BERICHTE
aus dem
INSTITUT FÜR MEERESKUNDE
an der
CHRISTIAN-ALBRECHTS-UNIVERSITÄT - KIEL

Nr. 173
1987

Forschungsschiff METEOR
Reise Nr. 4

Kapverden-Expedition
Oktober - Dezember 1986

Berichte der wissenschaftlichen Leiter

G. Siedler, H. Schmickler (Koordinatoren)
T.J. Müller, H.-W. Schenke, W. Zenk

DOI 10.3289/IFM_BER_173

Kopien dieser Arbeit können bezogen werden von:
Institut für Meereskunde an der Universität Kiel
Abt. Meeresphysik
Düsternbrooker Weg 20
2300 Kiel 1 - FRG -

ISSN 0341 - 8561 -
BERICHTE
aus dem
INSTITUT FÜR MEERESKUNDE
an der
CHRISTIAN-ALBRECHTS-UNIVERSITÄT · KIEL

Nr. 173
1987

Forschungsschiff METEOR
Reise Nr. 4

Kapverden-Expedition
Oktober - Dezember 1986

Berichte der wissenschaftlichen Leiter
G. Siedler, H. Schmickler (Koordinatoren)
T.J. Müller, H.-W. Schenke, W. Zenk

Kopien dieser Arbeit können bezogen werden von:
Institut für Meereskunde an der Universität Kiel
Abt. Meeresphysik
Düsternbrooker Weg 20
2300 Kiel 1 - FRG -

ISSN 0341 - 8561 -
Die "Berichte der wissenschaftlichen Leiter" erscheinen im Anschluß an Expeditionen des Forschungsschiffes "Meteor" als Arbeitsunterlagen für die Beteiligten, als Berichte für die DFG und ihre Senatskommission für Ozeanographie und als Information für Interessierte.

Das Vorhaben wurde gefördert durch die Deutsche Forschungsgemeinschaft.

Anscriptions der Verfasser:

G. Siedler, T.J. Müller, W.Zenk
Institut für Meereskunde an der Universität Kiel
Düsternbrooker Weg 20
D-2300 Kiel

H. Schmickler
Institut für Meereskunde der Universität Hamburg
Leitstelle Meteor
Tropowitzstr. 7
D-2000 Hamburg

H.-W. Schenke
Alfred-Wegener-Institut für Polar- und Meeresforschung
Columbus-Center
D-2850 Bremerhaven

- 2. berichtigte Auflage -
Zusammenfassung

Der erste Teil der METEOR-Fahrt Nr. 4 zwischen Kiel und Lissabon umfaßte ein technisch-wissenschaftliches Programm zur Erprobung des Fächerecho-
lotssystems HYDROSWEEP und der integrierten Navigationsanlage INS. Der
vorliegende Bericht gibt einen Überblick über den Ablauf der Arbeiten
und die Ergebnisse dieses überwiegend schiffttechnischen Vorhabens. Der
zweite Teil der Fahrt von Lissabon über Sta.Cruz und Dakar nach Kiel
enthielt ein multidisziplinäres Forschungsprogramm im Kanaren- und Kap-
Verde-Becken. Schwerpunkt war die Untersuchung der Zirkulation und Ver-
mischung im östlichen Teil des norderlantischen Subtropenwirbels. Zu-
sätzlich zu den hierfür erforderlichen physikalischen und chemischen
Meßprogrammen wurden chemische Probennahmen zur Bestimmung des ozeani-
schen Partikelflusses, luftchemische Beobachtungen des Sahara-Aerosols
und aerologische Messungen zur Parametrisierung der atmosphärischen
Grenzschicht durchgeführt. Der Bericht beschreibt den Ablauf der Arbeiten
und zeigt vorläufige Ergebnisse.

Summary

The first part of METEOR cruise no. 4 between Kiel and Lisbon included a
technical and scientific testing program. The aim was to test the new
side-looking echosounder system HYDROSWEEP and the integrated navigation
system INS. This report summarizes the activities and presents results of
this project. The second part of the cruise from Lisbon via Sta.Cruz and
Dakar to Kiel included a multidisciplinary research program in the Canary
and Cape Verde Basins. The principal aim was to study the circulation
and mixing in the eastern part of the North Atlantic subtropical gyre. In
addition to the related physical and chemical measurements the following
program was carried out: Sampling with sediment traps for the determination
of the oceanic particle flux, air chemistry measurements for the observa-
tion of Sahara aerosol, and aerological measurements in the atmospheric
boundary layer. The report summarizes the observational program, and
tentative results are presented.
<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Forschungsthemen und Arbeitsgebiete</td>
<td>5</td>
</tr>
<tr>
<td>2. Fahrtabschnitt 1, Kiel-Brest-Lissabon, 3.10. - 26.10.1986</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Teilnehmer</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Technisch-wissenschaftliches Erprobungsprogramm</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Ablauf der Reise</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Vorläufige Ergebnisse</td>
<td>19</td>
</tr>
<tr>
<td>2.4.1 HYDROSWEEP</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2 Navigation</td>
<td>34</td>
</tr>
<tr>
<td>2.4.3 PARASOUND</td>
<td>35</td>
</tr>
<tr>
<td>2.4.4 Luftchemie</td>
<td>40</td>
</tr>
<tr>
<td>2.4.5 Zusammenfassung</td>
<td>41</td>
</tr>
<tr>
<td>3.1 Teilnehmer</td>
<td>44</td>
</tr>
<tr>
<td>3.2 Forschungsprogramm</td>
<td>46</td>
</tr>
<tr>
<td>3.2.1 Meeresphysik, Tracerphysik</td>
<td>46</td>
</tr>
<tr>
<td>3.2.2 GEK-Messungen</td>
<td>47</td>
</tr>
<tr>
<td>3.2.3 Meereschemie</td>
<td>48</td>
</tr>
<tr>
<td>3.2.4 Luftchemie</td>
<td>49</td>
</tr>
<tr>
<td>3.2.5 Aerologie</td>
<td>50</td>
</tr>
<tr>
<td>3.3 Ablauf der Reise</td>
<td>51</td>
</tr>
<tr>
<td>3.4 Vorläufige Ergebnisse</td>
<td>59</td>
</tr>
<tr>
<td>3.4.1 Hydrographie, GEK-Messungen</td>
<td>59</td>
</tr>
<tr>
<td>3.4.2 Verankerte Geräte</td>
<td>83</td>
</tr>
<tr>
<td>3.4.3 Meereschemie</td>
<td>108</td>
</tr>
<tr>
<td>3.4.4 Luftchemie</td>
<td>109</td>
</tr>
<tr>
<td>3.4.5 Aerologie</td>
<td>112</td>
</tr>
<tr>
<td>4. Listen</td>
<td>113</td>
</tr>
<tr>
<td>4.1 Stationen</td>
<td>113</td>
</tr>
<tr>
<td>4.2 XBT</td>
<td>115</td>
</tr>
<tr>
<td>4.3 Verankerungen</td>
<td>120</td>
</tr>
</tbody>
</table>

Schlußbemerkung | 121 |
Literatur | 122 |
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Research topics and working area</td>
<td>5</td>
</tr>
<tr>
<td>2. Leg 1, Kiel-Brest-Lissabon, 3 Oct. - 26 Oct. 1986</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Participants</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Technical and scientific testing program</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Activities</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Tentative results</td>
<td>19</td>
</tr>
<tr>
<td>2.4.1 HYDROSweep</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2 Navigation</td>
<td>34</td>
</tr>
<tr>
<td>2.4.3 PARASOUND</td>
<td>35</td>
</tr>
<tr>
<td>2.4.4 Air chemistry</td>
<td>40</td>
</tr>
<tr>
<td>2.4.5 Summary</td>
<td>41</td>
</tr>
<tr>
<td>3.1 Participants</td>
<td>44</td>
</tr>
<tr>
<td>3.2 Research program</td>
<td>46</td>
</tr>
<tr>
<td>3.2.1 Marine physics, tracer physics</td>
<td>46</td>
</tr>
<tr>
<td>3.2.2 GEK observations</td>
<td>47</td>
</tr>
<tr>
<td>3.2.3 Marine chemistry</td>
<td>48</td>
</tr>
<tr>
<td>3.2.4 Air chemistry</td>
<td>49</td>
</tr>
<tr>
<td>3.2.5 Aerology</td>
<td>50</td>
</tr>
<tr>
<td>3.3 Activities</td>
<td>51</td>
</tr>
<tr>
<td>3.4 Tentative results</td>
<td>59</td>
</tr>
<tr>
<td>3.4.1 Hydrography, GEK observations</td>
<td>59</td>
</tr>
<tr>
<td>3.4.2 Moored Devices</td>
<td>83</td>
</tr>
<tr>
<td>3.4.3 Marine Chemistry</td>
<td>108</td>
</tr>
<tr>
<td>3.4.4 Air chemistry</td>
<td>109</td>
</tr>
<tr>
<td>3.4.5 Aerology</td>
<td>112</td>
</tr>
<tr>
<td>4. Lists</td>
<td>113</td>
</tr>
<tr>
<td>4.1 Stations</td>
<td>113</td>
</tr>
<tr>
<td>4.2 XBT</td>
<td>115</td>
</tr>
<tr>
<td>4.3 Moorings</td>
<td>120</td>
</tr>
<tr>
<td>Final remarks</td>
<td>121</td>
</tr>
<tr>
<td>References</td>
<td>122</td>
</tr>
</tbody>
</table>
1. Forschungsthema und Arbeitsgebiete


Parallel zu den ozeanischen Beobachtungen wurde im luftchemischen Meßprogramm die Größenverteilung von Aerosolen aus der Sahara erfaßt, um ihre Bedeutung für die Verminderung der Sonnenstrahlung in diesem Seengebiet zu klären. Außerdem wurden aerologische Ballonaufstiege zur Untersuchung der atmosphärischen Grenzschicht durchgeführt.
Abb. 1.1: Fahrtroute und Vermessungsgebiete 0 bis 6 für Tests der Lot- und Navigationsanlagen während M4/1
2. Fahrtabschnitt 1
Kiel - Brest - Lissabon, 3.10. - 26.10.1986

2.1 Teilnehmer

Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven
Schenke, H.-W., Dr.-Ing., wiss. Fahrtleiter
Heidland, K., Dipl.-Ing.
Jahnke, C., Frau
Stael v.Holstein, V., Dipl.-Ing., Frau

Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover
Kudrass, H.-R., Dr.

Deutsches Hydrographisches Institut, Hamburg
Gruber, M., Kapt.Dipl.-Ing.
Klueder, H., Dipl.-Ing.
Schrick, K.-W., Prof. Dr.-Ing.

IFREMER/Bureau National des Donnees Oceaniques,
Centre de Brest de l'IFREMER, Brest, Frankreich
Moussat, E.

Institut für Angewandte Physik der Universität Kiel
Frenzel, S.

Institut für Erdmessung, Universität Hannover
Heimberg, F., Dipl.-Ing.
Hornburg, W., stud.geod.

Institut für Kartographie, Universität Hannover,
Claussen, H., Dipl.-Ing.

Institut für Meteorologie der Universität Mainz,
Franken, F., Ing.
Friederich, B., TA
Stingl, J., Dipl.-Met.

Krupp Atlas Elektronik GmbH, Bremen
Aechter, B.
Becker, G., Frau
Block, P.
Bruns, R.
Freking, B.
Neu, W.
Oesterle, A., Frau
Sander, H.-D.
Voss, W.
Ziese, R.

Schlichting Werft GmbH, Lübeck-Travemünde
Otten, K.-P., Dipl.-Min.

Zentralstelle für Schiffs- und Maschinenotechnik, Hamburg
Hoffmann, K., Dipl.-Ing.
2.2 Technisch-wissenschaftliches Erprobungsprogramm


Die Erprobung soll über folgende Fragestellungen Auskunft geben:

- Leistungsfähigkeit, Genauigkeit und Handhabung des Fächerlotes HYDROSWEEP im Flachwasserbereich und in der Tiefsee,

- Untersuchungen zur Bestimmung der mittleren Wasserschallgeschwindigkeit mit dem HYDROSWEEP,

- Überprüfung der Integrierten Navigationsanlage INS und Vergleiche mit präzisen GPS/NAVSTAR-Positionsdaten,

- Funktion, Bedienbarkeit und Ergebnisanalyse des Post-Processing-Systems HYDROMAP für HYDROSWEEP- und Navigationsdaten.

- Überprüfung des neuen Pilotonverfahrens für das Sedimentloti-System PARASOUND.

- Untersuchungen zum Unterwasser-Gerauschpegel des Schiffes.

- Überprüfung weiterer schiffstechnischer Einrichtungen, z.B. Winden.
Zusätzlich zu diesem technisch-wissenschaftlichen Programm war ein luftchemisches Programm des Instituts für Meteorologie der Universität Mainz vorgesehen (s. 3.2.4).

Kalibrierung der HYDROSweep-Anlage
Nach dem im September erfolgten Umbau des Bugbereiches der METEOR sollte die Erprobung und anschließende Abnahme des Kartierungslotes HYDROSweep der Firma Krupp Atlas Elektronik GmbH erfolgen. In dem dafür vorgesehenen Teil waren folgende Arbeiten geplant:

- Flachwassertests bei Wassertiefen von 10 bis 50 m auf der Anreise in die Biskaya,

- Kalibrierung der Anlage mit Anlaufen eines weitgehend ebenen Areals mit einer mittleren Wassertiefe von mindestens 4000 m,

- Bestimmung der systematischen Fehler und der statistischen Kenngrößen dieser Fehler,

- theoretische Berechnung der Grenzreichweite auf Grund der gemessenen Daten des Bodenrückstreuastes und des Eigenstörpegels der METEOR,

- Bestimmung der Fehlergrößen bei Ortung und am Hang,

- nochmalige Flachwasservermessung nach erfolgter Kalibrierung im Tiefwasser einschließlich der Erstellung einer Isobathenkarte,

- weitere Tests, um die Arbeitsfähigkeit des Systems bei unterschiedlichen Seegangseinfüssen zu belegen.

Da die Fehlererfassung des Systems HYDROSweep nur möglich ist, wenn exakte Daten zur Positionsbestimmung vorliegen, sollte speziell für den Problemkreis "Fehlerbestimmung am Hang" zusätzlich zu den Standardsensoren ein GPS-Navigationssystem eingesetzt werden.
Wissenschaftliche Erprobung von HYDROSweep
Für die neu entwickelte HYDROSweep-Anlage war eine umfassende Erprobung sowie der Vergleich mit Sollwerten unbedingt erforderlich, damit für die wissenschaftliche Nutzung die Zuverlässigkeit und Genauigkeit der gemessenen Daten abgeschätzt werden können. Die Tiefwassererprobung sollte hauptsächlich im Peake Trough (Lokation 5 in Abb. 1.1) bei Wassertiefen von ca. 6000 m erfolgen. Der Vergleich mit SEABEAM-Vermessungen erfolgte in der Iberischen Tiefsee (Lokation 4 in Abb. 1.1) anhand von Daten, die 1983 im NOAMP-Projekt gewonnen wurden. Folgende Punkte sollten im Rahmen der HYDROSweep-Erprobung gezielt untersucht werden:

- Funktionsüberprüfung und Datenanalyse bei Wassertiefen zwischen 4000 und 6000 m,

- Untersuchungen zur Genauigkeit der äußeren Schallkegel im Flachwasser- und Tiefseegebiet, besonders im Hinblick auf Fragen der Überlappung einzelner Meßstreifen bei flächenhafter Vermessung,

- Analyse der Meßdaten und Ergebnisse bei unterschiedlichen Schiffsgeschwindigkeiten und bei Kurvenfahrten,

- Überprüfung der Meßdaten und der fertigen Karten bei stark bewegter Meeresbodentopographie, besonders bei Fahrten an Steilhängen, und Umfang des Meßdatenverlustes bei Geländeneigungen größer als 25 Grad,

- Untersuchungen zur Richtungsabhängigkeit bei Fahrten über Steilhänge.

Überprüfung des Integrierten Navigationssystems INS

Im Rahmen der Erprobungsfahrt war weiterhin eine umfassende Überprüfung der integrierten Navigationsanlage vorgesehen. Es wurden zwei GPS/NAVSTAR-Empfänger (Global Positioning System) an Bord installiert, um unabhängige Vergleiche der Positionsdaten durchführen zu können. Da das GPS nur für etwa 12 bis 14 Stunden täglich verfügbar war, mußte für spezielle Untersuchungen die akutelle Satellitenkonstellation berücksichtigt werden. Es war zunächst geplant, die GPS-Daten zu registrieren und sie bei der späteren Datenbearbeitung (Post-Processing) mit den Positionen der INS zu vergleichen. Ziel der Untersuchungen war es, Aussagen über die erreichbare absolute Genauigkeit der Integrierten Navigationsanlage auf hoher See in mittleren geographischen Breiten zu machen. Die sehr hohe Auflösung der HYDROSWEEP-Anlage erlaubt eine detaillierte Erfassung kleiner Strukturen am Meeresboden. Es war daher vorgesehen, die Leistungsfähigkeit der INS auch mit Hilfe der Meeresbodentopographie zu überprüfen. Zu diesem Zweck sollten Profile in unterschiedlichen Wassertiefen mehrfach abgefahren werden.

Post-Processing

2.3 Ablauf der Reise

Ab 2.10.86 erfolgten die Installationsarbeiten für die GPS- und Syledis-Antennen sowie die Übernahme des VAX-Rechners vom IfM Kiel. Der Fahrtabschnitt begann dann am 3.10.86 um 10:00 Uhr mit dem Auslaufen in Kiel und Bunkern in Brunsbüttel. Während der Anreise in die Erprobungsgebiete in der Biskaya erfolgte die endgültige Einrichtung der Labor- und Computerarbeitsplätze. Weiterhin fanden Planungsbesprechungen zum Ablauf der Erprobungen statt.

Am 5.10.86 mußte wegen eines medizinischen Notfalls von der Reiseroute geringfügig abgewichen werden. Ein erkranktes Besatzungsmitglied wurde gegen 14:00 Uhr von einem Rettungshubschrauber der britischen Marine übernommen und in ein Hospital nach Southampton geflogen.

Am 6.10.86 wurde die Lokation 0 bei 47° 00.0’ N und 5° 43.0’ W am C. d’Audierne am oberen Kontinentalrand erreicht (Abb. 1.1). Beginnend von dieser Ausgangsposition wurde an einem gleichförmig abfallenden Hang von etwa 800 bis 4000 m Wassertiefe ein erstes HYDROSweep-Eichprofil orthogonal zum Verlauf der Isobathen gefahren. Die Navigation des Schiffes während der Profilfahrt erfolgte mit dem Global Positioning System GPS, das während der Expedition zweimal pro Tag genutzt werden konnte. Im gesamten Arbeitsgebiet erstreckten sich die Beobachtungszeiträume für GPS von etwa 01:00 UTC bis 07:00 UTC und von 13:00 UTC bis 21:00 UTC.

Am 7.10.86 versegelte die METEOR zur Lokation 1, Position 45° 50.0' N und 6° 40.0' W (siehe Abb. 1.1). Dort wurde zunächst mit den systematischen Unterwasserbeobachtungen der Luftblasenschleier fortgefahren. Es zeigte sich, daß die Luftblasenunterziehung bei Fahrt mit der Dünung wesentlich geringer ist als gegen die Dünung.

Am 8.10.86 wurde an der Lokation 1 im GPS-Fenster von ca. 04:00 bis 09:00 UTC eine erste flächenhafte HYDROSWEEP-Vermessung bei einer Wasser-tiefe von ca. 4800 m und mit einer Geschwindigkeit von 6 kn durchgeführt. Bei dem sehr ebenen Meeresboden traten Höhenänderungen von nur +/- 20 bis 30 m auf.

Am 8.10.86 von 10 bis 13 UTC wurde mit der Winde 2 auf der Position 45° 50.2' N und 6° 36.8' W eine CTD-Sonde mit Schallsensor bis 4500 m Seillin gege. Die Ergebnisse dieser und aller folgenden CTD-Stationen (s. 4.1., Stationen 288 - 292) wurden zur Verbesserung des von HYDROSWEEP gelieferten Wasserschallmodells verwendet. Bei dieser CTD-Station wurde gleichzeitig die neue Spulvorrichtung 2 getestet. Dabei zeigte sich, daß der Umschaltvorgang in der Spulrichtung vom Fieren zum Hieven nur durch manuelles Eingriff initialisiert werden konnte.


Die Tests und Erprobungen dieser ersten Tage hatten gezeigt, daß eine wesentliche Ursache für die Luftblasenbildung in den oberen Omnitruster-öffnungen zu suchen ist. Um möglichst gute Voraussetzungen zum weiteren Test der HYDROSWEEP-Anlage zu schaffen, wurde daher entschieden, nach Brest zu versegeln und dort diese Öffnungen mit Stahlplatten zu verschließen.

Am 9.10.86 um 09:30 Uhr wurde Brest erreicht. Die Marine Brest wurde über die Änderung der Fahrtplanung unterrichtet. In Brest wurden die Herren Abich und Krüger ausgeschifft.

Nach Beendigung der Schweißarbeiten lief METEOR am 10.10.86 um 01:06 von Brest in Richtung Lokation 1 aus. Bei der Überfahrt über den Schelfrand wurden an der Lokation 0 weitere HYDROSWEEP-Vermessungen durchgeführt und Vergleiche mit den ersten Vermessungen gemacht.

Am 10.10.86 um 14:00 UTC wurde entsprechend dem Erprobungsplan die HYDROSWEEP-Vermessung an der Lokation 1 durchgeführt. Die Navigation erfolgte mit GPS und INS. Erneut wurden Luftblasen unter dem Schiffsboden festgestellt. Es herrschte eine ausgereifte lange Dünung vor. Die dadurch erzeugten Stempbewegungen des Schiffes tragen einen wesentlichen Anteil zur Bildung eines Luft-Wasser-Gemisches bei, das dann unter das Schiff gezogen wird und die Messungen empfindlich stört.

Zwischen den GPS-Fenstern wurden Erprobungen mit den Winden 3 und 9 durchgeführt.


Ab 12.10.86 um 09:30 UTC erfolgte die Vermessung der Lokation 2B, ca. 10 sm nordwestlich von 2A. Dieses Gebiet ist ebenso wie die Lokation 2A bereits von der JEAN CHARCOT mit SEABEAM vermessen worden. Da das Arbeitsgebiet bis zum 12.10.86 um 24:00 UTC verlassen werden mußte, wurde das geplante Raster zunächst mit INS vollständig abgefahren. Anschließend erfolgte eine genaue Vermessung mit GPS, wobei die beiden letzten Profile 1011 bis 1415 erneut nur mit der INS vermessen wurden, da GPS nicht mehr zur Verfügung stand.
Bei einem Profilabstand von 2 km und einer mittleren Wassertiefe von 3500 m betrug die Streifenbreite ca. 7000 m. Es war also eine mehr als doppelte Überlappung der Streifen gewährleistet. Die Profile wurden mit unterschiedlicher Schiffsgeschwindigkeit aufgenommen. Mit den hier gewonnenen Daten steht für detaillierte Genauigkeitsüberprüfungen ausgezeichnetes Datenmaterial zur Verfügung.

Die HYDROSweep-Vermessungen der Lokation 2B wurden an Bord mit den vorhandenen Post-Processing-Programmen des Instituts für Kartographie, TASH, und SEABONE des Alfred-Wegener-Instituts ausgewertet.


Am 15.10.86 um 01:00 UTC lief METEOR aus Brest in Richtung Iberische Tiefsee aus, um im NDAMP-Gebiet Vergleichsmessungen zu vorhandenen SEABEAM-Kartierungen durchzuführen. Während der Anreise von etwa 600 sm wurde die HYDROSweep-Anlage durch die an Bord verbliebenen KAE-Mitarbeiter mehrfach

METEOR erreichte die Lokation 4 im NOAMP-Gebiet bei 47° 30' N und 19° 22' W am 17.10.86 um 04:00 UTC. Die Testprofile wurden dort angelegt, wo bereits gute SEABEAM-Messungen von POLARSTERN vorlagen. Markante Meeresbodenstrukturen im Gebiet des sog. "Dreizack", das bereits während der METEOR-Reise Nr. 2 Gegenstand gezielter mariner Untersuchungen war, boten sich als Erprobungsgebiet besonders an. Es war vorgesehen, in zwei Vermessungsabschnitten einmal mit Nord-Süd-Profilen und danach mit Ost-West-Profilen das geplante Gebiet unter bestmöglicher Ausnutzung der GPS-Fenster zu erfassen.


Während der Überfahrt konnten bei starker achterlicher Dünnung und Windstürmen von 5 bis 6 sogar bei einer Fahrtgeschwindigkeit von etwa 12 Knoten gute HYDROSHEEP-Messungen durchgeführt werden.


Aufgrund der sich verschlechternden Wetterverhältnisse wurden die Vermessungen am 22.10.86 um 09:00 UTC beendet und Kurs auf Lissabon genommen. Während der Rückfahrt wurden zusätzlich zwei kleinere Seamounts vermessen. Der erste Seamount bei Lokation 6 bei 40°45' N und 14°45' W wurde teilweise mit GPS am 23.10.86 vermessen, der zweite am 24.10.86 auf der Position 40°30' N und 14°00' W. Beide Vermessungen zeigten erneut, daß HYDROSweep-Vermessungen bei einer langen ausgereiften Dünung wegen der Luftblasen nur in einer Richtung erfolgen können.

2.4 Vorläufige Ergebnisse

2.4.1 HYDROSWEEP-Erprobung

Im Rahmen der Vorbereitung wurden Anpassungsprogramme für die Verarbeitung der HYDROSWEEP-Daten und der Navigationsdaten aus der INS entwickelt. Um eine Überprüfung der Auswertemodelle zu ermöglichen, wurden die Programme TASH der Universität Hannover (KRUSE 1987) und SEABONE des Alfred-Wegener-Instituts zur Berechnung der digitalen Geländemodelle (DGM) und der Isolinien verwendet.

Die an Bord begonnenen und im Rahmen des Post-Processing fortgesetzten Auswertungen und Untersuchungen umfassen bisher im wesentlichen folgende Untersuchungen:


3. Überprüfung der Genauigkeit einzelner HYDROSWEEP-Streifen bei großer Überlappung der Streifen.

Zu 1.: Die Längsüberdeckung aufeinanderfolgender HYDROSWEEP-Messungen beträgt bei einer Wassertiefe von 4000 m, einer Schiffsgeschwindigkeit von 10 Knoten und einer Meßfolge von 13 Sekunden etwa 58%. Um ein Maß für das Meßrauschen aller 59 Beams angeben zu können, wurde nach einer Trendabspaltung mittels Regressionsgeraden durch 10 Meßepochen die Streuung für einzelne Beams berechnet. Eine
detaillierte Beschreibung des Verfahrens findet sich in HÖLTJE (1987). Die Berechnungen der Standardabweichungen wurden für die Flachwasser-
vermessung der Lokation 3 und für einige Profile der Lokation 2B
durchgeführt. Das Ergebnis der Flachwasservermessung zeigt Stan-
dardabweichungen von etwa +/- 1 m im Zentralbereich des Sonarfächers
(Abb. 2.2), nach außen steigen die Standardabweichungen auf etwa
 +/- 1 bis 2 m.

Im Bereich der Lokation 2B wurden die Profile 3 und 5 untersucht
(Abb. 2.3). Der Vergleich zwischen den Profilen zeigt, daß die Stan-
dardabweichungen beim Profil 5, das kleinere Tiefenanomalien auf-
weist, geringfügig niedriger sind. Die Werte für die Standardabwei-
chungen liegen bis zum Beam 15 deutlich unter +/- 10 m.

Die berechneten Standardabweichungen zeigen bei allen Profilen eine
Systematik. Sofern keine groben Meßehler in den Daten vorhanden
sind, nimmt das Meßrauschen, wie zu erwarten, vom Zentralbeam zu den
äußeren Beams zu. Die Ursache hierfür liegt in den geometrischen
Verhältnissen und in den physikalischen Eigenschaften des Mediums
Wasser und des Meeresbodens. Es wurde festgestellt, daß das Anstei-
gen des Meßrauschen nach außen bei HYDROSWEEP-Messungen kleiner ist
als bei SEABEAM-Messungen. Die berechneten Standardabweichungen für
die Lokation 2B bei max. 4000 m Wassertiefe liegen etwa bei +/- 15 m.
Sie sind damit etwa halb so groß wie die vom Hersteller angegebene
innere Genauigkeit über den gesamten Fächer von 1% der Wassertiefe.

Zu 2.: Vollständige Auswertungen und detaillierte Untersuchungen im Post-
Processing wurden bisher nur mit den Messungen der Lokation 2B durch-
geführt, da von diesem Testgebiet umfassendes Datenmaterial vorliegt
und die Meßwerte nicht durch die Luftblasenunterziehungen gestört
sind. Vorläufige Auswertungen und Vergleiche liegen von den Lokatio-
nen 2A, 4 und 5 vor. Die HYDROSWEEP-Daten dieser Messungen müssen
durch einen sehr zeitaufwändigen Bearbeitungsprozeß von groben Meß-
fehlern bereinigt werden. Weitere Testprofile wurden am Kontinental-
hang an der Lokation 0 und in der Tiefsee-Ebene an der Lokation 1
angelegt. Diese Testprofile konnten jedoch wegen notwendiger Kali-
brierungsarbeiten an der HYDROSWEEP-Anlage zeitweise nicht vollstän-
dig durchgemessen werden.
STANDARDABWEICHUNGEN
LOCATION 3

Abb. 2.2: Standardabweichungen der Flachwasservermessungen an der Location 3 (aus Höltje 1987)
STANDARDABWEICHUNGEN 3-3
LOCATION 2B

STANDARDABWEICHUNGEN 3-5
LOCATION 2B

Abb. 2.3: Standardabweichungen an der Location 2B
Profil 3 und Profil 5 (aus Höltje 1987)

Abb. 2.4: On-line-Plot der HYDROSWEEP-Messung
LOCATION 2B

Ausschnitt aus der SEABEAM-Karte
des IFREMER, Brest / Location 2B

Abb. 2.5: Ausschnitt der SEABEAM-Vermessung der JEAN CHARCOT, Isolinienabstand 20 m.
Abb. 2.6: Location 2B / Isolinienauswertung der HYDROSWEEP-Vermessung mit TASH, Isolinienabstand 20 m.


Zu 3.: Der unter 1. festgestellte Genauigkeitsverlust in den Äußeren Beams zeigt sich auch bei der Berechnung der Isolinien. Es wurden daher spezielle Untersuchungen mit den Profilen 1, 2 und 3 durchgeführt, da sie große Überlappungen aufweisen. Die Abb. 2.10 enthält einen Ausschnitt aus dem inneren Bereich des Profils 3. Dieser Ausschnitt liegt im Randbereich des Profils 1 und im mittleren Bereich des Profils 2. Der Vergleich dieser drei Profile zeigt große Lagefehler in den Isolinien des Profils 1. Sie betragen teilweise einige hundert Meter.
Es muß daher untersucht werden, inwieweit diese Genauigkeitsverluste bei der Herstellung großmaßstäblicher Karten 1:25 000 oder 1:50 000 zu so fehlerhaften Isolinenberechnungen führen, daß die Messungen der äußeren Beams eliminiert werden müssen.

Aus den mit GPS vermessenen Profilen der Lokation 2B (Abb. 2.9) wurde mit den unter 2. ermittelten optimalen Parametern ein Soll-DGM ermittelt, mit dem die einzelnen Profile verglichen wurden. Hierdurch können Aussagen über die Genauigkeit der einzelnen HYDROSweep-Messungen getroffen werden. Im Rahmen der Genauigkeitsuntersuchungen wurden Vergleiche zwischen dem Soll-DGM und den einzelnen gemessenen Tiefenpunkten in jedem Profil durchgeführt. Die Untersuchungen erfolgten für alle Profile, also auch für die nur mit INS gefahrenen. Für die GPS-Positionen kann eine Genauigkeit von ca. +/- 20 bis 30 m erwartet werden, bei der Navigation nur mit INS muß bei einem gradlinigem Kurs von einer Positionsgenauigkeit von +/- 100 bis 150 m ausgegangen werden. Die Messungen eines jeden HYDROSweep-Streifens wurden mit den entsprechenden Rasterhöhen des Soll-DGM verglichen. Die Abweichungen ergeben einen empirischen Wert für die absolute Genauigkeit. In jedem untersuchten Profil wurden etwa 8000 Punkte verglichen. Folgende mittlere Abweichungen wurden berechnet:

- für Tiefenmessungen mit GPS-Positionen +/- 20 m
- für Tiefenmessungen mit INS Positionen +/- 33 m.

Auch diese Genauigkeitsuntersuchungen zeigen, daß die HYDROSweep-Messungen ohne Ausnahme im Bereich der vom Hersteller angegebenen Maßfehler liegen.

Die bisher erzielten Ergebnisse und Untersuchungen zeigen, daß das HYDROSweep-System in der Lage ist, den Meeresboden weitgehend unabhängig von Struktur und Morphologie mit dem gesamten Sonarfächer bis zu einer Tiefe von 6 000 m kontinuierlich zu vermessen. Hierzu ist es jedoch notwendig, die immer noch zeitweise unter dem Schiffsboden auftretenden Luftblasenschleier von den Wandlerfenstern fernzuhalten oder weitgehend zu reduzieren. In welchem Umfang die äußeren Beams des Fächers zur Berechnung ei-
Abb. 2.7: Isolinienauswertung der SEABEAM-Vermessung
von Testgebiet Location 4/Iberische Tiefsee,
Isolinienabstand 20 m.
Abb. 2.8: Isolinienauswertung der HYDROSWEEP-Vermessung von Testgebiet Location 4/Tiberische Tiefsee, Isolinienabstand 20 m.
METEOR M4/1
Location 2B
Trackplot GPS

Abb. 2.9: Mit GPS vermessene HYDROSWEEP-Profile für die Erprobung
Abb. 2.10: Ergebnisse des digitalen Geländemodells (DGM) im zentralen Bereich des Profils 3 unter Benutzung der überlappenden Bereiche von Profil 1 (links), 2 (Mitte) und 3 (rechts). Lage der Profile s. Abb. 2.9.
nes digitalen Geländemodells für großmaßstäbige Karten verwendet werden können, ist Gegenstand weiterer Untersuchungen. Ebenso muß die Datenzuverlässigkeit und Qualität bei größeren Wassertiefen sorgfältig analysiert werden, wobei der Einfluß ungünstiger Dünungsverhältnisse berücksichtigt werden muß.

2.4.2 Navigation
Um die Leistungsfähigkeit und Genauigkeit der HYDROSweep-Anlage sinnvoll überprüfen zu können, mußte die Möglichkeit bestehen, Wiederholungsmessungen auf vorgegebenen Profilen durchzuführen. Da ist mit herkömmlichen integrierten Navigationsanlagen, wie sie mit der INS auf der METEOR genutzt wird, nicht möglich, da auf hoher See mit den TRANSIT-Satellitenfixen nur etwa stündlich ein quasi-wahrer Ort bestimmt werden kann. Aus diesem Grunde wurden für die Erprobungsfahrt GPS-Empfänger eingesetzt, die es ermöglichen, zumindestens während 11 bis 12 Stunden am Tag, aufgeteilt in zwei Meßfenster, eine kontinuierliche präzise Navigation des Schiffes mit einer absoluten Genauigkeit von etwa +/- 20 bis 30 m durchzuführen.


- Sicherung der Rohdaten auf den Plattendateien der VAX und des HP-Rechners
- Erzeugung einer Positionsdatei zur Erstellung eines on-line Trackplots
- Ausgabe von Zeit und Position an die HYDROSweep-Anlage nach Filterung
- Anzeige von Zeit, Ort, Geschwindigkeit, Profilabstand und Wegpunkte auf einem Brückenmonitor zur Schiffsführung.


2.4.3 PARASOUND


Abb.2.11: Vergleich GPS-INS-Profile von Location 2B
Track 1 bis 6: mit GPS positioniert (GPS-Tracks)
Track 7 bis 12: mit INS positioniert (INS-Tracks)
Im Flachwasserbetrieb konnte bei der Fahrt durch den Englischen Kanal die Basis der dort vorhandenen Riesenrippel unter einer Sandüberdeckung von etwa 15 Metern gut erfaßt werden (Abb. 2.12). In einigen Gebieten reichte die Energie aus, um ca. 5 m mächtige Sandschichten und etwa 10 m der eozänen Kalk-Mergel-Gesteine zu durchdringen. Teilweise wurde sogar innerhalb 30 m mächtiger Sandkörper, die sich im Bereich der Schelfkante, z.B. an der Castor Bank gebildet hatten, sichtbar.

In den Turbiditsedimenten der Biskaya Tiefsee-Ebene erzielte das PARASOUND in einer Wassertiefe von 4850 m eine Eindringung von etwa 30 m. Im NOAMP-Gebiet konnten bei Wassertiefen von 4550 m etwa 20 m Eindringung erreicht werden. Ansonsten waren die Vermessungen hier durch starken Seegang erheblich gestört.

Die Lokation 5, Peake Deep ist ein gegenüber der Umgebung um mehr als 1000 m abgesenktes, in sich abgeschlossenes Becken mit einer Länge von etwa 100 km und einer Breite von etwa 20 km. Der Boden ist mit großer Wahrscheinlichkeit mit mächtigen pelagischen Sedimenten bedeckt. In diesen Sedimenten erreichte das PARASOUND eine Eindringung von nahezu 100 m. In der Vertikalen zeigt sich eine Wechselfolge von engliegenden Reflektoren, die zum Beckenrand hin zusammenlaufen (Abb. 2.13).

Da die Einarbeitung in die Nutzung der PARASOUND-Anlage sich besonders hinsichtlich der verschiedenen Einstellmöglichkeiten als sehr schwierig und zeitaufwendig erwies, wurde eine Beschreibung und eine Auflistung der Standardinstellungen für Normal- und Pilotonbetrieb erarbeitet.

Folgende Änderungsvorschläge wurden für das PARASOUND erarbeitet:
2. Die automatische Annotierung von Geräteparametern muß auf ein Minimum reduziert werden, da sie die Aufzeichnungen erheblich stören.
3. Im Pilotonverfahren sollte die Signalfolge bei Wassertiefen zwischen 1000 und 3000 Metern erhöht werden, um eine bessere Sedimentdarstellung zu erreichen.
Abb. 2.12: Eozäne Sedimente im Englischen Kanal (50°31.45'N, 00°3.78'W), links mit gefüllter Rinne, rechts mit Riesenrippel und Schichtkämmen, 3.5 kHz, 3 Pulse
Abb. 2.13: Pelagische Sedimente nach rechts gegen ozeanisches Basement auskeilend, Peake Tief (43°08.65'N, 19°49.07'W), Wassertiefe 5969 m, 4 kHz, 4 Pulse
2.4.4 Luftchemie


Nach anfänglichen technischen Schwierigkeiten wegen der Abwärme der elektronischen Geräte konnten in den verbleibenden Tagen, wenn bei vorderlichen Windrichtungen die Möglichkeit gegeben war, einige Proben gewonnen werden. Es konnten wichtige Referenzmessungen im Gebieten des Atlantiks durchgeführt werden, in denen der Einfluß durch das Wüstenklima gering ist.

Alle Geräte der Aerosolmeßanlagen überstanden die Testphase des 1. Fahrtabschnittes erfolgreich und konnten somit auf den folgenden Fahrtabschnitten eingesetzt werden.
2.4.5 Zusammenfassung

Während des ersten Fahrtabschnitts der METEOR-Reise Nr. 4 wurde hauptsächlich ein umfangreiches technisch-wissenschaftliches Erprobungsprogramm mit der HYDROSWEEP-Anlage durchgeführt, um Leistungsfähigkeit und Genauigkeit dieses Fächerseasystems zu überprüfen.

Wichtigste Voraussetzung für eine präzise Vermessung des Meeresbodens mit höchster Auflösung ist eine gute Positionsbestimmung des Schiffes. Hierzu wurden während der Erprobungsfahrt mehrere GPS-Empfänger eingesetzt, die zur Zeit für etwa 11 bis 12 Stunden am Tag eine absolute Genauigkeit in der Positionierung von weit besser als 50 m erlauben. Pro Tag waren zwei GPS-Beobachtungsfenster nutzbar, die abhängig von der geographischen Lage etwa zwischen 01:00 und 08:00 UTC sowie zwischen 14:00 und 20:00 UTC lagen. Da zwischen mußte die Positionierung mit der integrierten Bord-Navigationsanlage INS erfolgen.

Auf der Grundlage der präzisen GPS-Positionsdaten wurde es möglich, bereits an Bord ein Post-Processing der HYDROSWEEP-Daten mit HYDROMAP und zwei eigenen unabhängigen Programmen durchzuführen.

Die erzielten Ergebnisse zeigen, daß das HYDROSWEEP-System in der Lage ist, den Meeresboden weitgehend unabhängig von der Struktur und Morphologie mit dem gesamten Sonarfächer bis zu einer Tiefe von mindestens 6000 m kontinuierlich zu vermessen, wenn es gelingt, die immer noch zeitweise unter dem Schiffsdeck auftretenden Luftblasenscheiben von den Wandler-Fenstern fernzuhalten oder weitgehend zu reduzieren.

Über die absolute Genauigkeit bei mehr als 4000 m Wassertiefe kann zur Zeit noch keine endgültige Aussage gemacht werden, da die Untersuchungen aus dem Testgebiet des Peake Trough noch nicht vollständig ausgewertet sind. Die innere Genauigkeit der HYDROSWEEP-Messungen liegt bei Wassertiefen von etwa 4000 m für alle Beams bei etwa +/- 10 m (1 Standardabweichung).

Geräuschpegelmessungen während des Einsatzes ergaben Eckwerte von maximal 44 db/μPascal für den isotropen Störpegel. Damit sind die akustischen Randbedingungen für den Einsatz der METEOR als Vermessungsschiff laut Spezifikation eingehalten.

Das zum System gehörende Post-Processing-System HYDROMAP wies mehrere Mängelpunkte auf, die in vorhandenen Einzelberichten mit Verbesserungsvorschlägen zusammengefaßt sind. Erste Testauswertungen während der Fahrt ließen jedoch erkennen, daß das System nach einer Einweisung durch Fachleute einfach zu nutzen ist.


Während des gesamten Fahrtabschnitts waren vorrangig die Lotanlagen zu testen. Wegen der geschilderten Bildung von Luftblasenteppichen unter dem Schiff mußte dies mit guten Ergebnissen vorwiegend bei achterlichen Winden geschehen, was die Probennahme von Aerosolen durch die luftchemische Arbeitsgruppe empfindlich störte. Diese Anlage konnte jedoch soweit in Betrieb genommen und getestet werden, daß sie auf dem Gegenwindkurs zum NOAMP-Gebiet und auf den folgenden Fahrtabschnitten einwandfrei arbeitete.

3.1 Teilnehmer

**Meeresphysik**

Institut für Meereskunde
an der Universität Kiel

- Siedler, Prof. Dr. G., wiss. Fahrtleiter
- Zenk, Dr. W., wiss. Fahrtleiter
- Müller, Dr. T.J., wiss. Fahrtleiter

<table>
<thead>
<tr>
<th>Fahrtnummer</th>
<th>Namenszusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Behrend, W., TA</td>
</tr>
<tr>
<td>3</td>
<td>Bellach, L., cand. rer. nat.</td>
</tr>
<tr>
<td>2,3</td>
<td>Carlsen, D., TA</td>
</tr>
<tr>
<td>2</td>
<td>Holtorff, J., TA</td>
</tr>
<tr>
<td>2,3</td>
<td>Kipping, A., TA</td>
</tr>
<tr>
<td>3,4</td>
<td>Klein, B., Dipl.-Oz., Frau</td>
</tr>
<tr>
<td>2,3</td>
<td>Knoche, M., cand. rer. nat.</td>
</tr>
<tr>
<td>2</td>
<td>Koy, U., TA</td>
</tr>
<tr>
<td>2-4</td>
<td>Meyer, P., Dipl.-Ing.</td>
</tr>
<tr>
<td>2-4</td>
<td>Saure, G., Dipl.-Oz.</td>
</tr>
<tr>
<td>4</td>
<td>Sommer, H.-J., cand. rer. nat.</td>
</tr>
<tr>
<td>2,3</td>
<td>Stramma, Dr. L.</td>
</tr>
<tr>
<td>2-4</td>
<td>Tietze, Ch., TA, Frau</td>
</tr>
<tr>
<td>3</td>
<td>Zangenberg, N., cand. rer. nat.</td>
</tr>
</tbody>
</table>

**Tracerphysik**

Institut für Umweltphysik
der Universität Heidelberg

- Böhnisch, G., cand. rer. nat.
- Oster, K., Dipl.-Phys.
- Schimmele, M., Dipl.-Phys.

**Angewandte Physik (GEK-Messungen)**

Institut für angewandte Physik
der Universität Kiel

- Boll, P., Dipl.-Phys.
- Hentschke, U., Dr.
- Talmat, A., Ing.
- Thomas, H.-R., Ing.
Meereschemie
Institut für Meereskunde
an der Universität Kiel

Johannsen, H., TA
Pohl, Ch., TA, Frau
Schulz, D., Dipl.-Chem.

Luftchemie
Institut für Meteorologie
der Universität Mainz

Dreiling, V., Dipl.-Met.
Helmes, L., Dipl.-Met., Frau
Maser, R., cand. rer. nat.

Aerologie
Seewetteramt Hamburg
Deutscher Wetterdienst

Bassek, D., Funkwettertechniker
Gerdes, H.-U., Bordmeteorologe
Hofmann, H., TA

Ausländische Gäste

Väisälä, Helsinki, Finnland
Puhakka, E.M., Ing.

Second Institute of Oceanography
Hangzhou, V.R. China
Xu Jianping
3.2 Forschungsprogramm

3.2.1 Meeresphysik, Tracerphysik

Ziel der Arbeiten ist die Beantwortung der folgenden Fragen:

- Welche Vermischungsvorgänge dominieren an der Zentralwassergrenze?

- Sind Strömungen entlang ozeanischer Fronten in diesem Gebiet wichtig für den großräumigen Massentransport?

- Wird das Maximum der Energie kleiner Wirbel verursacht durch Instabilitäten am Rand des großräumigen Subtropenwirbels? Ist der Energietransfer wichtig für die Gesamtbilanz der mechanischen Energie? Gibt es durch Instabilitäten des großräumigen Subtropenwirbels erzeugte Wirbelfelder?

- Wie ändert sich langzeitig das Strömungsfeld im östlichen Teil des Subtropenwirbels, also im Seegebiet zwischen den Azoren und den Kapverden?

3.2.2 GEK-Messungen

Im Hinblick auf die zentrale Zielsetzung des Sonderforschungsbereichs, nämlich die Erfassung und Quantifizierung von Massen- und Wärmetransporten in den verschiedenen Zweigen des Nordatlantischen Strömungssystems, sollten methodische Untersuchungen und angewandte Feldmessungen mit dem GEK (Geomagnetischer Elektrokinetograph) zusammen bearbeitet werden (Sanford, 1971; Krauss u.a., 1987).

Ferner sollten über die methodischen Untersuchungen hinaus Feldmessungen durchgeführt werden, die die Programme der meeresphysikalischen Arbeitsgruppe ergänzen und zu verbesserten Kenntnissen der Rezirkulation im Azoren/Kanaren/Kapverden-Bereich führen. Hierbei ging es sowohl um die quantitative Erfassung der mittleren Transporte als auch um spezielle regionale Erscheinungsformen der untersuchten Stromzweige wie Mäandrierung und Wirbelbildung.

3.2.3 Meeresschemie

Weitgehend ungeklärt ist auch, wie die Bildung und Sedimentation der partikulären natürlichen organischen Spurenstoffe (z.B. individuelle Zucker, Aminosäuren oder Aminozucker) sowie der Vertikaltransport von chlorierten Kohlenwasserstoffen (wie PCB's oder DDT) in der Wassersäule verläuft. Bei der letzteren Stoffklasse interessiert vor allem die Frage, inwieweit die Tiefsee durch Partikeltransport als Senke der anthropogenen Verbindungen angesehen werden kann.

Beide Projekte werden im Rahmen des von der DFG geförderten Vorhabens "Partikelfluß im Nordatlantik" durchgeführt.
Die Ziele während der Kapverden-Expedition waren:

- Bestimmung der Sedimentationsraten ausgewählter Spurenelemente und organischer Spurenstoffe in Abhängigkeit vom biologischen Partikelfluß,

- Bestimmung der chemischen und mineralogischen Zusammensetzung des sedimentierenden Materials in Abhängigkeit von Zeit, Wassertiefe und Partikelgröße,

- Erkenntnisse über den Mechanismus der Entstehung partikulärer Spurenstoffe, über die Art ihrer Bindung an die biogenen oder terrigenen Partikel in der Wassersäule sowie über die Geschwindigkeit ihrer Sedimentation in Abhängigkeit von der Jahreszeit.

3.2.4 Luftchemie

eine direkte Korrelation mit der Gesamteinstrahlung erreicht wird. Darüber hinaus sollte durch Radiosondenaufstiege die vertikale Mächtigkeit der Saharastaubschicht bestimmt werden.

3.2.5 Aerologie
3.3 Ablauf der Reise


Die METEOR lief am 28.10.86, 9.00, von Lissabon aus und auf südwestlichem Kurs (Abb. 1.2) die Position der Verankerung MW/311 (36° 01,9 N, 18° 01,1 W) an. Auf dem Weg wurden auf Station 293 (siehe 4.1) am 28.10.86 und auf Station 294 am 29.10.86 CTD-Messungen (Conductivity-Temperature-Depth-Sonde) durchgeführt, die der Erprobung der Geräte dienen sollten. Am 30.10.86 wurde die Verankerung MW geborgen, dann dort ein CTD-Profil aufgenommen. Am 31.10.86 wurde mittags die Station 296 erreicht, wo die Verankerung NL/276-7 (33° 08,5 N, 21° 57,6 W) geborgen wurde. Anschließend wurde ein Satellitendrifter mit Sedimentfallen-Attrappe (Abb. 3.1) ausgebracht. Es folgten je 2 Meßprofile mit DIPS (Drahtgeführte induktive Profilsonde) und CTD in der Nacht, und am Vormittag des 1.11.86 wurde die Verankerung NL/276-8 auf einer Tiefe von 5276 m auf 33° 06,7 N, 21° 55,1 W ausgelegt. Auf südlichem Kurs lief METEOR dann zur Position der Verankerung E/294-3 (28° 02,8 N, 20° 25,1 W) und nahm auf Station 297 am 2.11.86 diese Verankerung auf. Auch dort folgte eine CTD-Messung. Dann wurde auf östlichem Kurs die Position der Verankerung X/293-3 (28° 01,4 N, 18° 17,5 W) angelaufen, wo
Abb. 3.1: Aufbau des treibenden Meßsystems mit Sinkstoffalle in 160 m Tiefe und ARGOS-Boje mit Nahortungssender an der Oberfläche.
auf Station 298 am 3.11.86 die Verankerung aufgenommen und 2 CTD-Profile gewonnen wurden. Damit war das meeresphysikalische Programm dieses Fahrabschnitts beendet.


Die Radiosondengruppe testete auf der METEOR ein neues Radiosonden- system, das in Zukunft auf Handels- und Forschungsschiffen zum Einsatz kommen soll. Damit sollen dann die wegfallenden Wetterschifffdaten in gewissem Umfang ersetzt werden. Das System bestand aus einem 10-Fuß-Container, in dem sich eine automatische Ballonstartvorrichtung und eine automatische Radiosonden-Empfangsanlage befanden. Die verschlüsselten Meldungen wurden über eine DCP-Anlage (Data Collection Platform) zum Satellitenempfangszentrum in Darmstadt übermittelt. Vom 29.10. – 3.11.86 wurden jeweils zu den Terminen 00.00 und 12.00 UTC Aufstiege gestartet. Da ab 30.10.86 die DCP-Anlage ausfiel, gingen die restlichen Daten über Telex zum Seewetteramt.

Am Morgen des 4.11.86 machte die METEOR im Hafen von Sta.Cruz fest.


Die Aufnahme der Jahresverankerung Q/308 (21°59,0'N, 22°02,4'W) am Morgen des 7.11. wurde nach der akustischen Auslösung durch das Ausbleiben des Bojensendersignals verzögert. Bei der späteren Bergung fehlten die große gelbe Auftriebskugel und der obere Strommesser. Ein Bruch in der Zugstange dieses Gerätes hatte zum Verlust der genannten Komponenten geführt.


Auf einem Zickzackkurs, der auch die vierte und letzte Helium/Tritium- Station (Nr. 324) einschloß, fuhr METEOR zur Position W1/312 weiter. Die Verankerung W1/312 wurde bei 4 m Wellenhöhe am Morgen des 17.11. problemlos auf der Position 17°15,1'N, 20°15,9'W ausgelegt. Damit waren alle Veran-
Abb. 3.2: Aufbau der Verankerung Nr. 314, ausgelegt am 12.11.86 mit fünf Strömungsmessern und zwei Sedimentfallen auf Position W4
kerungsarbeiten abgeschlossen, und METEOR lief auf direktem Kurs nach Dakar. Auf dem Wege dorthin wurden nochmals im 1-Std-Intervall XBT-Sonden bis zur Überschreitung des Längengrades 18°W abgeworfen.

METEOR traf am 18.11., 08.45, in Dakar ein, wo abends der Kapitän und der Fahrtleiter mit Unterstützung der deutschen Botschaft zum Empfang geladen hatten. Am folgenden Tag Übergab Dr. Zenk die Fahrtleitung an Dr. T.J. Müller.

Das Schiff wurde am Vormittag des 19.11.86 von einer Gruppe von Wissenschaftlern und Journalisten der örtlichen Presse besichtigt. Im Laufe des Tages trafen die übrigen Fahrtteilnehmer ein, so daß die Labors eingerichtet bzw. übergeben werden konnten. Am Abend des 19.11. war dann der Personalaustausch erfolgt. Ausgestiegen waren Frau Pohl sowie die Herren Behrend, Bellach, Carlsen, Kipping, Knoche, Koy, Schulz, Dr. Stramma, Zangenberg, Dr. Zenk. Eingeschifft wurden die Herren Boenisch, Budich, Boll, Dr. Hentschke, Müller, Oster, Schimmele, Sommer, Talmat, Thomas.

Die Arbeitsgruppen kamen aus den Bereichen der Meeresphysik, Meereschemie, Spurenstoffphysik, Aerosolphysik, Angewandten Physik und Meteorologie.

Am 13.11.86 war in Hamburg endgültig entschieden worden, diesen letzten Fahrtabschnitt wegen eines notwendigen Werftaufenthaltes um eine Woche zu kürzen. Als spätester Einlauftermin mit anschließendem sofortigen Löschen in Kiel war der 8.12. um 06:00 festgelegt worden. Das ursprünglich vorgesehene Programm mußte deshalb um die Schnitte und Stationen südlich der Linie Dakar - Kapverden erheblich gekürzt werden. Eine weitere Einschränkung war durch den Ausfall der Winde W2 gegeben, so daß nur noch Profile bis 3500 m gefahren werden konnten.

Am 20.11. um 10:24 lief METEOR bei nordöstlichen Winden aus Dakar zu einem hydrographischen Schnitt von der afrikanischen Küste in Richtung der Kapverden aus. Auf 11 Stationen wurden CTD-Profiles bis 2000 m gewonnen und in 12 Tiefen mit einem Kranzwasserschöpfer Proben genommen, die zur Eichung
des CTD und der Bestimmung von Sauerstoff und Nährstoffen dienten. Eine
dieser Stationen bildete den Abschluß eines Meridionalschnittes für Helium
und Tritium, der während des vorangegangenen Abschnitts begonnen wurde,
und diente ausserdem dazu, die Analyseanlage für Freonen zu testen.

Nach Erreichen der Kapverden lief METEOR auf südwestlichem Kurs auf die
südlichste Position 10°N, 27°W zu, unterbrochen von zwei CTD-Stationen.
Hier begann ein Meridionalschnitt bis 28°N mit Stationsabständen zwischen
60 sm und 90 sm, auf dem mit Probennahmen für die Analyse von Freonen, Helium
und Tritium zwei Schnitte aus früheren METEOR-Reisen wiederholt wurden. Ziel
war es, die Vermischung im Frontalbereich der beiden atlantischen Zentral-
wassermassen und die Transporte im südöstlichen Teil des Subtropenwirbels
to untersuchen.

Am Spätnachmittag des 30.11. wurde die während des Abschnitts 2 ausgelegte
satellitengeortete Driftboje mit der Attrappe einer Sedimentfalle knapp
nördlich der Azorenfront auf ca. 34°N und 22°W aufgenommen. Bis hierhin
wurden ergänzend zu den CTD-Stationen XBT-Messungen durchgeführt und ein
GEK geschleppt. Die Aerosolmessungen und die Ballonaufstiege mit dem neuen
Radiosondensystem wurden auch auf diesem Abschnitt fortgesetzt.

Nach einer schnellen Heimreise, die durch ein bei Island liegendes Orkan-
tief mit südlichen bis südwestlichen Winden begünstigt wurde, machte
METEOR am 6.12. in Kiel fest.
3.4 Vorläufige Ergebnisse

3.4.1 Hydrographie, GEK-Messungen

Für die hydrographischen Messungen wurde ein CTD (Conductivity Temperature Depth)-System vom Typ Neil Brown Mark III mit Sauerstoffsensor (NB3-O₂) eingestellt, das mit einem 12 x 101 Kranzwasserschöpfer verbunden war, mit dem die Wasserproben zur in-situ Kalibrierung des CTD und zur Analyse von gelöstem Sauerstoff, Nährstoffen sowie der Spurengase Helium-3, Tritium, Freon-11 und -12 genommen wurden.

Während die Auswertung der Spurenstoffdaten noch andauert, konnten mit Hilfe des VAX-Rechners bereits an Bord erste Analysen der Verteilung von Temperatur, Salzgehalt, Dichte, Sauerstoff und der Nährstoffe sowie die in-situ Kalibrierung des CTD begonnen werden.

Druck-, Temperatur- und Leitfähigkeitsensorsen der benutzten CTD-Sonde NB3-O₂ wurden in Anlehnung an bekannte Verfahren in-situ kalibriert (Müller u.a., 1987). Sie lieferte mit einheitlichen Koeffizienten, die für alle drei Fahrzeugschnitte gelten, und niedrigen Standardabweichungen für die Restabweichungen zwischen Referenzwerten und kalibrierten CTD-Werten ein sehr gutes Ergebnis (Tabelle 3.1 u. Abb. 3.3).

Beim Sauerstoffsensor ist das Ergebnis dagegen bisher bei einem Fehler von 0.2 ml l⁻¹ unbefriedigend im Vergleich zu anderen Autoren (Owens und Millard, 1985), obwohl die Methoden, nämlich die Koeffizienten aus den beim Hieven gewonnenen Kalibrierpunkten zu bestimmen, vergleichbar sind. Es soll in weiteren Versuchen geklärt werden, ob das Ergebnis zu verbessern ist, wenn man die aus dem Hievprofil stammenden titrierten Daten und die Sensorwerte vom Fierprofil auf gleichen Dichteflächen als Kalibrierpunkte benutzt.
<table>
<thead>
<tr>
<th>P/\text{dbar}</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>s</th>
<th>M</th>
<th>N</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.69</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.15</td>
<td>110</td>
<td>50</td>
<td>&lt;0.5%</td>
</tr>
<tr>
<td>T/\text{°C}</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.015</td>
<td>319</td>
<td>4</td>
<td>&lt;0.015</td>
</tr>
<tr>
<td>C/\text{mS\ cm}^{-1}</td>
<td>-0.73\cdot10^{-2}</td>
<td>-0.127\cdot10^{-4}</td>
<td>0.1979\cdot10^{-4}</td>
<td>0.002</td>
<td>236</td>
<td>50</td>
<td>&lt;0.003</td>
</tr>
</tbody>
</table>

Tab. 3.1: In-situ Kalibrierkoeffizienten für Druck, Temperatur und Leitfähigkeit des CTD NB3-O_2 gemäß

\[ U = a_0 + (1+a_1) \cdot U_{\text{CTD}} + a_2 \cdot \text{Stat} \]

mit Stat als Stationsnummer, s als Standardabweichung über die Restdifferenzen von M Kalibrierpunkten bei N Freiheitsgraden und dem zu erwartenden Fehler e (95\% - Vertrauensniveau).

Abb. 3.3: Restdifferenzen nach der Kalibrierung des Leitfähigkeitsensors des CTD NB3-O_2 als Funktion der Stationsnummer
Aus der Fülle des gewonnenen Datenmaterials können hier lediglich Beispiele zur regionalen Hydrographie des Subtropenwirbels im Südosten des Nordatlantiks vorgestellt werden. Sie umfassen

- drei ausgewählte Stationen mit Vertikalprofilen der Temperatur, des Salz- und des gelösten Sauerstoffgehaltes sowie der beobachteten Nährstoffe,

- je einen hydrographischen Schnitt orthogonal zur Zentralwassergrenze und auf 27°W,

- einen hydrographischen Schnitt orthogonal zur Zentralwassergrenze in Dichtekoordinaten einschließlich der Sauerstoff- und Nährstoffverteilungen

- sowie die Horizontalverteilung der zuvor genannten Parameter auf einem ausgewählten Dichtehorizont im Tiefenbereich der oberen Hauptprungschicht.

Es war ein Ziel der Reise, die Hydrographie im Übergangsbereich zwischen Subtropenwirbel und der südöstlich davon gelegenen Schattenzone genauer zu untersuchen. In Abb. 3.4 sind die hydrographischen Parameter, wie sie mit dem CTD-System gemessen wurden, zusammen mit den Nährstoffverteilungen auf den CTD-Stationen 299, 324 und 339 als Vertikalprofile dargestellt. Station 299 liegt rund 300 km südlich der Kanaren bei Verankerung Y im Kanarenstrom. Eine typische Übergangsstation in der Zentralwassergrenze stellt Station 324 südlich der Verankerung W2 dar. Station 339 dagegen liegt etwa 300 km südwestlich der Kapverden in der Schattenzone (Luyten u.a., 1983).

Signifikante Unterschiede in den Temperaturverteilungen (Abb. 3.4b) treten in Oberflächennähe und in der Hauptsprungschicht auf. Station 299 zeigt einen wesentlich höheren Wärmeinhalt in den oberen 2000 m im Vergleich zur Station 339. Die Übergangsstation 324 im Frontalbereich ist durch einen starken Einfluß vom Südatlantischen Zentralwasser geprägt.

Besonders markant sind die Unterschiede in den Salzgehaltsprofilen (Abb. 3.4c). Station 299 im Norden ist charakterisiert durch den in den Subtropen auffallend hohen Oberflächensalzgehalt (SSS > 37.0) und das intermediäre
Abb. 3.4: Beispiel für die vertikale Verteilung von hydrographischen Parametern auf drei ausgesuchte Stationen (a) nördlich (299) und südlich (339) der Zentralwassergrenze (Pfeil). Station 324 liegt im Übergangsbereich südlich der Front. Die potentielle Temperatur (b) und der gezeigte Salzgehalt (c) wurden mit einem kontinuierlich messenden CTD-System gewonnen. Die Sauerstoff- (d) und Nährstoffprofile (e, f, g) wurden aus diskreten Wasserschöpferproben gewonnen.
Salzgehaltsmaximum in ca. 1200 dbar. Letzteres wird durch die Mittelmeer-
wasserzunge (Käse und Zenk, 1987) verursacht und ist in der Temperatur-
verteilung nur durch einen geringeren Vertikalgradienten erkennbar. Station
339 ist geprägt durch das oberflächennahe Maximum und ein intermediäres
Minimum im 800 dbar-Bereich. Während das Maximum durch die Advektion von
Wassermassen aus den Subtropen, wo sie entstanden sind, verursacht wird
(Bauer und Siedler, 1987), kommt in dem darunterliegenden Minimum der
Zustrom Antarktischen Zwischenwassers zum Ausdruck. Nicht unerwartet ist die
Lage der Kurve von Station 324 zwischen denen von 299 und 339. Sie enthält
hydrographische Merkmale von Wassermassen beider Hemisphären. Die blättrige
Struktur im Zentralwasserbereich (um 400 dbar) ist als Folge frontnaher
Vermischung zu deuten.

Die folgende Verteilung des Sauerstoffgehaltes sowie der Nährstoffe stammt
aus dem Rosettendatensatz, der schon an Bord gewonnen wurde. Station 299 mit
ihrem 4 mal höheren O₂-Gehalt (Abb. 3.4d) in der Warmwassersphäre dokumen-
tiert die hochwirksame Ventilation nördlich der Kanarenregion (Siedler u.a.,
1987). Reste von erhöhtem O₂-Gehalt sind im Zwischenwasser und in den
beiden südlichen Stationen erkennbar. Auf allen drei Stationen nimmt O₂ zum
Boden hin zu und erreicht etwa dieselben Werte wie an der Oberfläche.

Verknüpft mit dem reichen Sauerstoffangebot ist ein Defizit in den Nähr-
stoffen (Abb. 3.4e-g) auf Station 299. Umgekehrtes gilt für die Station 324
und 339 im Süden.

Als nächstes wird der hydrographische Schnitt (Abb. 3.5) von Punkt B in
Richtung Dakar (Abb. 1.2) vorgestellt. Die zugehörigen Oberflächenwerte der
Temperatur und des Salzgehaltes sind, in Ortskoordinaten übersetzt, in Abb.
3.5a dargestellt. Abgesehen von einer Störung auf den ersten 100 km nahe B
zeigt der Salzgehalt im Nordwesten den für die Subtropen charakteristisch
hohen Wert von >37.0. Die zugehörige Temperatur beträgt knapp 24°C. Diese
steigt innerhalb 100 km rechts von der Mitte des Bildes auf über 25°C und
behält diesen Wert bis vor Dakar. Der unruhige Kurvenverlauf links von der
genannten Temperaturstufe fällt örtlich mit der Lage der Zentralwassergrenze
zusammen, die allerdings in der Verteilung der in-situ-Parameter noch deut-
licher erkennbar ist.

Abb. 3.5b und c geben den vertikalen Temperaturverlauf im Zentralwasser, be-
ginnend bei B, wieder. Erstere Abbildung wurde aus XBT-Abwürfen gezeichnet,
Abb. 3.5 a)

Abb. 3.5: Oberflächentemperatur und zugehörige Salzgehaltsverteilung (a) nach Thermosalinographen-Beobachtungen auf dem hydrographischen Schnitt über die Zentralwassergrenze. Der Schnitt beginnt bei Punkt B (vergl. Abb. 1.2) und führt geradlinig Richtung Dakar. Die Temperaturschnitte (b) und (c) wurden unabhängig mit XBT-Sonden bzw. auf CTD-Stationen gewonnen. Die zu (c) gehörigen Verteilungen des Salzgehaltes und der potentiellen Dichte sind in (d) bzw. (e) dargestellt. Die Zentralwassergrenze ist in allen Einzelbildern rechts von der km-Marke 550 leicht erkennbar.
Abb. 3.5 b)

Abb. 3.5 c)
Abb. 3.5 d)

Abb. 3.5 e)
die zweite beruht auf CTD-Sondenmessungen (pot. Temperatur) und endet früher. Um eine möglichst gleichmäßige Abtastrate zu erhalten, blieb im Südosten des XBT-Schnittes jeder zweite Abwurf unberücksichtigt. Dieser Schnitt reicht weiter (bis 18°W) nach Südosten als der CTD-Schnitt und deckt nur die oberen 750 m ab.


Die allgemeine, nach Südosten gerichtete Verflachung der Hauptsprunghschicht wird ebenfalls deutlich in den Verteilungen des Salzgehaltes und der potentiellen Dichte (Abb. 3.5d und e). Erwartungsgemäß ist das Maß an Feinstruktur im Frontalbereich in σθ geringer als in S. Darin zeigt sich, daß ein Großteil der Temperatur- und Salzgehaltsstrukturen (interleaving) in der Dichte kompensiert sind. In der σθ-Darstellung erkennt man die Vertikalausdehnung der Zentralwassergrenze von ca. 75 m bis 750 m.

Quantitative Untersuchungen sind vorgesehen, um den visuellen Eindruck zu bekräftigen, daß der Isolinienerlauf in der nördlichen Hälfte ruhiger ist als südlich der Frontalzone.

Nachzutragen bleibt noch der Hinweis auf das hohe Maß der Feinstruktur im Süden unterhalb 700 dbar. Bei der späteren Behandlung der diskontinuierlichen Schöpferdaten in Dichte koordinaten (Abb. 3.7) wird deutlich, daß es sich hier um die Übergangszone zwischen dem Salzgehaltsmaximum aus dem Mittelmeerwasser (links unten) und dem intermeditären Minimum aus dem subantarktischen Zwischenwasser (rechts unter der Mitte) handelt.

Ähnliche Verhältnisse, wie sie auf dem Schnitt von B nach Dakar (Abb. 3.5) diskutiert wurden, werden auf dem Meridionalschnitt AB auf 27°W angetroffen (Abb. 3.6). Dabei handelt es sich um eine teilweise Wiederholung von Schnitten der 'METEOR'-Reisen Nr. 56 (Thiele u.a., 1986) und Nr. 60 (Stramma, 1984; Bauer und Siedler, 1987).

Die Oberflächenwerte der Temperatur und des Salzgehaltes sind in Abb. 3.6a wiedergegeben. Die Kurven sind gegenläufig: In Tropennähe (links im Bild), wo die Deckschicht sehr dünn ist, findet man hohe Temperaturen aufgrund der
Abb. 3.6: Oberflächen-temperatur und zugehörige Salzgehaltsverteilung (a) nach Thermosalinographen-Beobachtungen auf dem Meridional-
schnitt A (Süden links) nach B auf 27°W, XBT-Schnitt (b), po-
tentielle Temperatur (c), Salzgehalt (d) und potentielle
Dichte (e). Diskussion im Text. Lage des Schnittes ist in Abb 1.2
wiedergegeben.
Abb. 3.6 b)

Abb. 3.6 c)
starken Einstrahlung. Der hohe Überschuß der Verdunstung gegenüber dem Niederschlag in den Subtropen (rechts) läßt den Salzgehalt deutlich über 37.2 ansteigen. Die stärkeren Salzgehaltschwankungen nördlich von km-Marke 700 sind mit der Zentralwassergrenze verknüpft, die, wie schon in Abb. 3.5, deutlich in der Vertikalverteilung der Temperatur und des Salzgehaltes erkennbar werden (Abb. 3.6b, c, d). Die charakteristischen Merkmale auf diesem Schnitt sind die Deckschichtverflachung im Süden, die Vertiefung im Norden, die Feinstruktur in θ und S, nicht jedoch in oθ, sowie die Verflachung und der Identitätsverlust des intermediären Salzgehaltsminimums aus dem Zwischenwasser in Richtung Norden.

Die spätere Auswertung des Datensatzes soll im Hinblick auf iso- bzw. dia-
pykknische Vermischung erfolgen. Daher erscheint es zweckmäßig die bezüg-
lich ihrer Vermischung an der Zentralwassergrenze gemessenen Parameter in
dichtkoordinaten darzustellen (Abb. 3.7). Es wurde der Schnitt von B nach
dakar für die isopyknische Darstellung ausgewählt, weil er die Front orthogonal schneidet (vergl. Abb. 3.5) und ein kompletter Rosettendatensatz vor-
liegt. Alle Daten beruhen auf den diskontinuierlichen Schöpferdaten, auch
die der Parameter θ, S und p.

Erwartungsgemäß begegnen wir der Diskontinuität, die durch die Front nörd-
lich von km-Marke 550 verursacht wird (vergl. Abb. 3.5) in allen Teilen der
Abb. 3.7. Besonders ausgeprägt sind die Salzgehaltsfront (Abb. 3.7), die des
Sauerstoffes (d) sowie diejenigen der Nährstoffe (e-g). Die Neigung der
Isobaren (c) lassen die frontparallele barokline Strömung deutlich erkennen.
Auf die vertikale Ausdehnung der Frontalzone bis ca. 750 dbar im Dichte-
horizont oθ = 27.3 kg m⁻³ wurde bereits früher hingewiesen.

Von besonderem Interesse ist die Lage der intermediären Extrema in der Salzgehaltsverteilung, beim Sauerstoff und den Nährstoffen NO₃ und PO₄.
Letztere zeigen Maxima, welche nach Norden abfallen und die an der Unter-
kante der oθ = 27.3 kg m⁻³-Isolinie liegen. Das O₂-Minimum liegt bei glei-
der Neigung zwischen 27.0 und 27.3 über den Nährstoffmaxima. Unterhalb
der Nährstoffmaxima liegen dagegen die Extrema der Salzgehaltsverteilung
(ca. 27.5 das Minimum des Zwischenwassers im Süden und ca. 27.7 das Maximum
des Mittelmeerewassers). Diese Zusatzinformation zusammen mit den geochemi-
schen Spurenstoffdaten, die sich noch in der Aufbereitungsphase befinden,
ermöglichen es, eine Multiparameteranalyse (Tomczak, 1981) zu versuchen.
Abb. 3.7: Verteilung der in Abb. 3.5 gezeigten Parameter in Dichtekoordinaten. Das hier verwendete Datennaterial ist mit dem CTD-System beim Hieven auf festen Dichteflächen zusammen mit einem Kranzwaserschöpfer gewonnen worden. Potentielle Temperatur (a), Salzgehalt (b), Druck (c), Sauerstoff (d), Silikat (e), Nitrat (f) und Phosphat (g). Die Zentralwassergrenze liegt rechts der km-Marke 550 und ist im Salzgehalt und der Druckverteilung besonders deutlich erkennbar.
Abb. 3.7 b)

Abb. 3.7 c)
Abb. 3.7 d)

Abb. 3.7 e)
Abb. 3.7 f)
Die Abbildungssequenz 3.8 zeigt die horizontale Verteilung der gemessenen Parameter gemäß Abb. 3.7 in einem festen Dichtehorizont (26.5 kg m⁻³), der sich im Mittel deutlich oberhalb von 200 dbar befindet (Abb. 3.8) und somit repräsentativ für die obere Hauptsprungschicht ist. Zur Darstellung der horizontalen Verteilung wurden die Daten einer rechnergestützten, manuellen Glättung mit einer Korrelationsdistanz von 180 km unterworfen.

Alle in Abbildung 3.8 dargestellten Parameter bestätigen den Verlauf der historischen Zentralwassergrenze nordwestlich der Kapverdischen Inseln. Im einzelnen kann man der Umgebung der folgenden Isolinien auf der Dichtefläche 26.5 kg m⁻³ die Lage der Zentralwassergrenze zuordnen:

\[
\begin{align*}
\theta & \approx 17.5^{\circ}C \\
S & \approx 36.25 \text{ (wenig geeignet)} \\
p & \approx 140 \text{ dbar} \\
O_2 & \approx 3.0 \text{ ml l}^{-1} \\
Si & \approx 4 \text{ µmol dm}^{-3} \\
PO_4 & \approx 1 \text{ µmol dm}^{-3}
\end{align*}
\]  

(Abb. 3.8a)  
(Abb. 3.8b)  
(Abb. 3.8c)  
(Abb. 3.8d)  
(Abb. 3.8e)  
(Abb. 3.8f)

Dies sind Anhaltswerte. Vermischungsbedingte Feinstruktur kann erhebliche Abweichungen von diesen Richtwerten verursachen.
Abb. 3.8: Horizontalverteilung von hydrographischen und Nährstoffdaten im Dichtehorizont 26.5 kg m$^{-3}$, der repräsentativ für die obere Sprungschicht (vergl. Abb. 3.7c) ist. Temperatur (a), Salzgehalt (b), Druck (c), Sauerstoff (d), Silikat (e) und Phosphat (f). Einzelheiten siehe Text.
Abb. 3.8 c)

Abb. 3.8 d)
Abb. 3.9: Meßsignale des GEK während M4/4.
3.4.2 Verankerte Geräte

Von 38 Strömungsmessern und Thermistorketten, die in den 9 aufgenommenen Verankerungen ein Jahr lang eingesetzt waren, haben 34 Geräte verwertbare Zeitreihen geliefert. Trotz zeitweiser Ausfälle einiger weiterer Fühler, vor allem in den 400 m-Thermistorketten, ist die Datenausbeute mit etwa 75% gut. Eine Übersicht hierüber geben für jede Verankerung die Tabellen 3.2 bis 3.9.


IfM Verankerungsnummer: 311-1
Externe Bezeichnung: MW
Breite N: 36° 01.9' N
Länge W: 18° 01.1' W
Lotung: 5370 m
Wassertiefe: 5420 m
Ausgelegt: 02.12.85
Aufgenommen: 30.11.86
Start MeBreihe: 02.12.85, 23:00
Stop MeBreihe: 30.10.86, 15:00
Bemerkungen:

<table>
<thead>
<tr>
<th>Identifikation</th>
<th>Instrument</th>
<th>Typ</th>
<th>Nr.</th>
<th>Tiefe (m)</th>
<th>Abtastung (min.)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>311101</td>
<td>A-VTPC</td>
<td>2528</td>
<td>620</td>
<td>60</td>
<td></td>
<td>Stop am 29.9.86</td>
</tr>
<tr>
<td>102</td>
<td>A-PT400</td>
<td>850/</td>
<td>622-</td>
<td>180</td>
<td></td>
<td>Sensor 7 defekt, Sensoren 9 und 10 zeitweise schlecht</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1137</td>
<td>1022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>A-VT</td>
<td>6160</td>
<td>1031</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>A-T400</td>
<td>114/</td>
<td>1032-</td>
<td>180</td>
<td></td>
<td>Wassereinbruch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1131</td>
<td>1432</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>A-VTC</td>
<td>6681</td>
<td>1435</td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A-VT PC: Aanderaa-Strömungsmesser ROMA/5 mit Sensoren für T, P und C
A-T50: Aanderaa-Thermistorkette 50 m oder 400 m
ACM-2: Neil Brown Akustischer Strömungsmesser
P, T, C, S: Druck, Temperatur, Leitfähigkeit, Salzgehalt
| μ | φ | : Strömungsgeschwindigkeit und -richtung, rechtweisend Nord.
N : Zyklus-Nr.

Tab. 3.2: Thermistorketten-Verankerung MW/311-1
Abb. 3.10: Verankerung MW/311-1; Zeitreihen des Strömungsvektors, des Drucks und der Temperatur im Tiefenbereich des Mittelmeerswassers

IfM Verankerungsnummer: 276-7  Externe Bezeichnung: NL
Breite N: 33° 08.5' N  Länge W: 21° 57.6' W
Lotung: 5234 m  Wassertiefe: 5285 m
Ausgelegt: 17.11.85  Aufgenommen: 31.10.86
Start Meßreihe: 17.11.85, 17:00  Stop Meßreihe: 31.10.86, 13:00
Bemerkungen:

<table>
<thead>
<tr>
<th>Identifikation</th>
<th>Instrument</th>
<th>Typ</th>
<th>Nr.</th>
<th>Tiefe (m)</th>
<th>Abtastung (min.)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>276701</td>
<td>A-VTPC</td>
<td>6158</td>
<td>302</td>
<td>60</td>
<td>Stop am 19.09.86</td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>A-VT</td>
<td>7656</td>
<td>534</td>
<td>60</td>
<td>P konstant</td>
<td></td>
</tr>
<tr>
<td>703</td>
<td>A-VT</td>
<td>7927</td>
<td>736</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>704</td>
<td>A-T50</td>
<td>181/648</td>
<td>738-788</td>
<td>120</td>
<td>Sensoren 1, 2, 9 und 11 ausgefallen</td>
<td></td>
</tr>
<tr>
<td>705</td>
<td>A-VT</td>
<td>7654</td>
<td>1040</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>706</td>
<td>A-VT</td>
<td>7928</td>
<td>1142</td>
<td>60</td>
<td>Stop am 26.07.86</td>
<td></td>
</tr>
<tr>
<td>707</td>
<td>A-VT</td>
<td>7929</td>
<td>1644</td>
<td>60</td>
<td>Stop am 14.08.86</td>
<td></td>
</tr>
<tr>
<td>708</td>
<td>A-VT</td>
<td>4565</td>
<td>3047</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>709</td>
<td>A-VT</td>
<td>6161</td>
<td>5235</td>
<td>60</td>
<td>Stop am 17.06.86</td>
<td></td>
</tr>
</tbody>
</table>

A-VT PC: Aanderaa-Strömungsmesser RCMA/5 mit Sensoren für T, P und C
A-T50: Aanderaa-Thermistorkette 50 m oder 400 m
ACM-2: Neil Brown Akustischer Strömungsmesser
P, T, C, S: Druck, Temperatur, Leitfähigkeit, Salzgehalt
µ | φ: Strömungsgeschwindigkeit und -richtung, rechtweisend Nord.
N: Zyklus-Nr.

Tab. 3.3: Strommesser-Verankerung NL/276-7
Abb. 3.11a: Verankerung N1/276-7; Zeitreihen der Strömungsvektoren in 8 Tiefen. Die Zeitachse verläuft parallel zur W-O-Richtung.
Abb. 3.11b: Wie Abb. 3.11a für Temperatur
IfM Verankerungsnummer: 293-3  Externe Bezeichnung: X
Breite N: 28° 01.4' N  Länge W: 18° 17.5' W
Lotung: 3407 m  Wassertiefe: 3432 m
Ausgelegt: 05.10.85  Aufgenommen: 03.11.86
Start Meßreihe: 05.10.85, 23:45  Stop Meßreihe: 03.11.86, 07:45
Bemerkungen:

<table>
<thead>
<tr>
<th>Identifikation</th>
<th>Instrument</th>
<th>Typ</th>
<th>Nr.</th>
<th>Tiefe (m)</th>
<th>Abtastung (min.)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>293301</td>
<td>A-VT</td>
<td>1409</td>
<td></td>
<td>163</td>
<td>60</td>
<td>starker Bewuchs am Rotor. Stop</td>
</tr>
<tr>
<td>303</td>
<td>A-Tk400</td>
<td>712/</td>
<td>1064</td>
<td>570-970</td>
<td>120</td>
<td>Sensor 1 Stop 15.07.86 Sensor 7 Stop 15.06.86 Sensor 11 Stop 20.04.86 Sensor 8 defekt</td>
</tr>
<tr>
<td>303</td>
<td>A-Tk400</td>
<td>712/</td>
<td>1064</td>
<td>567</td>
<td>120</td>
<td>Sensor 1 Stop 15.07.86 Sensor 7 Stop 15.06.86 Sensor 11 Stop 20.04.86 Sensor 8 defekt</td>
</tr>
</tbody>
</table>

A-VT PC : Aanderaa-Strömungsmesser RCM4/5 mit Sensoren für T, P und C
A-T50 : Aanderaa-Thermistorkette 50 m oder 400 m
ACM-2 : Neil Brown Akustischer Strömungsmesser
P, T, C, S : Druck, Temperatur, Leitfähigkeit, Salzgehalt
| y | , φ : Strömungsgeschwindigkeit und -richtung, rechtweisend Nord.
N : Zyklus-Nr.

Tab. 3.4: Thermistorketten-Verankerung X/293-3
Abb. 3.12: Verankerung X/293-3; Zeitreihen des Strömungsvektors in 163 m Tiefe sowie von Druck und Temperatur in der Hauptsprungschicht
IfM Verankerungsnummer: 294-3  
Externe Bezeichnung: E  
Breite N: 28° 02.8' N  
Länge W: 20° 25.1' W  
Lotung: 4573 m  
Wassertiefe: 4619 m  
Ausgelegt: 04.10.85  
Aufgenommen: 02.11.86  
Start Meßreihe: 04.10.85, 21:00  
Stop Meßreihe: 02.11.86, 09:00  
Bemerkungen:

<table>
<thead>
<tr>
<th>Identifikation</th>
<th>Instrument Typ</th>
<th>Nr.</th>
<th>Tiefe (m)</th>
<th>Abtastung (min.)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>294301</td>
<td>A-VTP</td>
<td>94</td>
<td>158</td>
<td>60</td>
<td>Stop am 14.10.86</td>
</tr>
<tr>
<td>302</td>
<td>A-PT400</td>
<td>19/1273</td>
<td>175-475</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>A-TK400</td>
<td>6/984</td>
<td>578-978</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

A-VT PC : Aanderaa-Strömungsmesser RCMA/5 mit Sensoren für T, P und C  
A-T50 : Aanderaa-Thermistorkette 50 m oder 400 m  
ACM-2 : Neil Brown Akustischer Strömungsmesser  
P, T, C, S : Druck, Temperatur, Leitfähigkeit, Salzgehalt  
| u | φ : Strömungsgeschwindigkeit und -richtung, rechtweisend Nord.  
N : Zyklus-Nr.  

Tab. 3.5: Thermistorketten-Verankerung E/294-3
<table>
<thead>
<tr>
<th>Identifikation</th>
<th>Instrument</th>
<th>Typ</th>
<th>Nr.</th>
<th>Tiefe (m)</th>
<th>Abtastung (min.)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>306101</td>
<td>A-VT</td>
<td>5327</td>
<td>263</td>
<td>60</td>
<td></td>
<td>Temperatur zeitweise außerhalb des Meßbereichs</td>
</tr>
<tr>
<td>102</td>
<td>A-PTK400</td>
<td>711/ 896</td>
<td>268-668</td>
<td>120</td>
<td></td>
<td>Kanal 10 ausgefallen</td>
</tr>
<tr>
<td>103</td>
<td>A-TK400</td>
<td>801/ 894</td>
<td></td>
<td></td>
<td></td>
<td>keine Registrierung</td>
</tr>
</tbody>
</table>

A-VT PC : Aanderaa-Strömungsmesser RCM4/5 mit Sensoren für T, P und C
A-T50 : Aanderaa-Thermistorkette 50 m oder 400 m
ACM-2 : Neil Brown Akustischer Strömungsmesser
P, T, C, S : Druck, Temperatur, Leitfähigkeit, Salzgehalt
| | : Strömungsgeschwindigkeit und -richtung, rechtweisend Nord.
N : Zyklus-Nr.

Tab. 3.6: Thermistorketten-Verankerung Y/306-1
Abb. 3.14: Verankerung Y/306-1; Zeitreihen des Strömungsvektors in 263 m Tiefe sowie des Drucks und der Temperatur in der oberen Hauptsprungschicht.
IfM Verankerungsnummer: 307-l
Externe Bezeichnung: V
Breite N: 22° 56.7' N
Länge W: 20° 30.7' W
Lotung: 4138 m
Wassertiefe: 4179 m
Ausgelegt: 08.10.85
Aufgenommen: 07.11.86
Start Meßreihe: 08.10.85, 22:00
Stop Meßreihe: 07.11.86, 08:00
Bemerkungen:

<table>
<thead>
<tr>
<th>Identifikation</th>
<th>Instrument Typ</th>
<th>Nr.</th>
<th>Tiefe (m)</th>
<th>Abtastung (min.)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>307101</td>
<td>A-VT</td>
<td>6051</td>
<td>256</td>
<td>60</td>
<td>Temperatur zeitweise außerhalb des Meßbereichs, Rotor leicht bewachsen</td>
</tr>
<tr>
<td>102</td>
<td>A-VT</td>
<td>4352</td>
<td>458</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>A-VT</td>
<td>5882</td>
<td>660</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>A-VT</td>
<td>5252</td>
<td>1292</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>A-VT</td>
<td>6121</td>
<td>4094</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

A-VT PC : Aanderaa-Strömungsmesser RCM4/5 mit Sensoren für T, P und C  
A-T50 : Aanderaa-Thermistorkette 50 m oder 400 m  
ACM-2 : Neil Brown Akustischer Strömungsmesser  
P, T, C, S : Druck, Temperatur, Leitfähigkeit, Salzgehalt  
|u|, φ : Strömungsgeschwindigkeit und -richtung, rechtweisend Nord.  
N : Zyklus-Nr.  

Tab. 3.7: Strommesserverankerung V/307-l
Abb. 3.15a: Verankerung V/307-1; Zeitreihen des Strömungsvektors in 5 Tiefen
Abb. 3.15b: wie Abb 3.15a für die Temperatur
IFTM Verankerungsnummer: 308-1  Externe Bezeichnung: Q
Breite N: 21° 59.0' N  Länge W: 22° 02.4' W
Lotung: 4533 m  Wassertiefe: 4572 m
Ausgelegt: 09.10.85  Aufgenommen: 09.11.86
Start Meßreihe: 09.10.85, 17:00  Stop Meßreihe: 09.11.86, 06:00


<table>
<thead>
<tr>
<th>Identifikation</th>
<th>Instrument</th>
<th>Typ</th>
<th>Nr.</th>
<th>Tiefe (m)</th>
<th>Abtastung (min.)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>308101</td>
<td>A-VTP</td>
<td>776</td>
<td>200</td>
<td></td>
<td></td>
<td>Gerät verlorengegangen</td>
</tr>
<tr>
<td>102</td>
<td>A-VTPC</td>
<td>1407</td>
<td>427/595</td>
<td></td>
<td>60</td>
<td>ab Jan. 86 tiefere Position</td>
</tr>
<tr>
<td>103</td>
<td>A-VT</td>
<td>7925</td>
<td>629/745</td>
<td></td>
<td>60</td>
<td>ab Jan. 86 tiefere Position</td>
</tr>
<tr>
<td>104</td>
<td>A-VT</td>
<td>7926</td>
<td>1261/1307</td>
<td></td>
<td>60</td>
<td>ab Jan. 86 tiefere Position</td>
</tr>
<tr>
<td>105</td>
<td>A-VT</td>
<td>7624</td>
<td>4516</td>
<td></td>
<td>60</td>
<td>Gerätetiefe konstant</td>
</tr>
</tbody>
</table>

A-VTPC: Aanderaa-Strömungsmesser RCM4/5 mit Sensoren für T, P und C
A-T50: Aanderaa-Thermistorkette 50 m oder 400 m
ACM-2: Neil Brown Akustischer Strömungsmesser
P, T, C, S: Druck, Temperatur, Leitfähigkeit, Salzgehalt
| u | φ: Strömungsgeschwindigkeit und -richtung, rechtweisend Nord.
N: Zyklus-Nr.

Tab. 3.8: Strommesserverankerung Q/308-1
Abb. 3.16a: Verankerung Q/308-1; Zeitreihen des Strömungsvektors in 7 Tiefen. Ab Januar 1986 Verlust des obersten Auftriebselements mit verstärkter Verankerungsbewegung
Abb. 3.16b: Wie Abb. 3.16a für Druck und Temperatur
IfM Verankerungsnummer: 309-1 Externe Bezeichnung: W2
Breite N: 19° 02.4' N Länge W: 22° 00.0' W
Lotung: 3459 m Wassertiefe: 3494 m
Ausgelegt: 11.10.85 Aufgenommen: 14.11.86
Start Meßreihe: 11.10.85, 21:00 Stop Meßreihe: 14.11.86, 10:00

<table>
<thead>
<tr>
<th>Identifikation</th>
<th>Instrument Type</th>
<th>Nr.</th>
<th>Tiefe (m)</th>
<th>Abtastung (min.)</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>309101</td>
<td>A-VT</td>
<td>6680</td>
<td></td>
<td></td>
<td>durch Fischbiß verloren</td>
</tr>
<tr>
<td>102</td>
<td>A-VT</td>
<td>6074</td>
<td>307/640</td>
<td>60</td>
<td>ab 22.12.85 tiefere Position</td>
</tr>
<tr>
<td>103</td>
<td>A-VTC</td>
<td>6682</td>
<td>509/640</td>
<td>60</td>
<td>ab 22.12.85 tiefere Position, Stop = 05.08.86</td>
</tr>
<tr>
<td>104</td>
<td>A-VT</td>
<td>7924</td>
<td>1141/1272</td>
<td>60</td>
<td>ab 22.12.85 tiefere Position, Stop = 04.08.86</td>
</tr>
<tr>
<td>105</td>
<td>A-VT</td>
<td>6159</td>
<td>3400</td>
<td>60</td>
<td>Gerätetiefe konstant</td>
</tr>
</tbody>
</table>

A-VT PC : Aanderaa-Strömungsmesser ROMA/5 mit Sensoren für T, P und C
A-T50 : Aanderaa-Thermistorkette 50 m oder 400 m
ACM-2 : Neil Brown Akustischer Strömungsmesser
P, T, C, S : Druck, Temperatur, Leitfähigkeit, Salzgehalt
| y | : Strömungsgeschwindigkeit und -richtung, rechtweisend Nord.
N : Zyklus-Nr.

Tab. 3.9: Strommesserverankerung W2/309-1
Abb. 3.17a: Verankerung W2/309-1; Zeitreihen des Strömungsvektors in 6 Tiefen.
Ab 21.12.85 verstärkte Verankerungsbewegung durch Verlust des obersten Auftriebselements.
Abb. 3.17b: Wie Abb. 3.17a für die Temperatur
3.4.3 Meereschemie

Ein wesentliches Thema der Meereschemiker auf dieser Reise war der Beginn von Felduntersuchungen zum vertikalen Stofftransport anorganisch und organisch Spurenstoffe in der Wassersäule. Eine zentrale Frage des Vorhabens ist dabei das Verständnis der zur Partikelbildung führenden Prozesse sowie der Erarbeitung von Modellen zur sicheren Vorhersage des Partikelflusses und seiner räumlichen und zeitlichen Veränderungen im Ozean.


3.4.4 Luftchemie


Einen Eindruck davon mag ein Ausschnitt der Meßkurven vom 20.11.86 (Abb. 3.18) von den ersten 12 Stunden nach der Abreise aus Dakar vermitteln.

Dargestellt sind die Messungen von drei Partikelzählern mit unterschiedlichen Radienbereichen während eines Staubfalles. Die Lücken in den ersten Stunden bezeichnen Zeiten, zu denen der relative Wind aus einer kritischen, achterlichen Richtung weht. Die Daten, die hier gemessen wurden, müssen daher noch auf Schiffseinflüsse untersucht werden. Die regelmäßigen Lücken in der Kurve der Altkenteilchen (obere Kurve) sind durch das Meßprogramm erzeugt, das Meßgerät wurde hier jede Stunde einmal für eine Sonderaufgabe verwendet. Die obere Kurve der kleinsten Teilchen (Gesamtkonzentration,
Aitkenteilchen, \( r < 0.1 \, \mu m \) zeigt zu Anfang noch Reste kontinentalen Einflusses durch erhöhte Werte und fällt allmählich auf einen Reinhaltwert um 600 cm\(^{-3}\). Die mittlere und die untere Kurve geben einen konstanten, wenn auch relativ hohen Anteil großer Teilchen \( 0.1 \, \mu m < r < 1 \, \mu m \) und Riesen-teinlchen wieder. Dann überlagert sich ab etwa 18.00 h eine Zunahme von Riesenteilchen, etwas später auch der großen Teilchen. Die Aitkenkerne verzeichnen keine Zunahme, sondern sogar eine leichte Abnahme, die sich daraus erklärt, daß diese sehr beweglichen Teilchen sich an die Staubkerne anlagern. Dieser Verlauf entspricht früheren Messungen und stellt einen Staubtransport in der Höhe dar, wobei die schnell fallenden Riesenteilchen vor den großen Teilchen am Boden eintreffen. Der Staub hält etwa 24 Stunden an, wobei das Maximum zwischen Mitternacht und 3.00 h erreicht wird.

Abb. 3.18: Beispiel einer Registrierung von Aerosolkonzentrationen im Verlauf von 12 h westlich von Dakar.

Grundsätzlich hat sich das Peildeck für die Messungen des atmosphärischen Aerosols bewährt. Im Zusammenhang mit dem Gittermast, der über einen der Schwanenhälse gut erreicht werden kann, ist es möglich, Aerosol aus höheren Schichten ins Labor zu den Messgeräten abzusaugen. Der beste Platz für die Probenahme im Mast ist das Niveau zwischen der zweiten Plattform und der Radarplattform. Weiter unten macht sich die Wirkung der Aufbauten auf die Strömung stark bemerkbar, da es oberhalb des oberen Peildecks zu erheblichen Beschleunigungen der Luft kommt. Dabei wird ein großer Anteil an kleinen Tropfen bis hier her transportiert, die das Schiff selbst erzeugt hat. Deshalb ist der Mast für luftchemische Messungen notwendig.
3.4.5 Aerologie

Das in einem 10”-Container integrierte ASAP (Automated Shipboard Aerological Programme)-Meßsystem der finnischen Firma Väisälä wurde erfolgreich eingesetzt. Die von einem Operator zu bedienende mobile aerologische Station enthielt eine Meßwerterfassungsanlage (DigiCORA), eine DCP (Data Collection Platform) zur Übermittlung der verschlüsselten TEMP-SHIP-Meldung via GOES-Satellit, einen PC zur Datenspeicherung und ein pneumatisch gesteuertes Ballonstartsystem.

Auf der Meßreise wurden über dem Ost-Atlantik täglich 2 bis 3 Aufstiege (00 h, 12 h und 18 h UTC) durchgeführt, so daß insgesamt 88 Vertikalsondierungen auf Datenspeicher vorliegen. Die verschlüsselten Meldungen wurden über DCP und zur Sicherheit auch über das INMARSAT-System der METEOR abgesetzt. Softwareprobleme und gelegentlicher Rechnerausfall führten bei der ESOC vom 18.11.86, 14 h bis 20.11.86, 07 h sowie am 25.11.86 von 07.35 bis 11.30 h UTC zu Datenverlusten, die jedoch durch die Parallelübermittlung abgefangen wurden.
4. Listen

4.1 Stationen

F.S. Meteor, Reise Nr. 4

Stationen 288 bis 292 M4-1
Stationen 293 bis 356 M4-2

Abkürzungen

CTD = Leitfähigkeits-Temperatur-Druck-Sonde mit Kranzwasserschöpfer
CTDO\textsubscript{2} = CTD mit Sauerstoffsensor
CTDV = CTD mit Schallsensor
DIPS = Drahtgeführte Profilsonde
NS = Nährstoffe
O\textsubscript{2} = Sauerstoff
TR = Spurenstoffe; bis Station 334 Helium und Tritium, danach Freone
MR = Verankerung aufgenommen
ML = Verankerung ausgelegt

<table>
<thead>
<tr>
<th>Station</th>
<th>Datum</th>
<th>Zeit (UTC)</th>
<th>Breite N</th>
<th>Länge W</th>
<th>Arbeitsablauf, Probennahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>288</td>
<td>08.10.86</td>
<td>10:21</td>
<td>45° 50.5'</td>
<td>06° 36.8'</td>
<td>CTDV</td>
</tr>
<tr>
<td>289</td>
<td>10.10.86</td>
<td>23:02</td>
<td>45° 54.1'</td>
<td>06° 35.1'</td>
<td>CTDV</td>
</tr>
<tr>
<td>290</td>
<td>12.10.86</td>
<td>00:40</td>
<td>45° 43.2'</td>
<td>04° 28.1'</td>
<td>CTDV</td>
</tr>
<tr>
<td>291</td>
<td>17.10.86</td>
<td>22:35</td>
<td>47° 25.0'</td>
<td>19° 40.0'</td>
<td>CTDV</td>
</tr>
<tr>
<td>292</td>
<td>19.10.86</td>
<td>21:38</td>
<td>43° 04.0'</td>
<td>20° 10.1'</td>
<td>CTDV</td>
</tr>
<tr>
<td>293</td>
<td>28.10.86</td>
<td>15:44</td>
<td>38° 16.46'</td>
<td>10° 44.06'</td>
<td>CTDV</td>
</tr>
<tr>
<td>294</td>
<td>29.10.86</td>
<td>16:7</td>
<td>36° 42.33'</td>
<td>15° 46.55'</td>
<td>CTDV</td>
</tr>
<tr>
<td>294</td>
<td>29.10.86</td>
<td>20:34</td>
<td>36° 41.99'</td>
<td>15° 46.93'</td>
<td>CTDV</td>
</tr>
<tr>
<td>295</td>
<td>30.10.86</td>
<td>10:56</td>
<td>36° 2.56'</td>
<td>1° 2.05'</td>
<td>CTDV, MR</td>
</tr>
<tr>
<td>295</td>
<td>30.10.86</td>
<td>12:45</td>
<td>36° 2.58'</td>
<td>18° 3.00'</td>
<td>CTDV</td>
</tr>
<tr>
<td>296</td>
<td>1.11.86</td>
<td>21:57</td>
<td>33° 8.61'</td>
<td>21° 57.52'</td>
<td>CTDV, MR, DIPS</td>
</tr>
<tr>
<td>296-2</td>
<td>1.11.86</td>
<td>2:7</td>
<td>33° 8.50'</td>
<td>21° 57.67'</td>
<td>CTDV</td>
</tr>
<tr>
<td>297</td>
<td>2.11.86</td>
<td>17:31</td>
<td>28° 1.93'</td>
<td>20° 25.32'</td>
<td>CTDV, MR</td>
</tr>
<tr>
<td>298-1</td>
<td>3.11.86</td>
<td>12:27</td>
<td>28° 1.16'</td>
<td>18° 16.43'</td>
<td>CTDV, MR</td>
</tr>
<tr>
<td>299</td>
<td>6.11.86</td>
<td>16:22</td>
<td>26° 55.54'</td>
<td>19° 24.79'</td>
<td>CTDV\textsubscript{2}, O\textsubscript{2}, TR, MR</td>
</tr>
<tr>
<td>300</td>
<td>7.11.86</td>
<td>16:3</td>
<td>22° 57.25'</td>
<td>20° 27.33'</td>
<td>CTDV\textsubscript{2}, O\textsubscript{2}, TR, MR</td>
</tr>
<tr>
<td>301</td>
<td>8.11.86</td>
<td>6:22</td>
<td>20° 45.04'</td>
<td>20° 44.97'</td>
<td>CTDV\textsubscript{2}, O\textsubscript{2}, TR, MR</td>
</tr>
<tr>
<td>302</td>
<td>8.11.86</td>
<td>14:19</td>
<td>21° 3.40'</td>
<td>21° 3.84'</td>
<td>CTDV\textsubscript{2}, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>303</td>
<td>8.11.86</td>
<td>18:37</td>
<td>21° 21.03'</td>
<td>21° 23.93'</td>
<td>CTDV\textsubscript{2}, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>304</td>
<td>8.11.86</td>
<td>22:43</td>
<td>21° 40.07'</td>
<td>21° 43.85'</td>
<td>CTDV\textsubscript{2}, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>305</td>
<td>9.11.86</td>
<td>2:56</td>
<td>21° 53.85'</td>
<td>21° 57.39'</td>
<td>CTDV\textsubscript{2}, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>306</td>
<td>9.11.86</td>
<td>15:1</td>
<td>22° 19.62'</td>
<td>22° 23.67'</td>
<td>CTDV\textsubscript{2}, NS, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>307</td>
<td>9.11.86</td>
<td>21:13</td>
<td>22° 49.08'</td>
<td>22° 53.90'</td>
<td>CTDV\textsubscript{2}, NS, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>308</td>
<td>10.11.86</td>
<td>0:57</td>
<td>23° 5.71'</td>
<td>23° 10.61'</td>
<td>CTDV\textsubscript{2}, NS, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>309</td>
<td>10.11.86</td>
<td>5:54</td>
<td>23° 26.83'</td>
<td>23° 30.11'</td>
<td>CTDV\textsubscript{2}, NS, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>310</td>
<td>10.11.86</td>
<td>10:7</td>
<td>23° 41.12'</td>
<td>23° 42.90'</td>
<td>CTDV\textsubscript{2}, NS, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>311</td>
<td>10.11.86</td>
<td>16:29</td>
<td>24° 14.99'</td>
<td>24° 14.94'</td>
<td>CTDV\textsubscript{2}, NS, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>312</td>
<td>10.11.86</td>
<td>23:49</td>
<td>24° 0.53'</td>
<td>25° 37.30'</td>
<td>CTDV\textsubscript{2}, NS, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>313</td>
<td>11.11.86</td>
<td>8:40</td>
<td>23° 44.81'</td>
<td>26° 59.88'</td>
<td>CTDV\textsubscript{2}, NS, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>314</td>
<td>11.11.86</td>
<td>20:41</td>
<td>22° 53.23'</td>
<td>26° 4.96'</td>
<td>CTDV\textsubscript{2}, NS, O\textsubscript{2}, MR</td>
</tr>
<tr>
<td>Station</td>
<td>Datum (UTC)</td>
<td>Zeit</td>
<td>Breite N</td>
<td>Länge W</td>
<td>Arbeiten, Probennahme</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>315</td>
<td>12.11.86</td>
<td>2:57</td>
<td>21° 59.77'</td>
<td>26° 4.18'</td>
<td>CTDO₂, NS, O₂, M</td>
</tr>
<tr>
<td>316</td>
<td>12.11.86</td>
<td>16:1</td>
<td>21° 56.37'</td>
<td>25° 12.84'</td>
<td>CTDO₂, NS, O₂, M</td>
</tr>
<tr>
<td>317</td>
<td>13.11.86</td>
<td>1:9</td>
<td>21° 14.60'</td>
<td>24° 21.41'</td>
<td>CTDO₂, NS, O₂, M</td>
</tr>
<tr>
<td>318</td>
<td>13.11.86</td>
<td>14:21</td>
<td>20° 27.81'</td>
<td>23° 39.29'</td>
<td>CTDO₂, NS, O₂, M</td>
</tr>
<tr>
<td>319</td>
<td>13.11.86</td>
<td>23:33</td>
<td>19° 46.47'</td>
<td>22° 47.44'</td>
<td>CTDO₂, NS, O₂, M</td>
</tr>
<tr>
<td>320</td>
<td>14.11.86</td>
<td>13:13</td>
<td>19° 2.13'</td>
<td>22° 0.01'</td>
<td>CTDO₂, NS, O₂, M</td>
</tr>
<tr>
<td>321</td>
<td>14.11.86</td>
<td>21:45</td>
<td>20° 0.06'</td>
<td>21° 33.99'</td>
<td>CTDO₂, NS, O₂, M</td>
</tr>
<tr>
<td>322</td>
<td>15.11.86</td>
<td>10:53</td>
<td>19° 2.20'</td>
<td>21° 59.30'</td>
<td>CTDO₂, NS, O₂, M</td>
</tr>
<tr>
<td>323</td>
<td>15.11.86</td>
<td>18:6</td>
<td>19° 3.72'</td>
<td>20° 50.85'</td>
<td>CTDO₂, NS, O₂</td>
</tr>
<tr>
<td>324</td>
<td>16.11.86</td>
<td>1:7</td>
<td>18° 3.53'</td>
<td>21° 4.78'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>325</td>
<td>16.11.86</td>
<td>10:54</td>
<td>16° 34.15'</td>
<td>21° 26.96'</td>
<td>CTDO₂, NS, O₂</td>
</tr>
<tr>
<td>326</td>
<td>17.11.86</td>
<td>4:21</td>
<td>17° 14.90'</td>
<td>20° 15.00'</td>
<td>CTDO₂, NS, O₂, M</td>
</tr>
<tr>
<td>327</td>
<td>20.11.86</td>
<td>12:33</td>
<td>14° 38.16'</td>
<td>17° 44.36'</td>
<td>CTDO₂, NS, O₂</td>
</tr>
<tr>
<td>328</td>
<td>20.11.86</td>
<td>16:23</td>
<td>14° 40.24'</td>
<td>18° 15.09'</td>
<td>CTDO₂, NS, O₂</td>
</tr>
<tr>
<td>329</td>
<td>20.11.86</td>
<td>20:29</td>
<td>14° 42.40'</td>
<td>18° 45.75'</td>
<td>CTDO₂, NS, O₂</td>
</tr>
<tr>
<td>330</td>
<td>21.11.86</td>
<td>0:38</td>
<td>14° 45.63'</td>
<td>19° 16.26'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>331</td>
<td>21.11.86</td>
<td>5:22</td>
<td>14° 46.32'</td>
<td>19° 48.40'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>332</td>
<td>21.11.86</td>
<td>9:31</td>
<td>14° 48.84'</td>
<td>20° 19.45'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>333</td>
<td>21.11.86</td>
<td>13:48</td>
<td>14° 51.36'</td>
<td>20° 51.24'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>334</td>
<td>21.11.86</td>
<td>18:21</td>
<td>14° 55.30'</td>
<td>21° 22.33'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>335</td>
<td>21.11.86</td>
<td>22:25</td>
<td>14° 56.55'</td>
<td>21° 53.45'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>336</td>
<td>22.11.86</td>
<td>3:16</td>
<td>14° 58.80'</td>
<td>22° 24.85'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>337</td>
<td>22.11.86</td>
<td>7:29</td>
<td>14° 59.99'</td>
<td>22° 55.10'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>338</td>
<td>22.11.86</td>
<td>18:53</td>
<td>13° 30.07'</td>
<td>24° 7.01'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>339</td>
<td>23.11.86</td>
<td>4:47</td>
<td>12° 14.08'</td>
<td>25° 10.05'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>340</td>
<td>23.11.86</td>
<td>20:26</td>
<td>9° 59.92'</td>
<td>26° 59.97'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>341</td>
<td>24.11.86</td>
<td>4:52</td>
<td>11° 0.09'</td>
<td>26° 58.91'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>342</td>
<td>24.11.86</td>
<td>12:10</td>
<td>12° 0.74'</td>
<td>26° 58.13'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>343</td>
<td>24.11.86</td>
<td>18:53</td>
<td>13° 0.15'</td>
<td>26° 59.96'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>344</td>
<td>25.11.86</td>
<td>2:1</td>
<td>14° 0.03'</td>
<td>27° 0.15'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>345</td>
<td>25.11.86</td>
<td>8:52</td>
<td>15° 0.20'</td>
<td>26° 58.97'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>346</td>
<td>25.11.86</td>
<td>15:47</td>
<td>16° 0.41'</td>
<td>26° 58.07'</td>
<td>CTDO₂, NS</td>
</tr>
<tr>
<td>347</td>
<td>25.11.86</td>
<td>22:25</td>
<td>17° 0.18'</td>
<td>26° 59.61'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>348</td>
<td>26.11.86</td>
<td>5:43</td>
<td>17° 59.22'</td>
<td>26° 58.96'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>349</td>
<td>26.11.86</td>
<td>12:30</td>
<td>18° 59.93'</td>
<td>26° 59.92'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>350</td>
<td>26.11.86</td>
<td>22:4</td>
<td>20° 30.19'</td>
<td>26° 59.88'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>351</td>
<td>27.11.86</td>
<td>7:6</td>
<td>22° 0.07'</td>
<td>27° 0.02'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>352</td>
<td>27.11.86</td>
<td>16:53</td>
<td>22° 15.01'</td>
<td>26° 29.88'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>353</td>
<td>27.11.86</td>
<td>20:32</td>
<td>22° 30.26'</td>
<td>26° 59.79'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>354</td>
<td>28.11.86</td>
<td>2:45</td>
<td>23° 30.12'</td>
<td>26° 59.98'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>355</td>
<td>28.11.86</td>
<td>11:59</td>
<td>25° 0.10'</td>
<td>26° 59.86'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
<tr>
<td>356</td>
<td>29.11.86</td>
<td>6:35</td>
<td>28° 0.14'</td>
<td>25° 28.02'</td>
<td>CTDO₂, NS, O₂, TR</td>
</tr>
</tbody>
</table>
### 4.2 XBT

F.S. Meteor, Reise Nr. 4

<table>
<thead>
<tr>
<th>XBT-Nr.</th>
<th>Datum</th>
<th>Zeit UTC</th>
<th>Breite N</th>
<th>Länge W</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>6.11.86</td>
<td>18:59</td>
<td>26° 22.92', 19° 26.40'</td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>6.11.86</td>
<td>19:59</td>
<td>26° 11.22', 19° 29.22'</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>6.11.86</td>
<td>20:59</td>
<td>26° 59.58', 19° 32.88'</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>6.11.86</td>
<td>21:59</td>
<td>25° 47.22', 19° 36.42'</td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>6.11.86</td>
<td>22:58</td>
<td>25° 38.22', 19° 43.02'</td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>7.11.86</td>
<td>23:58</td>
<td>25° 25.80', 19° 46.68'</td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>7.11.86</td>
<td>0:58</td>
<td>25° 15.12', 19° 50.58'</td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>7.11.86</td>
<td>1:58</td>
<td>25° 3.42', 19° 53.82'</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>7.11.86</td>
<td>2:58</td>
<td>24° 52.08', 19° 57.12'</td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>7.11.86</td>
<td>3:58</td>
<td>24° 40.32', 20° 00.48'</td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>7.11.86</td>
<td>4:59</td>
<td>24° 28.68', 20° 04.02'</td>
<td></td>
</tr>
<tr>
<td>013</td>
<td>7.11.86</td>
<td>6:1</td>
<td>24° 16.50', 20° 07.50'</td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>7.11.86</td>
<td>6:58</td>
<td>24° 4.20', 20° 10.50'</td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>7.11.86</td>
<td>7:58</td>
<td>23° 51.78', 20° 13.22'</td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>7.11.86</td>
<td>8:58</td>
<td>23° 39.48', 20° 16.88'</td>
<td></td>
</tr>
<tr>
<td>017</td>
<td>7.11.86</td>
<td>9:58</td>
<td>23° 27.30', 20° 20.60'</td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>7.11.86</td>
<td>10:57</td>
<td>23° 17.88', 20° 24.18'</td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>7.11.86</td>
<td>11:57</td>
<td>23° 5.10', 20° 28.20'</td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>7.11.86</td>
<td>18:59</td>
<td>22° 57.96', 20° 30.12'</td>
<td></td>
</tr>
<tr>
<td>021</td>
<td>7.11.86</td>
<td>19:59</td>
<td>22° 46.68', 20° 31.80'</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>7.11.86</td>
<td>20:59</td>
<td>22° 34.68', 20° 32.98'</td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>7.11.86</td>
<td>21:58</td>
<td>22° 22.38', 20° 33.38'</td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>7.11.86</td>
<td>22:58</td>
<td>22° 10.08', 20° 35.82'</td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>8.11.86</td>
<td>23:58</td>
<td>21° 57.30', 20° 37.20'</td>
<td></td>
</tr>
<tr>
<td>026</td>
<td>8.11.86</td>
<td>0:58</td>
<td>21° 40.52', 20° 38.52'</td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>8.11.86</td>
<td>1:58</td>
<td>21° 3.28', 20° 39.90'</td>
<td></td>
</tr>
<tr>
<td>028</td>
<td>8.11.86</td>
<td>2:58</td>
<td>21° 19.38', 20° 41.22'</td>
<td></td>
</tr>
<tr>
<td>029</td>
<td>8.11.86</td>
<td>3:58</td>
<td>21° 6.60', 20° 42.72'</td>
<td></td>
</tr>
<tr>
<td>030</td>
<td>8.11.86</td>
<td>4:57</td>
<td>20° 59.10', 20° 49.50'</td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>8.11.86</td>
<td>6:0</td>
<td>20° 47.10', 20° 45.60'</td>
<td></td>
</tr>
<tr>
<td>032</td>
<td>8.11.86</td>
<td>7:0</td>
<td>20° 49.32', 20° 47.52'</td>
<td></td>
</tr>
<tr>
<td>033</td>
<td>8.11.86</td>
<td>14:5</td>
<td>20° 0.12', 21° 0.12'</td>
<td></td>
</tr>
<tr>
<td>034</td>
<td>8.11.86</td>
<td>17:5</td>
<td>21° 9.12', 21° 9.48'</td>
<td></td>
</tr>
<tr>
<td>035</td>
<td>8.11.86</td>
<td>17:58</td>
<td>21° 16.50', 21° 19.50'</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>8.11.86</td>
<td>20:59</td>
<td>21° 25.32', 21° 26.68'</td>
<td></td>
</tr>
<tr>
<td>037</td>
<td>8.11.86</td>
<td>21:59</td>
<td>21° 34.38', 21° 37.98'</td>
<td></td>
</tr>
<tr>
<td>038</td>
<td>9.11.86</td>
<td>1:58</td>
<td>21° 46.20', 21° 50.88'</td>
<td></td>
</tr>
<tr>
<td>039</td>
<td>9.11.86</td>
<td>5:56</td>
<td>21° 56.70', 22° 1.02'</td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>9.11.86</td>
<td>13:41</td>
<td>22° 8.70', 22° 15.42'</td>
<td></td>
</tr>
<tr>
<td>041</td>
<td>9.11.86</td>
<td>19:49</td>
<td>22° 34.20', 22° 39.18'</td>
<td></td>
</tr>
<tr>
<td>042</td>
<td>9.11.86</td>
<td>19:49</td>
<td>22° 34.20', 22° 39.18'</td>
<td></td>
</tr>
<tr>
<td>043</td>
<td>10.11.86</td>
<td>23:51</td>
<td>22° 57.00', 23° 1.62'</td>
<td></td>
</tr>
<tr>
<td>044</td>
<td>10.11.86</td>
<td>4:37</td>
<td>23° 16.08', 23° 19.92'</td>
<td></td>
</tr>
<tr>
<td>045</td>
<td>10.11.86</td>
<td>9:21</td>
<td>23° 34.62', 23° 37.20'</td>
<td></td>
</tr>
<tr>
<td>046</td>
<td>10.11.86</td>
<td>14:33</td>
<td>23° 58.92', 23° 59.22'</td>
<td></td>
</tr>
<tr>
<td>047</td>
<td>10.11.86</td>
<td>20:45</td>
<td>24° 7.92', 24° 56.40'</td>
<td></td>
</tr>
<tr>
<td>048</td>
<td>10.11.86</td>
<td>5:29</td>
<td>23° 53.10', 26° 18.12'</td>
<td></td>
</tr>
<tr>
<td>XBT-Nr.</td>
<td>Datum</td>
<td>Zeit UTC</td>
<td>Breite N</td>
<td>Lange W</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>050</td>
<td>11.11.86</td>
<td>17:20</td>
<td>23° 19.08',</td>
<td>26° 33.60',</td>
</tr>
<tr>
<td>051</td>
<td>12.11.86</td>
<td>0:29</td>
<td>22° 26.88',</td>
<td>26° 4.92',</td>
</tr>
<tr>
<td>052</td>
<td>12.11.86</td>
<td>8: 6</td>
<td>22° 0.00',</td>
<td>25° 36.12',</td>
</tr>
<tr>
<td>053</td>
<td>12.11.86</td>
<td>22: 0</td>
<td>21° 36.48',</td>
<td>24° 47.58',</td>
</tr>
<tr>
<td>054</td>
<td>13.11.86</td>
<td>6:31</td>
<td>20° 52.02',</td>
<td>23° 28.80',</td>
</tr>
<tr>
<td>055</td>
<td>13.11.86</td>
<td>8: 3</td>
<td>20° 16.02',</td>
<td>23° 29.98',</td>
</tr>
<tr>
<td>056</td>
<td>13.11.86</td>
<td>20:40</td>
<td>20° 7.50',</td>
<td>23° 15.18',</td>
</tr>
<tr>
<td>057</td>
<td>14.11.86</td>
<td>18:33</td>
<td>19° 23.88',</td>
<td>23° 23.70',</td>
</tr>
<tr>
<td>058</td>
<td>14.11.86</td>
<td>6: 4</td>
<td>19° 21.42',</td>
<td>21° 51.30',</td>
</tr>
<tr>
<td>059</td>
<td>14.11.86</td>
<td>19:38</td>
<td>19° 41.58',</td>
<td>21° 44.22',</td>
</tr>
<tr>
<td>060</td>
<td>15.11.86</td>
<td>14:25</td>
<td>19° 2.10',</td>
<td>21° 25.56',</td>
</tr>
<tr>
<td>061</td>
<td>15.11.86</td>
<td>22:30</td>
<td>18° 33.18',</td>
<td>20° 57.60',</td>
</tr>
<tr>
<td>062</td>
<td>16.11.86</td>
<td>7:14</td>
<td>17° 18.60',</td>
<td>21° 16.80',</td>
</tr>
<tr>
<td>063</td>
<td>16.11.86</td>
<td>21:58</td>
<td>16° 55.92',</td>
<td>20° 49.98',</td>
</tr>
<tr>
<td>064</td>
<td>17.11.86</td>
<td>11:57</td>
<td>16° 6.00',</td>
<td>20° 7.92',</td>
</tr>
<tr>
<td>065</td>
<td>17.11.86</td>
<td>12:57</td>
<td>16° 58.32',</td>
<td>19° 59.28',</td>
</tr>
<tr>
<td>066</td>
<td>17.11.86</td>
<td>13:57</td>
<td>16° 50.40',</td>
<td>19° 50.52',</td>
</tr>
<tr>
<td>067</td>
<td>17.11.86</td>
<td>14:57</td>
<td>16° 42.42',</td>
<td>19° 41.40',</td>
</tr>
<tr>
<td>068</td>
<td>17.11.86</td>
<td>15:57</td>
<td>16° 34.20',</td>
<td>19° 32.40',</td>
</tr>
<tr>
<td>069</td>
<td>17.11.86</td>
<td>16:53</td>
<td>16° 25.36',</td>
<td>19° 25.20',</td>
</tr>
<tr>
<td>070</td>
<td>17.11.86</td>
<td>17:54</td>
<td>16° 16.92',</td>
<td>19° 16.38',</td>
</tr>
<tr>
<td>071</td>
<td>17.11.86</td>
<td>18:56</td>
<td>16° 8.52',</td>
<td>19° 8.58',</td>
</tr>
<tr>
<td>072</td>
<td>17.11.86</td>
<td>19:56</td>
<td>16° 0.48',</td>
<td>18° 59.22',</td>
</tr>
<tr>
<td>073</td>
<td>17.11.86</td>
<td>20:55</td>
<td>15° 52.38',</td>
<td>18° 49.32',</td>
</tr>
<tr>
<td>074</td>
<td>17.11.86</td>
<td>22: 9</td>
<td>15° 42.42',</td>
<td>18° 38.10',</td>
</tr>
<tr>
<td>075</td>
<td>17.11.86</td>
<td>22:56</td>
<td>15° 36.00',</td>
<td>18° 30.78',</td>
</tr>
<tr>
<td>076</td>
<td>18.11.86</td>
<td>0: 7</td>
<td>15° 26.40',</td>
<td>18° 20.52',</td>
</tr>
<tr>
<td>077</td>
<td>18.11.86</td>
<td>1: 2</td>
<td>15° 19.50',</td>
<td>18° 12.72',</td>
</tr>
<tr>
<td>078</td>
<td>18.11.86</td>
<td>1:56</td>
<td>15° 12.12',</td>
<td>18° 5.10',</td>
</tr>
<tr>
<td>079</td>
<td>20.11.86</td>
<td>15: 0</td>
<td>14° 39.12',</td>
<td>17° 59.88',</td>
</tr>
<tr>
<td>080</td>
<td>20.11.86</td>
<td>19: 4</td>
<td>14° 41.28',</td>
<td>18° 30.48',</td>
</tr>
<tr>
<td>081</td>
<td>20.11.86</td>
<td>23:22</td>
<td>14° 43.92',</td>
<td>19° 1.50',</td>
</tr>
<tr>
<td>082</td>
<td>21.11.86</td>
<td>8:18</td>
<td>14° 48.12',</td>
<td>20° 3.00',</td>
</tr>
<tr>
<td>083</td>
<td>21.11.86</td>
<td>21:15</td>
<td>14° 55.32',</td>
<td>21° 38.88',</td>
</tr>
<tr>
<td>084</td>
<td>22.11.86</td>
<td>1:46</td>
<td>14° 56.88',</td>
<td>22° 8.40',</td>
</tr>
<tr>
<td>085</td>
<td>22.11.86</td>
<td>9:58</td>
<td>14° 57.48',</td>
<td>22° 58.98',</td>
</tr>
<tr>
<td>086</td>
<td>22.11.86</td>
<td>11: 0</td>
<td>14° 57.48',</td>
<td>23° 4.62',</td>
</tr>
<tr>
<td>087</td>
<td>22.11.86</td>
<td>11:54</td>
<td>14° 38.22',</td>
<td>23° 11.88',</td>
</tr>
<tr>
<td>088</td>
<td>22.11.86</td>
<td>13: 5</td>
<td>14° 27.30',</td>
<td>23° 20.82',</td>
</tr>
<tr>
<td>089</td>
<td>22.11.86</td>
<td>14: 0</td>
<td>14° 16.92',</td>
<td>23° 29.40',</td>
</tr>
<tr>
<td>090</td>
<td>22.11.86</td>
<td>15: 0</td>
<td>14° 7.38',</td>
<td>23° 38.40',</td>
</tr>
<tr>
<td>091</td>
<td>22.11.86</td>
<td>16: 0</td>
<td>13° 56.40',</td>
<td>23° 46.68',</td>
</tr>
<tr>
<td>092</td>
<td>22.11.86</td>
<td>17: 0</td>
<td>13° 48.00',</td>
<td>23° 55.02',</td>
</tr>
<tr>
<td>093</td>
<td>22.11.86</td>
<td>18: 0</td>
<td>13° 36.90',</td>
<td>24° 2.70',</td>
</tr>
<tr>
<td>094</td>
<td>22.11.86</td>
<td>21: 0</td>
<td>13° 26.88',</td>
<td>24° 9.90',</td>
</tr>
<tr>
<td>095</td>
<td>22.11.86</td>
<td>23: 0</td>
<td>13° 0.00',</td>
<td>24° 26.82',</td>
</tr>
<tr>
<td>096</td>
<td>23.11.86</td>
<td>0: 0</td>
<td>12° 58.20',</td>
<td>24° 33.78',</td>
</tr>
<tr>
<td>097</td>
<td>23.11.86</td>
<td>1: 0</td>
<td>12° 48.18',</td>
<td>24° 41.70',</td>
</tr>
<tr>
<td>098</td>
<td>23.11.86</td>
<td>2: 0</td>
<td>12° 37.92',</td>
<td>24° 49.68',</td>
</tr>
<tr>
<td>099</td>
<td>23.11.86</td>
<td>3: 0</td>
<td>12° 29.28',</td>
<td>24° 57.48',</td>
</tr>
<tr>
<td>XBT-Nr.</td>
<td>Datum</td>
<td>Zeit UTC</td>
<td>Breite N</td>
<td>Länge W</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>112</td>
<td>23.11.86</td>
<td>4:00</td>
<td>12° 19.50',</td>
<td>25° 4.98',</td>
</tr>
<tr>
<td>113</td>
<td>23.11.86</td>
<td>7:00</td>
<td>12° 11.28',</td>
<td>25° 12.48',</td>
</tr>
<tr>
<td>114</td>
<td>23.11.86</td>
<td>8:00</td>
<td>12° 1.92',</td>
<td>25° 20.10',</td>
</tr>
<tr>
<td>115</td>
<td>23.11.86</td>
<td>9:00</td>
<td>11° 53.52',</td>
<td>25° 28.62',</td>
</tr>
<tr>
<td>116</td>
<td>23.11.86</td>
<td>9:58</td>
<td>11° 43.68',</td>
<td>25° 35.88',</td>
</tr>
<tr>
<td>117</td>
<td>23.11.86</td>
<td>11:00</td>
<td>11° 33.12',</td>
<td>25° 43.20',</td>
</tr>
<tr>
<td>118</td>
<td>23.11.86</td>
<td>12:00</td>
<td>11° 23.22',</td>
<td>25° 51.18',</td>
</tr>
<tr>
<td>119</td>
<td>23.11.86</td>
<td>13:00</td>
<td>11° 12.30',</td>
<td>25° 59.88',</td>
</tr>
<tr>
<td>120</td>
<td>23.11.86</td>
<td>14:00</td>
<td>11° 2.88',</td>
<td>26° 7.50',</td>
</tr>
<tr>
<td>121</td>
<td>23.11.86</td>
<td>14:59</td>
<td>10° 52.50',</td>
<td>26° 15.72',</td>
</tr>
<tr>
<td>122</td>
<td>23.11.86</td>
<td>16:00</td>
<td>10° 43.02',</td>
<td>26° 22.98',</td>
</tr>
<tr>
<td>123</td>
<td>23.11.86</td>
<td>16:59</td>
<td>10° 33.60',</td>
<td>26° 32.22',</td>
</tr>
<tr>
<td>124</td>
<td>23.11.86</td>
<td>17:59</td>
<td>10° 23.52',</td>
<td>26° 40.62',</td>
</tr>
<tr>
<td>125</td>
<td>23.11.86</td>
<td>18:59</td>
<td>10° 13.08',</td>
<td>26° 48.78',</td>
</tr>
<tr>
<td>126</td>
<td>23.11.86</td>
<td>19:59</td>
<td>10° 3.72',</td>
<td>26° 57.18',</td>
</tr>
<tr>
<td>127</td>
<td>23.11.86</td>
<td>22:59</td>
<td>10° 2.10',</td>
<td>26° 59.88',</td>
</tr>
<tr>
<td>128</td>
<td>24.11.86</td>
<td>0:00</td>
<td>10° 14.58',</td>
<td>26° 59.88',</td>
</tr>
<tr>
<td>129</td>
<td>24.11.86</td>
<td>0:58</td>
<td>10° 25.98',</td>
<td>26° 59.82',</td>
</tr>
<tr>
<td>130</td>
<td>24.11.86</td>
<td>2:00</td>
<td>10° 37.08',</td>
<td>26° 58.80',</td>
</tr>
<tr>
<td>131</td>
<td>24.11.86</td>
<td>2:59</td>
<td>10° 47.58',</td>
<td>26° 56.58',</td>
</tr>
<tr>
<td>132</td>
<td>24.11.86</td>
<td>4:00</td>
<td>10° 58.38',</td>
<td>26° 56.58',</td>
</tr>
<tr>
<td>133</td>
<td>24.11.86</td>
<td>6:59</td>
<td>11° 4.68',</td>
<td>27° 0.48',</td>
</tr>
<tr>
<td>135</td>
<td>24.11.86</td>
<td>8:59</td>
<td>11° 25.68',</td>
<td>26° 59.82',</td>
</tr>
<tr>
<td>136</td>
<td>24.11.86</td>
<td>9:59</td>
<td>11° 36.72',</td>
<td>27° 1.02',</td>
</tr>
<tr>
<td>137</td>
<td>24.11.86</td>
<td>10:59</td>
<td>11° 48.18',</td>
<td>27° 0.18',</td>
</tr>
<tr>
<td>138</td>
<td>24.11.86</td>
<td>13:58</td>
<td>12° 1.80',</td>
<td>27° 0.78',</td>
</tr>
<tr>
<td>139</td>
<td>24.11.86</td>
<td>14:56</td>
<td>12° 13.32',</td>
<td>27° 0.42',</td>
</tr>
<tr>
<td>140</td>
<td>24.11.86</td>
<td>15:57</td>
<td>12° 25.62',</td>
<td>27° 1.50',</td>
</tr>
<tr>
<td>141</td>
<td>24.11.86</td>
<td>16:58</td>
<td>12° 37.38',</td>
<td>27° 0.12',</td>
</tr>
<tr>
<td>142</td>
<td>24.11.86</td>
<td>17:57</td>
<td>12° 50.40',</td>
<td>27° 1.02',</td>
</tr>
<tr>
<td>143</td>
<td>24.11.86</td>
<td>21:57</td>
<td>13° 9.72',</td>
<td>27° 1.08',</td>
</tr>
<tr>
<td>144</td>
<td>24.11.86</td>
<td>22:58</td>
<td>13° 22.08',</td>
<td>27° 0.12',</td>
</tr>
<tr>
<td>145</td>
<td>25.11.86</td>
<td>23:58</td>
<td>13° 34.98',</td>
<td>26° 58.98',</td>
</tr>
<tr>
<td>146</td>
<td>25.11.86</td>
<td>0:57</td>
<td>13° 48.42',</td>
<td>26° 59.52',</td>
</tr>
<tr>
<td>147</td>
<td>25.11.86</td>
<td>3:57</td>
<td>14° 5.40',</td>
<td>26° 59.70',</td>
</tr>
<tr>
<td>148</td>
<td>25.11.86</td>
<td>4:57</td>
<td>14° 17.22',</td>
<td>26° 59.58',</td>
</tr>
<tr>
<td>149</td>
<td>25.11.86</td>
<td>5:57</td>
<td>14° 28.98',</td>
<td>26° 59.88',</td>
</tr>
<tr>
<td>150</td>
<td>25.11.86</td>
<td>6:57</td>
<td>14° 39.78',</td>
<td>27° 0.12',</td>
</tr>
<tr>
<td>151</td>
<td>25.11.86</td>
<td>7:58</td>
<td>14° 50.82',</td>
<td>26° 59.88',</td>
</tr>
<tr>
<td>152</td>
<td>25.11.86</td>
<td>10:58</td>
<td>15° 5.58',</td>
<td>27° 0.30',</td>
</tr>
<tr>
<td>153</td>
<td>25.11.86</td>
<td>11:58</td>
<td>15° 17.58',</td>
<td>27° 0.18',</td>
</tr>
<tr>
<td>154</td>
<td>25.11.86</td>
<td>13:0</td>
<td>15° 28.50',</td>
<td>27° 0.00',</td>
</tr>
<tr>
<td>155</td>
<td>25.11.86</td>
<td>13:59</td>
<td>15° 40.50',</td>
<td>26° 59.22',</td>
</tr>
<tr>
<td>156</td>
<td>25.11.86</td>
<td>15:2</td>
<td>15° 53.10',</td>
<td>26° 59.70',</td>
</tr>
<tr>
<td>157</td>
<td>25.11.86</td>
<td>17:57</td>
<td>16° 7.38',</td>
<td>27° 0.78',</td>
</tr>
<tr>
<td>159</td>
<td>25.11.86</td>
<td>19:57</td>
<td>16° 31.50',</td>
<td>27° 0.12',</td>
</tr>
<tr>
<td>160</td>
<td>25.11.86</td>
<td>20:57</td>
<td>16° 43.38',</td>
<td>27° 0.12',</td>
</tr>
<tr>
<td>161</td>
<td>25.11.86</td>
<td>21:59</td>
<td>16° 55.38',</td>
<td>26° 59.82',</td>
</tr>
<tr>
<td>XBT-Nr.</td>
<td>Datum</td>
<td>Zeit UTC</td>
<td>Breite N</td>
<td>Länge W</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>162</td>
<td>26.11.86</td>
<td>0:59</td>
<td>17° 3.30'</td>
<td>27° 0.30'</td>
</tr>
<tr>
<td>163</td>
<td>26.11.86</td>
<td>2: 0</td>
<td>17° 16.80'</td>
<td>26° 59.58'</td>
</tr>
<tr>
<td>164</td>
<td>26.11.86</td>
<td>3: 0</td>
<td>17° 28.08'</td>
<td>26° 59.70'</td>
</tr>
<tr>
<td>165</td>
<td>26.11.86</td>
<td>3:59</td>
<td>17° 39.78'</td>
<td>26° 59.28'</td>
</tr>
<tr>
<td>166</td>
<td>26.11.86</td>
<td>4:59</td>
<td>17° 51.90'</td>
<td>26° 59.10'</td>
</tr>
<tr>
<td>167</td>
<td>26.11.86</td>
<td>7:59</td>
<td>18° 7.92'</td>
<td>27° 0.00'</td>
</tr>
<tr>
<td>168</td>
<td>26.11.86</td>
<td>8:58</td>
<td>18° 19.62'</td>
<td>26° 59.52'</td>
</tr>
<tr>
<td>169</td>
<td>26.11.86</td>
<td>9:58</td>
<td>18° 31.08'</td>
<td>26° 59.40'</td>
</tr>
<tr>
<td>170</td>
<td>26.11.86</td>
<td>10:57</td>
<td>18° 43.20'</td>
<td>26° 59.82'</td>
</tr>
<tr>
<td>171</td>
<td>26.11.86</td>
<td>11:59</td>
<td>18° 55.02'</td>
<td>27° 0.12'</td>
</tr>
<tr>
<td>172</td>
<td>26.11.86</td>
<td>14:57</td>
<td>19° 5.58'</td>
<td>27° 0.60'</td>
</tr>
<tr>
<td>173</td>
<td>26.11.86</td>
<td>16: 0</td>
<td>19° 18.90'</td>
<td>27° 0.60'</td>
</tr>
<tr>
<td>174</td>
<td>26.11.86</td>
<td>16:58</td>
<td>19° 29.88'</td>
<td>27° 2.28'</td>
</tr>
<tr>
<td>175</td>
<td>26.11.86</td>
<td>17:58</td>
<td>19° 41.88'</td>
<td>27° 1.92'</td>
</tr>
<tr>
<td>177</td>
<td>26.11.86</td>
<td>19:57</td>
<td>20° 5.40'</td>
<td>27° 0.42'</td>
</tr>
<tr>
<td>179</td>
<td>26.11.86</td>
<td>21:20</td>
<td>20° 22.08'</td>
<td>27° 0.12'</td>
</tr>
<tr>
<td>180</td>
<td>27.11.86</td>
<td>23:58</td>
<td>20° 33.42'</td>
<td>27° 0.90'</td>
</tr>
<tr>
<td>181</td>
<td>27.11.86</td>
<td>0:59</td>
<td>20° 45.60'</td>
<td>27° 0.18'</td>
</tr>
<tr>
<td>182</td>
<td>27.11.86</td>
<td>1:57</td>
<td>20° 57.72'</td>
<td>27° 0.00'</td>
</tr>
<tr>
<td>183</td>
<td>27.11.86</td>
<td>2:59</td>
<td>21° 10.20'</td>
<td>26° 58.68'</td>
</tr>
<tr>
<td>184</td>
<td>27.11.86</td>
<td>3:59</td>
<td>21° 22.38'</td>
<td>26° 57.72'</td>
</tr>
<tr>
<td>185</td>
<td>27.11.86</td>
<td>4:59</td>
<td>21° 34.98'</td>
<td>26° 57.78'</td>
</tr>
<tr>
<td>186</td>
<td>27.11.86</td>
<td>5:59</td>
<td>21° 47.98'</td>
<td>26° 57.78'</td>
</tr>
<tr>
<td>187</td>
<td>27.11.86</td>
<td>10:31</td>
<td>22° 15.30'</td>
<td>26° 59.98'</td>
</tr>
<tr>
<td>188</td>
<td>27.11.86</td>
<td>11:45</td>
<td>22° 30.00'</td>
<td>27° 0.12'</td>
</tr>
<tr>
<td>189</td>
<td>27.11.86</td>
<td>12:50</td>
<td>22° 14.28'</td>
<td>26° 59.88'</td>
</tr>
<tr>
<td>190</td>
<td>27.11.86</td>
<td>13:56</td>
<td>22° 0.42'</td>
<td>27° 0.00'</td>
</tr>
<tr>
<td>191</td>
<td>27.11.86</td>
<td>15:25</td>
<td>22° 7.92'</td>
<td>26° 44.28'</td>
</tr>
<tr>
<td>192</td>
<td>27.11.86</td>
<td>19:16</td>
<td>22° 22.80'</td>
<td>26° 44.52'</td>
</tr>
<tr>
<td>193</td>
<td>27.11.86</td>
<td>21:58</td>
<td>22° 32.40'</td>
<td>26° 59.88'</td>
</tr>
<tr>
<td>194</td>
<td>27.11.86</td>
<td>22:58</td>
<td>22° 44.70'</td>
<td>26° 59.52'</td>
</tr>
<tr>
<td>195</td>
<td>28.11.86</td>
<td>0: 0</td>
<td>22° 57.90'</td>
<td>27° 0.12'</td>
</tr>
<tr>
<td>197</td>
<td>28.11.86</td>
<td>1:57</td>
<td>23° 22.62'</td>
<td>26° 59.88'</td>
</tr>
<tr>
<td>198</td>
<td>28.11.86</td>
<td>4:59</td>
<td>23° 37.98'</td>
<td>27° 0.72'</td>
</tr>
<tr>
<td>199</td>
<td>28.11.86</td>
<td>5:59</td>
<td>23° 50.88'</td>
<td>27° 0.30'</td>
</tr>
<tr>
<td>200</td>
<td>28.11.86</td>
<td>6:57</td>
<td>24° 0.42'</td>
<td>27° 0.12'</td>
</tr>
<tr>
<td>201</td>
<td>28.11.86</td>
<td>7:58</td>
<td>24° 12.60'</td>
<td>27° 0.12'</td>
</tr>
<tr>
<td>202</td>
<td>28.11.86</td>
<td>9: 1</td>
<td>24° 24.72'</td>
<td>27° 0.00'</td>
</tr>
<tr>
<td>203</td>
<td>28.11.86</td>
<td>10: 2</td>
<td>24° 37.32'</td>
<td>26° 59.88'</td>
</tr>
<tr>
<td>204</td>
<td>28.11.86</td>
<td>10:57</td>
<td>24° 49.02'</td>
<td>26° 59.98'</td>
</tr>
<tr>
<td>205</td>
<td>28.11.86</td>
<td>15: 0</td>
<td>25° 7.80'</td>
<td>26° 56.70'</td>
</tr>
<tr>
<td>206</td>
<td>28.11.86</td>
<td>15:56</td>
<td>25° 18.00'</td>
<td>26° 51.30'</td>
</tr>
<tr>
<td>207</td>
<td>28.11.86</td>
<td>16:57</td>
<td>25° 29.70'</td>
<td>26° 46.32'</td>
</tr>
<tr>
<td>208</td>
<td>28.11.86</td>
<td>17:56</td>
<td>25° 40.68'</td>
<td>26° 40.50'</td>
</tr>
<tr>
<td>209</td>
<td>28.11.86</td>
<td>19:59</td>
<td>26° 1.80'</td>
<td>26° 28.68'</td>
</tr>
<tr>
<td>210</td>
<td>28.11.86</td>
<td>21:59</td>
<td>26° 23.88'</td>
<td>26° 17.92'</td>
</tr>
<tr>
<td>211</td>
<td>29.11.86</td>
<td>0: 0</td>
<td>26° 45.90'</td>
<td>26° 5.82'</td>
</tr>
<tr>
<td>212</td>
<td>29.11.86</td>
<td>1:59</td>
<td>27° 9.48'</td>
<td>25° 53.58'</td>
</tr>
<tr>
<td>213</td>
<td>29.11.86</td>
<td>3:57</td>
<td>27° 31.20'</td>
<td>25° 42.48'</td>
</tr>
<tr>
<td>214</td>
<td>29.11.86</td>
<td>6: 0</td>
<td>27° 54.12'</td>
<td>25° 30.78'</td>
</tr>
<tr>
<td>215</td>
<td>29.11.86</td>
<td>8:10</td>
<td>28° 1.80'</td>
<td>25° 28.02'</td>
</tr>
<tr>
<td>216</td>
<td>29.11.86</td>
<td>10: 0</td>
<td>28° 24.60'</td>
<td>25° 17.22'</td>
</tr>
<tr>
<td>XBT-Nr.</td>
<td>Datum</td>
<td>Zeit UTC</td>
<td>Breite N</td>
<td>Länge W</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>217</td>
<td>29.11.86</td>
<td>12:0</td>
<td>28° 50.40'</td>
<td>25° 5.10'</td>
</tr>
<tr>
<td>218</td>
<td>29.11.86</td>
<td>14:0</td>
<td>29° 12.48'</td>
<td>24° 54.18'</td>
</tr>
<tr>
<td>219</td>
<td>29.11.86</td>
<td>15:58</td>
<td>29° 34.98'</td>
<td>24° 43.98'</td>
</tr>
<tr>
<td>220</td>
<td>29.11.86</td>
<td>17:57</td>
<td>29° 58.02'</td>
<td>24° 32.88'</td>
</tr>
<tr>
<td>221</td>
<td>29.11.86</td>
<td>19:58</td>
<td>30° 21.12'</td>
<td>24° 20.22'</td>
</tr>
<tr>
<td>222</td>
<td>29.11.86</td>
<td>21:58</td>
<td>30° 43.38'</td>
<td>24° 8.28'</td>
</tr>
<tr>
<td>223</td>
<td>29.11.86</td>
<td>23:59</td>
<td>31° 7.50'</td>
<td>23° 55.80'</td>
</tr>
<tr>
<td>224</td>
<td>30.11.86</td>
<td>1:58</td>
<td>31° 31.38'</td>
<td>23° 44.10'</td>
</tr>
<tr>
<td>225</td>
<td>30.11.86</td>
<td>3:58</td>
<td>31° 55.50'</td>
<td>23° 31.38'</td>
</tr>
<tr>
<td>226</td>
<td>30.11.86</td>
<td>5:8</td>
<td>32° 7.20'</td>
<td>23° 25.70'</td>
</tr>
<tr>
<td>227</td>
<td>30.11.86</td>
<td>6:0</td>
<td>32° 18.42'</td>
<td>23° 19.50'</td>
</tr>
<tr>
<td>228</td>
<td>30.11.86</td>
<td>6:59</td>
<td>32° 29.22'</td>
<td>23° 13.50'</td>
</tr>
<tr>
<td>229</td>
<td>30.11.86</td>
<td>7:57</td>
<td>32° 40.92'</td>
<td>23° 7.38'</td>
</tr>
<tr>
<td>230</td>
<td>30.11.86</td>
<td>8:58</td>
<td>32° 53.40'</td>
<td>23° 1.38'</td>
</tr>
<tr>
<td>231</td>
<td>30.11.86</td>
<td>9:59</td>
<td>33° 5.22'</td>
<td>22° 55.80'</td>
</tr>
<tr>
<td>232</td>
<td>30.11.86</td>
<td>10:58</td>
<td>33° 17.52'</td>
<td>22° 49.38'</td>
</tr>
<tr>
<td>233</td>
<td>30.11.86</td>
<td>11:59</td>
<td>33° 28.08'</td>
<td>22° 43.08'</td>
</tr>
<tr>
<td>234</td>
<td>30.11.86</td>
<td>13:0</td>
<td>33° 39.30'</td>
<td>22° 35.28'</td>
</tr>
<tr>
<td>236</td>
<td>30.11.86</td>
<td>14:58</td>
<td>34° 1.92'</td>
<td>22° 21.00'</td>
</tr>
<tr>
<td>237</td>
<td>30.11.86</td>
<td>15:58</td>
<td>34° 12.60'</td>
<td>22° 22.08'</td>
</tr>
</tbody>
</table>
### 4.3 Verankerungen

F.S. Meteor, Reise Nr. 4

#### Abkürzungen

- **MR** = Verankerung aufgenommen
- **ML** = Verankerung ausgelegt
- **SM** = Strömungsmesser
- **TK** = Thermistorkette mit 11 Temperatursensoren
- **SF** = Sinkstoff-Fallen

<table>
<thead>
<tr>
<th>Externe Bezeichnung</th>
<th>IFM-Nr.</th>
<th>Datum Zeit</th>
<th>Breite N Länge W</th>
<th>Zahl Meßgeräte</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td>311-1</td>
<td>30.10.86 07:25</td>
<td>36° 01.9' 18° 01.1'</td>
<td>3 SM MR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>276-7 14:31</td>
<td>33° 08.5' 21° 57.6'</td>
<td>8 SM MR</td>
</tr>
<tr>
<td></td>
<td>276-8</td>
<td>01.11.86 12:07</td>
<td>33° 06.7' 21° 55.1'</td>
<td>8 SM ML</td>
</tr>
<tr>
<td>E</td>
<td>294-3</td>
<td>02.11.86 14:58</td>
<td>28° 02.8' 20° 25.1'</td>
<td>1 SM MR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>293-3 09:05</td>
<td>28° 01.4' 18° 17.5'</td>
<td>1 SM MR</td>
</tr>
<tr>
<td>Y</td>
<td>306-1</td>
<td>06.11.86 13:05</td>
<td>26° 25.6' 19° 24.9'</td>
<td>1 SM MR</td>
</tr>
<tr>
<td>V</td>
<td>307-1</td>
<td>07.11.86 13:45</td>
<td>22° 56.7' 20° 30.7'</td>
<td>5 SM MR</td>
</tr>
<tr>
<td>Q</td>
<td>308-1</td>
<td>09.11.86 08:33</td>
<td>21° 59.0' 22° 02.4'</td>
<td>5 SM MR</td>
</tr>
<tr>
<td>W4</td>
<td>314-1</td>
<td>12.11.86 15:40</td>
<td>21° 55.8' 25° 14.2'</td>
<td>5 SM ML</td>
</tr>
<tr>
<td>W3</td>
<td>313-1</td>
<td>13.11.86 13:13</td>
<td>20° 29.6' 23° 36.6'</td>
<td>5 SM ML</td>
</tr>
<tr>
<td>W2</td>
<td>309-1</td>
<td>14.11.86 09:14</td>
<td>19° 02.4' 22° 00.1'</td>
<td>5 SM MR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>309-2 10:53</td>
<td>19° 02.2' 21° 59.3'</td>
<td>5 SM ML</td>
</tr>
<tr>
<td>W1</td>
<td>312-1</td>
<td>17.11.86 10:26</td>
<td>17° 15.1' 20° 15.9'</td>
<td>5 SM ML</td>
</tr>
</tbody>
</table>

Alle Positionsangaben von der Auslegung.
Schlußbemerkung

Kooperation und eine gute Arbeitsatmosphäre an Bord sind die wesentlichen Grundlagen für das Gelingen einer solchen Expedition. Es ist festzuhalten, daß die Zusammenarbeit zwischen den wissenschaftlichen Arbeitsgruppen und der Besatzung durchweg sehr gut war. Wir bedanken uns im Namen aller eingeschifften Wissenschaftler, Techniker und Studenten herzlich bei Kapitän H. Bruns und seiner Besatzung für diese gute Zusammenarbeit. Die Teilnehmer wissen aber auch die Unterstützung bei der Vorbereitung und Durchführung dieser Reise durch die Leitstelle METEOR und die Reederei RF zu würdigen. Die Arbeitsgruppe Dr. Schenke dankt außerdem Herrn Prof. Wille und der FWG Kiel für die leihweise Bereitstellung einer Sonde und Herrn Prof. Lichtner vom Institut für Kartographie der Universität Hannover für die Zusammenarbeit bei der Datenauswertung. Die Koordinatoren und Fahrtleiter möchten auch den Teilnehmern der Reise, die zur Erstellung dieses Berichts beigetragen haben, für ihre Unterstützung danken.

Die Kapverden-Expedition wurde mit Mitteln der Deutschen Forschungsgemeinschaft gefördert.
Literatur:


Heinrich, H. (1986): A comparison of Conventional Ship-Installed 3.5 kHz Sub Bottom Profiler (SBP) and the new KAE "PARASOUND". Dt.hydrogr.Z., 39, (6), Mitteilungen.


<table>
<thead>
<tr>
<th>Nr.</th>
<th>Jahr</th>
<th>Autor</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1973</td>
<td>FECHNER, H.</td>
<td>Orthogonale Vektorfunktionen zur stetigen Darstellung von meteorologischen Feldern auf der Kugeloberfläche</td>
</tr>
<tr>
<td>4</td>
<td>1974</td>
<td>DEFANT, Fr.</td>
<td>Das Anfangsstadium der Entwicklung einer baroklinen Wellenstörung in einem baroklinen Grundstrom</td>
</tr>
<tr>
<td>5</td>
<td>1974</td>
<td>FECHNER, H.</td>
<td>Darstellung des Geopotentials der 500 mb-Fläche der winterlichen Nordhalbkugel durch natürliche Orthogonalfunktionen</td>
</tr>
<tr>
<td>7</td>
<td>1974</td>
<td>SPETH, P.</td>
<td>Die Veränderlichkeit der atmosphärischen Zirkulation, dargestellt mit Hilfe energetischer Größen</td>
</tr>
<tr>
<td>8</td>
<td>1975</td>
<td>SKADE, H.</td>
<td>Eine aerologische Klimatologie der Ostsee. Teil I - Textband</td>
</tr>
<tr>
<td>9</td>
<td>1975</td>
<td>SKADE, H.</td>
<td>Eine aerologische Klimatologie der Ostsee. Teil II - Abbildungsband</td>
</tr>
<tr>
<td>10</td>
<td>1975</td>
<td>MOLLER, H.</td>
<td>Bestimmungstafeln für die Fischparasiten der Kieler Bucht</td>
</tr>
<tr>
<td>13</td>
<td>1975</td>
<td>RUMOHR, H.</td>
<td>Der Einfluß von Temperatur und Salinität auf das Wachstum und die Geschlechtsreife von nutzbaren Knochenfischen (Eine Literaturstudie)</td>
</tr>
<tr>
<td>14</td>
<td>1975</td>
<td>PULS, K.E., MEINCKE, J.</td>
<td>General Atmospheric Circulation and Weather Conditions in the Greenland-Scotland Area for August and September 1973</td>
</tr>
<tr>
<td>15</td>
<td>1975</td>
<td>MOLLER, H.</td>
<td>Bibliography on parasites and diseases of marine fishes from North Sea and Baltic Sea</td>
</tr>
<tr>
<td>16</td>
<td>1975</td>
<td>LUBE, D.</td>
<td>Schwermetal-Kontamination von Phytoplankton unter natürlichen Verhältnissen und in Laborkulturen</td>
</tr>
<tr>
<td>19</td>
<td>1976</td>
<td>BROCKMANN, Ch., MEINCKE, J., PETERS, H., SIEDLER, G., ZENK, W.</td>
<td>GATE - Oceanographic Activities on FRG-Research Vessels</td>
</tr>
<tr>
<td>20a</td>
<td>1977</td>
<td>WILLEBRAND, J., MOLLER, P., OLBERG, B.J.</td>
<td>Inverse Analysis of the Trimocored Internal Wave Experiment (IWEX) Part 1</td>
</tr>
<tr>
<td>20b</td>
<td>1977</td>
<td>WILLEBRAND, J., MOLLER, P., OLBERG, B.J.</td>
<td>Inverse Analysis of the Trimocored Internal Wave Experiment (IWEX) Part 2</td>
</tr>
<tr>
<td>21</td>
<td>1976</td>
<td>MOLLER, H.</td>
<td>Die Biologie des Flachwassers vor der westdeutschen Ostseeküste und ihre Beeinflussung durch die Temperatur - eine Literaturstudie</td>
</tr>
<tr>
<td>22</td>
<td>1976</td>
<td>PETERS, H.</td>
<td>GATE - CTD Data measured on the F.R.G. Ships Shipboard Operations-Calibration-Editing</td>
</tr>
<tr>
<td>23</td>
<td>1976</td>
<td>KOLTERMANN, K.P., MEINCKE, J., MOLLER, T.</td>
<td>Overflow '73 - Data Report 'Meteor' and 'Meerkatze 2'</td>
</tr>
<tr>
<td>24</td>
<td>1976</td>
<td>LIEBING, H.</td>
<td>Grundlagen zur objektiven Ermittlung eines Bodenluftdruckfeldes für ein begrenztes Gebiet (Ostsee)</td>
</tr>
<tr>
<td>25</td>
<td>1976</td>
<td>SIMONS, T.J.</td>
<td>Topographic and Baroclinic Circulations in the Southwest Baltic</td>
</tr>
<tr>
<td>26</td>
<td>1976</td>
<td>KIELMANN, J., HOLTORFF, J., REINER, U.</td>
<td>Data Report Baltic '75</td>
</tr>
<tr>
<td>27</td>
<td>1976</td>
<td>BEHRENDT, J.</td>
<td>Der Zusammenhang zwischen wahren und geostrophischem Wind über der Ostsee während &quot;Baltic '75&quot;</td>
</tr>
</tbody>
</table>

29 (1977) Heincke, J. Measurements of Currents and Stratification by FRV "Anton Dohrn" during the GATE Equatorial Experiment.

30 (1977) Sanford, Th. Design Concepts for a Shallow Water Velocity Profiler and a Discussion of a Profiler Based on the Principles of Geomagnetic Induction.


41 (1978) Speth, P. Mean meridional cross-sections of the available potential energy for each April and October of the period 1967 until 1976.

42 (1978) Speth, P. Mean horizontal fields of temperature available potential energy and mean meridional cross-sections of temperature for each January and July of the period 1967 until 1976.


44 (1978) Riecke, W. In der Meteorologie benutzte objektive horizontale Analysenverfahren im Hinblick auf die Anwendung bei wissenschaftlichen Untersuchungen.


57 (1978) STRUVE, S. 
Transport und Vermischung einer passiven Beimengung in einem Medium mit einem vorgegebenen Geschwindigkeitsfeld

58 (1978) MOLLER, H. 
Effects of Power Plant Cooling on Aquatic Biota - An Indexed Bibliography

59 (1978) JAMES, R., MORRER, F.G. 
Results of the Sorting of the Mikronektion und Zooplankton 
Material sampled by the German Antarctic Expedition 1975/76

60 (1978) WORNER, F.G. 
Liste der Mikronektion- und Zooplanktonfänge der 2. Deutschen Antarktis-Expedition 1977/78

61 (1978) SCHEINER, M. 
Physikalisch-ozeanographische Parameter in der westlichen Ostsee 
- Eine Literaturstudie -

62 (1979) MOLLER, T.J., MEINCKE, J., BECKER, G.A. 
Overflow '73: The Distribution of Water Masses on the Greenland-Scotland Ridge in August/September 1973 - A Data Report -

63 (1979) PAULY, D. 
Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy's growth formula

64 (1979) NUGBER, C. 
Die zweidimensionalen Seiches der Ostsee

65 (1979) KILS, U. 
Schwimmenverhalten, Schwellleistung und Energiebilanz des antarktischen Krills, Euphausia superba - Ergebnisse der zweiten deutschen Antarktis-Expedition des "FFS Walther Herwig" im Südsommer 1977/78

66 (1979) KREMLING, K., OTTO, C., PIERSSEN, H. 
Spurenmetall-Untersuchungen in den Füßen der Kieler Bucht - Datenbericht von 1977/78

67 (1979) RHEINHEIMER, G. 
Mikrobiologisch-ökologische Untersuchungen in verschiedenen Flüssen Schleswigs-Holsteins 
- Daten -

68 (1979) KNOLL, M. 
Zur Wärmebilanz der ozeanischen Deckschicht im GATE-Gebiet

69 (1979) ZENK, W., SCHAUER, U., PETERSOHN, U., MITTELSTAEDT, R.U. 
Bodenströmungen und Schichtungsverhältnisse in der nördlichen Kieler Bucht im März 1978

70 (1979) REDELL, R.-D. 
Winderzeugte Trägheitsbewegungen und Energiekorrrelationen Interner Wellen im tropischen Atlantik

71 (1979) HERRMANNSEN, U. 
Energiesspektren von Temperatur, Geopotential und Wind an ausgewählten Gitterpunkten des DWD-Gitternetzes der Nordhalbkugel

72 (1979) PERKUHN, J. 
Spektrale Betrachtung der groß-skaligen Transporte von sensibler Energie und Drehimpuls an ausgewählten Gitterpunkten des DWD-Gitternetzes der Nordhemisphäre

73 (1979) VOGT, Ch. 
Die Struktur der stehenden Temperatur- und Geopotentialwellen im April und Oktober 1980 und die durch sie hervorrufenen Transporte von sensibler Energie und Drehimpulse

74 (1980) NIELAND, H. 
Die Nahrung von Sardinen, Sardinellen und Halb finsen vor der Westküste Afrikas

75 (1980) DAMH, U. 
Langfristige Veränderungen in der Verbreitung von Nordseefischen, untersucht durch Korrelations- und Varianzanalyse

76 (1980) DAMB, P. 
Wind-, Temperatur- und Feuchteprofile über der Kieler Bucht im Zeitraum April bis Oktober 1977

77 (1980) EBBRECHT, H.-G. 
Die verfügbare potentielle Energie des Planetarischen Wirbels und ihre jährliche Variation


80 (1981) ZEITSCHE, B., ZENK, W. 
ANTARKTIS 80/81, Beobachtungen und erste Ergebnisse der "Meteor"-Reise 56 aus der Scotia-See und der Bransfield-Straße im November/Dezember 1980 (ANT I); ein nautischer und wissenschaftlicher Bericht

81 (1981) STRUNK, H.A. 
Die kinetische Energie des planetarischen Wirbels und ihre jährliche Variation

82 (1981) PETERS, H. 
Zur Kinetik eines stochastischen Feldes Interner Wellen in einer Scherströmung

83 (1981) WILLEBRAND, J. 
Zur Erzeugung großerfügiger Ozeanischer Strömungsschwankungen in mittleren Breiten durch vorübergehende Windfelder

84 (1981) STRAMMA, L. 
Die Bestimmung der dynamischen Topographie aus Temperaturdaten aus dem Nordostatlantik

85 (1981) BUECHELE, E. 
Die Eigenschwingungen abgeschlossener, zweigebuchteter Wasserbecken bei variabler Bodentopographie

86 (1981) MULLER, H. 
Feldführer zur Diagnose der Fischkrankheiten und wichtigsten Fischparasiten in Nord- und Ostsee

87a (1981) KIELMANN, J. 
Grundlagen und Anwendung eines numerischen Modells der geschichteten Ostsee 
- Teil 1 -

87b (1981) KIELMANN, J. 
- Teil 2 - (Anhang, Literatur, Abbildungen)
92 (1981) HESSLER, G. Untersuchung bodennaher Temperatur- und Windfelder im Übergangsbereich Land-See am Beispiel der Kieler Bucht
   - Teil 1 – Textband
   - Teil 2 – Abbildungsbild
   - Teil 1 – Textband
   - Teil 2 – Abbildungsbild
96 (1982) WILLENBRINK, E. Wassermassenanalyse im tropischen und subtropischen Nordostatlantik
100 (1982) LEACH, A. Spektrale Untersuchungen des Geopotentials und des Geostrophischen Windes im 200 mb-Niveau und Parametrisierung von großräumlichen meridionalen Drehimpulstransporten
102 (1982) STRUBE-BLANCK, S. Die Strömungen in der Kieler Bucht
104 (1982) KRAUSE, W., WEBER, E. Eine detaillierte description of a semispectral model on the β-plane
106 (1983) NORDMANN, U. Distribution patterns of temperature and watercolour in the Baltic Sea as recorded in satellite images: Indicators for phytoplankton growth
108 (1982) SCHURMANN, M. Das statische Verhalten der Meeresoberflächen an Anströmung
110 (1983) BAUERFEIND, E., BÖHLE, R., FAHRBACH, E., LENZ, J., MEYERHOFFER, M., ROLKE, H. Planctological and chemical data from the Atlantic at 22°W obtained in February to June 1979 ("FGGE-Equator '79")
113 (1983) FAHRBACH, E. Transportprozesse im zentralen Äquatorialen Atlantik und ihr Einfluß auf den Wärmeinhalt
115 (1983) VIEHOF, Th. Bestimmung der Meeresoberflächentemperatur mittels hochauflösender Infrarot-Satellitenmessungen
116 (1983) HILLER, W., KASE, R.H. Objective analysis of hydrographic data sets from mesoscale surveys
Historic hydrographic and meteorological data from the North Atlantic and some derived quantities

Nordostatlantik '81 - Data Report

Nordostatlantik '82 - Data Report

Die Erwärmung des Ozeans hervorgerufen durch solare Strahlungsenergie

Berechnung der solaren Bestrahlung einer Kugel sowie des menschlichen Körpers aus Werten der Global- und Himmlischstrahlung

Freilanduntersuchungen zur Sekundärproduktion und Respiration bentischer Gemeinschaften im Wattenmeer der Nordsee

Gemeinschaftsstrukturen, Abundanz, Biomasse und Produktion des Makrozoobenthos sandiger Boden der Kieler Bucht in 5 - 10 m Wassertiefe

Chemical Data from the NW African Upwelling Region ("Auftrieb '75" and "Ostalantik-Biozirkel 1983")

Wassermassenausbreitung in der Warmwassersphäre des subtropischen Nordostatlantiks

Beleuchtete Netzgehgeenanlagen zur Aufzucht von Fischbrut bis zur Setzlingsgröße - Eine Bauanleitung und Aufzuchtebeschreibung

Eulerian Current Measurements from the North East Atlantic - March 1982 - October 1983 - A Data Report

The Warmwatersphere of the Northeast Atlantic - A Miscellany

Messungen zum Widerstandsbeiwert von Verankerungskomponenten


Benthische und pelagische Primärproduktion und Nährsalzbilanz
Eine Freilanduntersuchung im Watt der Nordsee

Isopycnic Atlas of the North Atlantic Ocean - monthly mean maps and sections

Feinstrukturen in der jahreszeitlichen Sprunghäufigkeit in das JASIN-Gebiet

Nordostatlantik '83 - Data Report

Verhalten der Freiellprofilsenden ESP

Eine Analyse der fischereiökologischen und fischereilichen Verhältnisse in einem für die Ölförderung genutzten Offshore-Bereich des deutschen Ostseegebietes

Eine Untersuchung der Dynamik der windgetriebenen ozeanischen Zirkulation mit einem wirbelauflosenden barotropen Modell

Auswirkungen des Sauerstoffmangels 1981 auf Makrozoobenthos und Bodenfische in der Kieler Bucht

A compilation of hydrographic data from the Canary Basin, October to November 1983

Hydrographic, chemical, and planktological data from the North-West-African upwelling area, obtained from February to April 1983 (OSTALANTIK-BIOZIRKEL)

Chemical planktological and microbiological investigations at an anchor station in Kiel Bight during 1981/82
142 (1985) ENNENGA, U. &
Objective Analyse aktueller Wind- und Druckfelder über den Nordatlantik

143 (1985) BAUER, J.,
FISCHER, J.,
LEACH, H.,
WOODS, J.D.
SEA ROVER Data Report I - North Atlantic Summer 1981 - NOAA '81 -

144 (1985) WEISS, Th.
Die Biomasse und Stoffwechselaktivität des Mikro- und Mesozooplanktons in der Ostsee

145 (1985) NISSLBECK, P.,
VOIGT, R.,
KIM, S.J.,
ROHNS, G.,
HOFPE, H.-G.
Auswirkungen von Salzgehalts- und Temperaturänderungen auf die Extrazelluläre Enzymaktivität marinh-pelagischer Mikroorganismen

146 (1985) FAHRBACh, T.,
KRAUS, W.,
MEINCKE, J.,
ST, A.
Nordatlantik '84 - Data Report -

147 (1985) PAULY, D.
Zur Fischereiökologie tropischer fütterter - Eine Bestandsaufnahme von Konzepten und Methoden -

148 (1985) BARENER, R.,
ZEITSCHEL, B.
Trends für eintragsrelevante Faktoren und für die Nährsalzkonzentrationen im Wasser der Kieler Bucht - Ein Beitrag zur Erforschung der Eutrophierung der Nord- und Ostsee -

149 (1985) BREY, T.,
PAULY, D.
Electronic Length Frequency Analysis - A User's Guide to ELFAN 0, 1 AND 2 (Revised and Expanded Version)

150 (1985) LIPPERT, A.
Erzeugung niederfrequenter ozeanischer Variabilität durch fluktuierende Windfelder

151 (1986) ZARKESCHWAL, N.
Fische als Fischräuber, dargestellt an der Nahrung demersaler Fische der Nordsee

152 (1986) STIENEN, Ch.
Die Phytoplanktonentwicklung in Abhängigkeit von der Nährlösungskonzentration - Ein Vergleich zwischen Kieler Förde und Kieler Bucht

153 (1986) BAUER, E.
Isopyknische und diapylische Ausbreitungsvorgänge im tropischen und subtropischen Nordatlantik

(TOPGULF GROUP)
TOPGULF - A joint programme initiated by IFREMER, Brest (France) - IFM, Kiel (W.Germany) - Data Report -

155 (1986) DICK, H.
Vertikale Austauschkoefzienten und Porenwasserdurchfluß an der Sediment/Wasser-Grenzfläche

156 (1986) ONKEN, R.
Numerische Simulation der Erzeugung und Instabilität mesoskaliger Fronten - Numerical Simulation of the Generation and Instability of Mesoscale Fronts

157 (1986) WENZEL, M.K.CH.
Die mittlere Zirkulation des Nordatlantik auf der Grundlage klimatologischer hydrographischer Daten

158 (1986) BARTH, K.-G.
Die Stellung dominanter Copepoden-Arten im Nahrungsgefüge typischer Wasserkörper der Grönland-See

159 (1986) NUBER, Ch.
Ein numerisches Modell zur Untersuchung barokliner Rossby-Wellen im Nordatlantik

160 (1987) ISEMEN, H.-J.
Optimierte Parametrisierungen der klimatologischen Energie- und Impulslüfte an der Oberfläche des Nordatlantik

160a (1987) ISEMEN, H.-J.
The Bunker Climate Atlas of the North Atlantic Ocean - a technical description of the data tape -

161 (1987) SCHLOSSEL, P.
Infrarotfenerkundung von Oberflächentemperaturen sowie atmosphärischen Temperatur- und Wassertemperaturstrukturen

162 (1987) VIEHOFF, Th.
Bestimmung mesoskaliger Variabilitäten der Oberflächentemperatur und der Austauschtemperatur im Nordatlantik aus Satellitenmessungen

163 (1986) KILS, U.
Verhaltensphysiologische Untersuchungen an pelagischen Schwämmen - Schwarmbildungen als Strategie zur Orientierung in Umwelt-Gradientsen - Bedeutung der Schwarmbildungen in der Aquakultur

164 (1987) FISCHER, J.
Struktur und Dynamik einer mesoskaligen Front im Wirbelfeld des Nordatlantischen Stromes

165 (1987) STAMPER, D.
WOODS, J.D.
Isopycnic Potential Vorticity Atlas of the North Atlantic Ocean - monthly mean maps -

166 (1987) MULLER, F.J.,
FINKE, M.,
DASCH, W.,
WITTSCHK, R.-R.
Hydrographic and current measurements in the North-East Atlantic Ocean - Data Report F.S. Meteor Cruises 69/75 and 69/76 October to November 1984

167 (1987) BECKMANN, A.
Die Modellierung mesoskaliger quasi-gestrophischer Instabilität

168 (1987) ROLKE, M.
Ein Verfahren zur Auswertung von Zooplanktonfeldproben mittels der quantitativen automatischen Bildanalyse am Beispiel von Material der "Meteor-Aquatorexpedition 1979"
169 (1987) STEGMANN, P.M. Untersuchungen zur Variabilität der sonnenlichtangeregten Fluoreszenz von Phytoplankton in der Ostsee im Hinblick auf Fernerkundung

170 (1987) MÖLLER, T.J. Analyse niederfrequenter Strömungsschwankungen im Nordostatlantik

171 (1987) BARKMANN, W. Der Einfluß der Wärmebilanz auf die Struktur der saisonalen Grenzschicht

172 (1987) FINKE, H. Zirkulation und Rossbywellen im Kanarenbecken