M� by changing
the initial state from q0 to q1 is a DFA that accepts exactly L2. So M� has
at least 2n − 2n−2 states. The case when σ(�) ⊆ {a, b} follows in exactly the
same manner. Finally, when σ(�) ⊆ {a′, b′}, we delete once more from M� all
the transitions labelled with letters from {a′, b′, c, �} and we set as final states
of the obtained DFA the states of M� from which transitions labelled with a′ or
b′ started. We obtain a DFA accepting L1 included in M�, so this DFA has at
least 2n − 2n−2 states.

This concludes the case analysis, and the proof of the second statement. ut
This theorem takes, in fact, the first steps towards solving the problem of

analysing the sets

Dn = {m | there exists a regular language L such that

min�DFA(L) = n and minDFA(L) = m}

and

Hn = {m | there exists a regular language L such that

min�DFA(L) = n and minNFA(L) = m}.

Corollary 1

Proof. The problem from Proposition 6 can be reduced to this problem in poly-
nomial time, as each pair consisting in a DFA M accepting a language a partial
words and a �-substitution σ mapping � to an alphabet can be canonically trans-
formed into an NFA accepting the language of full words σ(L(M)). Therefore,
this problem is also NP-hard. ut

Languages of Partial Words

Theorem 9.
Let L ∈ REGmax be a language of partial words over V 6= ∅ and σ the �-
substitution used in the definition of REGmax. Then there exists a maximal



Partial Words and Regular Languages 17

language (with respect to set inclusion) L0 ∈ REGmax of partial words over
V such that σ(L0) = σ(L). Moreover, given an automaton accepting L, an
automaton accepting L0 can be constructed.

Proof. First, it is not hard to see that the language L0, we are looking for, is the
union of all the languages L′ that verify σ(L′) = σ(L). It only remains to show
that it is regular and that we can construct an automaton accepting it.

Let L be a language in REGmax, over an alphabet V 6= ∅. Furthermore, let
σ : V ∪ {�} → 2V be a substitution such that σ(a) = {a} for all a ∈ V and
σ(�) = V . We have that σ(L) is a regular language. Therefore, there exists a
finite automaton A = (Q,V, q0, F, δ) that accepts σ(L). For S ⊆ Q and U ⊆ V ,
we set

δ(S,U) = ∪q∈S(∪a∈U{δ(q, a)}).

We define the new finite automaton A′ = (2Q, V ∪ {�}, {q0}, 2F , δ′) where δ′

works as follows:

– δ′(S, a) = ∪q∈Sδ(q, a), for S ⊆ Q and a ∈ V .
– δ′(S, �) = ∪q∈S(∪a∈V δ(q, a)), for S ⊆ Q.

We determine the language accepted by A′. More precisely, we show that,
if w ∈ V ∪ {�}, then δ′(S,w) = δ(S, σ(w)) for any S ⊆ Q. This proof is done
by induction. If w = λ or if |w| = 1, the conclusion follows immediately. Let
w′ = ws, with s ∈ V ∪ {�}. We have

δ′(S,ws) = δ′(δ′(S,w), s) = δ′(δ(S, σ(w)), s)

= δ(δ(S, σ(w)), σ(s)) = δ(S, σ(ws)) = δ(S, σ(w′)).

Consequently, w ∈ L(A′) if and only if δ′({q0}, w) ⊆ F if and only if
δ(q0, σ(w)) ⊆ F if and only if σ(w) ⊆ σ(L). Conversely, it is quite easy to
see that, if w ∈ L, then w ∈ L(A′); moreover, it easily follows that any language
L′ such that σ(L′) = σ(L) is included in L(A′). So, σ(L(A′)) = σ(L) and we
take L0 = L(A′).

As L0 contains σ(L) it is clear that L0 is in REGmax. ut

Remark 3. If L from the above theorem is contained in {�}∗ we easily obtain
that L is regular. Moreover, a language similar to L0 could be constructed as
follows. If a is a letter, then any language L′ with alph(L) = {�, a}, for which it
is true that {n | there exists w ∈ L, |w| = n} = {n | there exists w ∈ L′, |w| = n},
is in REGmax and σ(L′) = σ(L) where σ is the �-substitution that maps � to
{a}; also, no other languages verify σ(L′) = σ(L) for this choice of σ. The union
of all these languages is La0 = {w′ | w′ ∈ {�, a}∗, there exists w ∈ L, |w| = |w′|},
which is clearly a regular language, and plays the role of L0 from the above
theorem. However, in the case when another letter b is chosen instead of a, we
get a different language Lb0. The difference from the case of the previous theorem
is that we now have the freedom of choosing the alphabet over which the maximal
language is.



18 Dassow, Manea and Mercaş

Example 1. Although REGmax contains very general languages, there are sim-
pler languages that are not part of this class. For instance, the context-free
language L = {�anbn | n ∈ N} is trivially not in REGmax. Also, as every
language of partial words from the classes we defined is compatible with at
least one regular language, it follows easily that all these languages have the
constant growth property4. It follows that there are context-sensitive languages
that are not contained in any of the classes REGmax, REG(∃σ), or REG(∃).
However, these classes also contain context-sensitive non-context-free languages
(e.g., {an�an�an | n ∈ N}).

Theorem 11. Let L be a regular partial-words-language over V . We have the
following equivalence: L ∈ REG(∀) if and only if the set {w | |w|� ≥ 1, w ∈ L}
is finite.

Proof. From the finiteness of the set {w | |w|� ≥ 1, w ∈ L} we obtain immedi-
ately that L ∈ REG(∀).

We show the other implication. Assume that L contains an infinite number
of partial words that have at least a � symbol. We obtain that either there exists
a word w� such that w contains no hole and the set L∩w�(V ∪ {�})∗ is infinite
or there exists a word �w such that w contains no hole and L∩ (V ∪ {�})∗�w is
infinite. We present here only the first case, as the other one follows in the same
fashion.

Let L′ = {x | w�x ∈ L}. It is clear that L′ is regular; also, L′ is infinite
according to the case that we analyse. Moreover, there is a symbol a ∈ V ∪ {�}
whose number of appearances in the words of L′ is not bounded by a constant.

We assume first that a 6= �. It is known that

{n | n = |w|a, w ∈ L′} = {α0 + n1α1 + . . .+ nkαk | n1, . . . , nk ∈ N}

for some natural number k ≥ 1 and some constants α0, α1, . . . , αk such that at
least one of the constants αi with i ≥ 1, say αj , is not equal to 0 (see [7]). Thus,
there exists the sequence of words w1, w2, . . . , wi, . . ., such that |wi|a = α0 + iαj
(so the numbers of occurrences of a in these words form an arithmetic progres-
sion). If we denote d = gcd(α0, αj), then we obtain by Dirichlet’s Theorem on
arithmetic progressions the fact that there are infinitely many words from this
sequence whose number of occurrences of symbols a is d multiplied by a prime
number; it is quite easy to show that there also are infinitely many words from
this sequence in which the symbol a occurs for d multiplied by a composite
number times.

Now, we construct a language compatible with L as follows. In every word
w�x from L, we replace the first � by a new symbol e /∈ V if and only if the

number Nx,a of occurrences of a in x divided by d (that is,
⌊
Nx,a

d

⌋
) is a prime

number; otherwise, we replace this hole with another new symbol d /∈ V . All the
other holes in the words of L are replaced with d. Denote this language by L′′.

4 A language L has the constant growth property if when arranging the strings of
the language in increasing order of length, two consecutive lengths do not differ by
arbitrarily large amounts.



Partial Words and Regular Languages 19

It is easy to show by the pumping lemma (pumping the words that contain
an e leads to words containing e but its number of occurrences of a differs from d
multiplied by a prime number) that L′′ is not regular. Therefore, L /∈ REG(∀).
This proves the statement.

The case when a = � can be treated analogously, and we reach once more a
contradiction.

This concludes our proof. ut

Note that, this theorem provides a very simple procedure for deciding whether
a given regular language (that contains partial words) is in REG(∀) or not. We
simply check (by taking as input a DFA accepting that language) whether there
are finitely many words that contain � or not. If the set of such words is finite, we
accept the input and confirm that the given language is in REG(∀); otherwise,
we reject the input. The time complexity of such an algorithm is O(nkt) provided
that n is the number of states of the input automaton, k is the number of letters
in its alphabet, and t is the number of transitions labelled with � from this
automaton. Indeed, for each transition labelled with � ending in a state from
which we can access a final state, we look whether there exists a cycle reachable
after that transition is made and which is on a path towards a final state, or
whether there exists a cycle from which that transition is accessible. Clearly,
these checks can be done by simply traversing the graph of the automaton, thus,
in time O(nk).

On REGgsm.
Recall that a deterministic generalised sequential machine (dgsm) is a 6-tuple
M = (Q,V, U, q0, F, f) where Q is a set of states, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, V and U are finite sets of symbols, namely,
the set of input symbols and, respectively, the set of output symbols, and the
transition-output function f : Q × V → Q × U∗; this function is extended
canonically to Q × V ∗. The finite transduction defined by M is the function
TM : V ∗ → U∗, defined by: TM (v) = u if and only if f(q0, v) = (q, u) and q ∈ F .

To show REG \ REGfull = REGgsm we proceed as follows. First, every
language that is the image of a regular language through a finite transduction
is regular. As the languages from REGgsm contain at least one word that has
a �, we get that REGgsm ⊆ REG \REGfull. On the other hand, let L be a
regular language that has words that contain �. Let L′ be the language obtained
by replacing, in the words of L, the hole-symbols with a symbol a /∈ alph(L).
Clearly, L is the image of L′ through the finite transduction defined by a DGSM
that maps every letter from alph(L) \ {�} to itself, and a to �. Thus, REG \
REGfull ⊆ REGgsm, and this concludes our proof.

Note that REGgsm is incomparable with REG(∀), as the latter class contains
REGfull, while the former contains all the regular languages that have at least
one word in which the � symbol appears.



20 Dassow, Manea and Mercaş

Closure properties

We present here, in full details, a series of closure properties that highlight partly
the differences between the defined classes of languages of partial words.

As a direct consequence of the fact that REG(∀σ) is equal to the class of
regular languages REG, it follows that this class is closed under exactly the
same operations that REG is closed under.

Proposition 1. REG(∀σ) is closed under union, intersection, complementa-
tion, concatenation, Kleene star, morphisms, substitutions and inverse mor-
phisms.

The other classes of languages are closed under some operations and not
closed under some other operation. More precisely, we have the following results.

Proposition 2. REG(∀) is closed under union, intersection, intersection with
arbitrary regular languages (regular languages that may contain partial words,
as well). REG(∀) is not closed under complementation, concatenation, Kleene
star, morphisms, substitutions and inverse morphisms.

Proof. Union, intersection, intersection with regular sets: We obtain immedi-
ately that REG(∀) is closed under set-union and intersection, given the fact
that the languages in this class can be all expressed as just a union between a
regular language with no holes and a finite language formed of words containing
the �-symbol (see Theorem 11).

Concatenation and Kleene-star: Let R1 and R2 be two infinite regular lan-
guages of full words over V , and let F1 and F2 be two finite sets of full words
over V . By Theorem 11, R1 ∪ {�}F1 and R2 ∪ {�}F2 are in REG(∀), whereas
(R1 ∪ {�}F1)(R2 ∪ {�}F2) and (R1 ∪ {�}F1)∗ are not in REG(∀).

Morphisms, substitutions, and inverse morphisms: We take the language L =
{a2n | n ∈ N}; clearly, this language is in REG(∀). Using the morphism that
replaces a by �, we get the language L′ = {�2n | n ∈ N} that is not in REG(∀)
(it is compatible with the non-regular language {anbn | n ∈ N}). Thus we have
the non-closure under morphisms and substitutions. Analogously, the inverse
image of L under the morphism which maps � to a gives L′ /∈ REG(∀), again.

Complementation: We consider the language V ∗ ∪ {�} seen as a subset of
(V ∪ {�})∗. Obviously, this language is in REG(∀). But the complement of this
language consists of all words w with |w| ≥ 2 and |w|� ≥ 1 and is not in REG(∀)
by Theorem 11. Thus, REG(∀) is not closed under complementation. ut

The following proposition is immediate.

Proposition 3. REGgsm is closed under union, intersection, intersection with
regular languages, concatenation, Kleene star. REG(∀) is not closed under com-
plementation, morphisms, substitutions and inverse morphisms.



Partial Words and Regular Languages 21

Proof. Note that the empty language L = ∅ is contained in REG \ REGfull.
The closure under union, concatenation, and Kleene star follows from the fact
that all these operations, when applied to languages that contain words with �
symbols, produce the languages with words that contain �. The closure under
intersection and intersection with regular languages follows from the fact that the
intersection of two languages from REG \REGfull, as well as the intersection
of a language from this class with an arbitrary regular language, is either a
language from the same class, or the empty language. The class is not closed
under complementation, as the complement of L = (V ∪{hole})∗{�}(V ∪{hole})∗
is V ∗, and this language is not in REG\REGfull. To see that REG\REGfull is
not closed under morphisms or substitutions, take L as above and a morphism
that maps � to a symbol of V ; the image of L through this morphism is V ∗.
Similar arguments hold for the non-closure under inverse morphisms. ut

We now move one to the classes from the upper part of our hierarchy.

Proposition 4. REG(∃) is closed under union, concatenation, complementa-
tion and Kleene star. REG(∃) is not closed under intersection, intersection with
regular languages, morphisms, substitutions and inverse morphisms.

Proof. Morphisms, substitutions and inverse morphisms: We consider the lan-
guage {ban�n | n ∈ N} which is in REG(∃), and using the morphism mapping
� to b and leaving a and b in place, we obtain the language {banbn | n ∈ N},
which is context-free and non-regular. Therefore, REG(∃) is not closed under
morphism and substitution.

Similarly, we get the non-closure under inverse morphism (just take the mor-
phism that maps � to b, a to a, and b to �.

Union, concatenation and Kleene star: Let L1 and L2 be two languages from
REG(∃). There exist the regular languages L′1 and L′2 of full words such that
L1 ↑ L′1 and L2 ↑ L′2, respectively. Clearly, L1 ∪ L2 ↑ L′1 ∪ L′2 ∈ REG; thus,
L1 ∪ L2 is in REG(∃).

For concatenation and Kleene-star, we can give a similar proof.

Intersection, intersection with regular sets, and complementation: We con-
sider the languages L1 = ({a, b}2)∗ and L2 = {anbn | n ∈ N} ∪ {�2n | n ∈ N}
which are in both REG(∃) (both languages are compatible with ({a, b}2)∗). Their
intersection gives us the language {anbn | n ∈ N} which is a context-free non-
regular language of full words. Thus, the intersection is not in REG(∃). Since
({a, b}2)∗ is, in fact, a (full-words) regular language we also have the non-closure
of REG(∃) under intersection with regular languages of full words.

It is a well-known fact from set-theory (X ∩ Y = V ∗ \ ((V ∗ \ X) ∪ V ∗ \
Y )), when X and Y are languages over an alphabet V ) that closure under
complementation and union implies the closure under intersection. Now non-
closure under complementation follows from the closure under union and the
non-closure under intersection. ut
Proposition 5. REG(∃σ) is closed under Kleene star. REG(∃σ) is not closed
under union, intersection, complementation, intersection with regular languages,
concatenation, morphisms, substitutions and inverse morphisms.



22 Dassow, Manea and Mercaş

Proof. For morphisms, substitutions, inverse morphisms, intersection, and in-
tersection with regular sets we repeat the proofs given for REG(∃) above using
the same languages.

Union and concatenation: We take L1 = {ban�n | n ∈ N, n ≥ 1} and
L2 = {abn�n | n ∈ N, n ≥ 1} which are in REG(∃σ) (take the morphisms
mapping a to a, b to b and � to a and b, respectively). Now let σ be a substitution
with σ(a) = a and sigma(b) = b. If a ∈ sigma(�), then

σ(L1 ∪ L2) ∩ {a}{b}∗{a∗} = {abnan | n ∈ N}

which is not regular. By the closure properties of REG, σ(L1 ∪ L2) /∈ REG.
Analogously, we can prove that b ∈ σ(�) implies σ(L1 ∪ L2) /∈ REG. Moreover,
when σ(�) does not contain a or b, a similar argument shows that σ(L1 ∪ L2) /∈
REG. Thus L1 ∪ L2 /∈ REG(∃σ).

By analogous arguments, it follows that L1 · L2 is not in REG(∃σ).
It is worth noting that L1 and L2 from the above proof are over the same

alphabet.

Kleene-star: Since σ(L)∗ = σ(L∗) for any substitution, the class REG(∃σ) is
closed under Kleene-star.

Complementation: Let L′ = {(ab)n�b(ab)n | n ∈ N} ∪ {(ab)na�(ab)n | n ∈
N}. We remember that L′ is not in REG(∃σ) (see the proof of Theorem 10). We
set L = {a, b, �}∗\L′. We note that L′ is in REG(∃σ). Indeed, {�n | n ∈ N} ⊂ L′,
so the substitution σ that leaves a and b unchanged and maps � to {a, b} maps
L to {a, b}∗. However, the complement of L (with respect to the set {a, b, �}∗, as
these are the letters that appear in L) is obviously L′, which is not in REG(∃σ).
So REG(∃σ) is not closed under complementation. ut

Finally, let us investigate the closure properties of the REGmax class of
languages.

Proposition 6. The class REGmax is closed under union between languages
over the same alphabet, concatenation between languages over the same alpha-
bets, and Kleene-star. REGmax is not closed under general union, intersec-
tion, intersection with regular languages, complementation, general concatena-
tion, morphisms, substitutions, and inverse morphisms.

Proof. The closure under Kleene-star follows as in the preceding proof.

Morphisms, substitutions, and inverse morphisms: We consider the language
L = ∪n∈N{a, b}n{�}n. WE have that L is in REGmax (since the substitution
mapping a and b to itself and � to {a, b} gives the regular language ({a, b}2)∗.
The morphism σ mapping � to b and leaving a and b in place leads to σ(L) =
∪n∈N{a, b}n{b}n, which is a context-free non-regular language of full words,
thus, not contained in REGmax.

For the case of inverse morphism, we consider the morphism which maps a
to a, b to b and c to �.



Partial Words and Regular Languages 23

Union and Concatenation: We take the languages L = {an�n | n ∈ N} and
L = {ab}. Both these languages are in REGmax, but neither their union nor
their catenation is in this class.

However, note that the fact that REGmax is not closed under union and
concatenation followed from the fact that the two languages that were used
were over different alphabets (differently from the case of REG(∃σ), above). Let
us assume that we have L1 and L2 languages from REGmax over the same
alphabet; it is rather simple to prove that both L1 ∪ L2 and L1L2 are also in
REGmax.

Complementation: Let L′ = {(ab)n�b(ab)n | n ∈ N}. From the proof of
Theorem 10, we know that L′ is not in REGmax. Let L = {a, b, �}∗ \ L′. Note
that L is in REGmax (since {�n | n ∈ N} ⊂ L, so that substitution σ from
the definition of REGmax maps L to {a, b}∗. However, its complement (with
respect to the set {a, b, �}∗) is obviously L′, which is not in REGmax.

Intersection and intersection with regular languages: Let L1 = {a, b}∗ ∪ {w |
w ∈ {a, b, �}∗, |w|a ≥ |w|�} and L2 = {b}{a, �} ∗ ∗{�}{a, �}∗ (that is, L2 con-
tains words that start with b but follow with a word formed only from a and �
symbols, and has at least a � symbol). It is rather clear that both of them are
in REGmax. In fact, the image of the first through the substitution σ from the
definition of REGmax is {a, b}∗, while the second language is already regular.
Their intersection is L = {b}{w | w ∈ {a, �}∗, |w|a ≥ |w|� ≥ 1}. The image of
this language through σ is the set L = {b}{w | w ∈ {a, b}∗, |w|a ≥ |w|b}, which
is a context-free non-regular language. ut

Finally, the following remark seems interesting to us.

Proposition 7. There exist three languages L, L′ and L′′ with L < L′ < L′′

such that both L and L′′ are from REGmax but L′ /∈ REGmax.

Proof. To see this consider the languages L = {�2n+1 | n ∈ N}, L′ = {ban�n |
n ∈ N}, and L′′ = ∪n∈N{a, b}2n+1. It is straightforward that L < L′ < L′′

holds in this case, but, following the previous discussions, L′ /∈ REGmax while
L,L′′ ∈ REGmax. ut


	Connecting Partial Words and Regular Languages
	Jürgen Dassow, Florin Manea, and Robert Mercas

