Diploma Thesis

Workload-sensitive Timing Behavior Anomaly Detection in Large Software Systems

André van Hoorn

September 14, 2007

First examiner: Prof. Dr. Wilhelm Hasselbring
Second examiner: MIT Matthias Rohr
Advisor: MIT Matthias Rohr
Abstract

Anomaly detection is used for failure detection and diagnosis in large software systems to reduce repair time, thus increasing availability. A common approach is building a model of a system’s normal behavior in terms of monitored parameters, and comparing this model with a dynamically generated model of the respective current behavior. Deviations are considered anomalies, indicating failures. Most anomaly detection approaches do not explicitly consider varying workload.

Assuming that varying workload leads to varying response times of services provided by internal software components, our hypothesis is as follows: a novel workload-sensitive anomaly detection is realizable, using statistics of workload-dependent service response times as a model of the normal behavior.

The goals of this work are divided into three parts. First, an application-generic technique will be developed to define and generate realistic workload based on an analytical workload model notation to be specified. Applying this technique to a sample application in a case study, the relation between workload intensity and response times will be statistically analyzed. Based on this, a workload-sensitive anomaly detection prototype will be implemented.
Contents

1 Introduction ... 1
 1.1 Motivation ... 1
 1.2 Goals ... 2
 1.3 Document Structure 3

2 Foundations .. 5
 2.1 System Model ... 5
 2.2 Performance Metrics and Scalability 7
 2.3 Workload Characterization and Generation 9
 2.4 Probability and Statistics 13
 2.5 Anomaly Detection 18
 2.6 Apache JMeter ... 20
 2.7 JPetStore Sample Application 22
 2.8 Tpmon .. 23
 2.9 Related Work .. 26

3 Probabilistic Workload Driver 29
 3.1 Requirements Definition 29
 3.1.1 Requirements Labeling and Classification 29
 3.1.2 Assumptions 30
 3.1.3 Supported Applications 30
 3.1.4 Use Cases .. 31
 3.1.5 Workload Configuration 32
 3.1.6 User Interface 33
 3.2 Design .. 33
 3.2.1 System Model 34
 3.2.2 Workload Configuration Data Model 34
 3.2.3 Architecture and Iterative Execution Model 37
 3.3 Markov4JMeter .. 39
 3.3.1 Test Elements 40
 3.3.2 Behavior Files 41
 3.3.3 Behavior Mix Controller 42
 3.3.4 Session Arrival Controller 42
 3.4 Using Markov4JMeter 42
Contents

4 Experiment Design 47

4.1 Markov-JMeter Profile for JPetStore 47

4.1.1 Identification of Services and Request Types 47

4.1.2 Application Model 48

4.1.3 Behavior Models 49

4.1.4 Probabilistic JMeter Test Plan 50

4.2 Configuration 53

4.2.1 Node Configuration 53

4.2.2 Monitoring Infrastructure 53

4.2.3 Adjustment of Default Software Settings 54

4.2.4 Definition of Experiment Runs 55

4.3 Instrumentation 56

4.3.1 Assessment of Monitoring Overhead 56

4.3.2 Identification of Monitoring Points 57

4.4 Workload Intensity Metric 59

4.4.1 Formal Definition 59

4.4.2 Implementation 60

4.5 Execution Methodology 61

5 Analysis 65

5.1 Methodology 65

5.1.1 Transformations of Raw Data 65

5.1.2 Visualization 66

5.1.3 Examining and Extracting Sample Data 67

5.1.4 Considered Statistics 69

5.1.5 Parametric Density Estimation 69

5.2 Data Description 70

5.2.1 Platform Workload Intensity 70

5.2.2 Throughput 70

5.2.3 Descriptive Statistics 71

5.2.4 Distribution Characteristics 79

5.2.5 Distribution Fitting 81

5.3 Summary and Discussion of Results 83

6 Workload-Intensity-sensitive Anomaly Detection 85

6.1 Anomaly Detection in Software Timing Behavior 85

6.2 Plain Anomaly Detector 85

6.3 Workload-Intensity-sensitive Anomaly Detector 87

7 Conclusion 89

7.1 Summary 89

7.2 Discussion 91

7.3 Future Work 92
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Example HTTP communication</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Sequence diagram showing a sample trace</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Efficiency in the ISO 9126 standard</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Timing metrics on system- and on application-level</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Impact of increasing workload on throughput and end-to-end response time</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Hierarchical workload model</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>Example Customer Behavior Model Graph</td>
<td>11</td>
</tr>
<tr>
<td>2.8</td>
<td>Example Extended Finite State Machine</td>
<td>12</td>
</tr>
<tr>
<td>2.9</td>
<td>Workload generation approach</td>
<td>13</td>
</tr>
<tr>
<td>2.10</td>
<td>Graphs of density functions for normal and log-normal distributions</td>
<td>15</td>
</tr>
<tr>
<td>2.11</td>
<td>Description of a box-and-whisker plot</td>
<td>16</td>
</tr>
<tr>
<td>2.12</td>
<td>Kernel density estimations of a data sample</td>
<td>17</td>
</tr>
<tr>
<td>2.13</td>
<td>Chain of dependability threats</td>
<td>18</td>
</tr>
<tr>
<td>2.14</td>
<td>JMeter GUI</td>
<td>20</td>
</tr>
<tr>
<td>2.15</td>
<td>JMeter Architecture</td>
<td>21</td>
</tr>
<tr>
<td>2.16</td>
<td>JPetStore index page</td>
<td>22</td>
</tr>
<tr>
<td>2.17</td>
<td>Instrumented system and weaving of an annotated operation</td>
<td>24</td>
</tr>
<tr>
<td>2.18</td>
<td>Aspect weaver weaves aspects and functional parts into single binary</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Use cases of the workload driver</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Class diagram of the workload configuration data model</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Sample application model illustrating the separation into session layer and protocol layer</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Transition diagrams of two user behavior models</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Architecture overview of workload driver in UML class diagram notation</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Sketch of algorithm executed by a user simulation thread executing a session</td>
<td>38</td>
</tr>
<tr>
<td>3.7</td>
<td>Integration of Markov4JMeter into the JMeter architecture</td>
<td>40</td>
</tr>
<tr>
<td>3.8</td>
<td>Probabilistic Test Plan and Markov4JMeter configuration dialogs</td>
<td>41</td>
</tr>
<tr>
<td>3.9</td>
<td>User behavior model stored in CSV file format</td>
<td>42</td>
</tr>
<tr>
<td>3.10</td>
<td>Prepared JMeter Test Plan</td>
<td>43</td>
</tr>
<tr>
<td>3.11</td>
<td>New entries in context menu</td>
<td>43</td>
</tr>
<tr>
<td>3.12</td>
<td>Markov4JMeter Test Plan</td>
<td>44</td>
</tr>
<tr>
<td>3.13</td>
<td>Example Behavior Mix</td>
<td>45</td>
</tr>
<tr>
<td>3.14</td>
<td>Example BeanShell script defining number of active sessions</td>
<td>46</td>
</tr>
<tr>
<td>3.15</td>
<td>Using a BeanShell script within the Session Arrival Controller</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Session layer and two protocol states of JPetStore’s application model</td>
<td>49</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Transition graphs of browsers and buyers</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Probabilistic Test Plan and configuration of state View Cart</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Access log entry of HTTP requests for JPetStore</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Graphs of monitored resource utilization data from server and client node</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Sample trace timing diagrams for a request</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>Platform workload intensity graphs</td>
<td>60</td>
</tr>
<tr>
<td>4.8</td>
<td>Sketch of experiment execution script</td>
<td>62</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview of all plot types used</td>
<td>66</td>
</tr>
<tr>
<td>5.2</td>
<td>Differences in sample data for both Tpmon modes</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Scatter plot and box-and-whisker plot showing ramp-up time</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Number of users vs. platform workload intensity</td>
<td>70</td>
</tr>
<tr>
<td>5.5</td>
<td>Number of users vs. throughput</td>
<td>71</td>
</tr>
<tr>
<td>5.6</td>
<td>Number of users vs. minimum response times</td>
<td>71</td>
</tr>
<tr>
<td>5.7</td>
<td>Platform workload intensity vs. maximum response times</td>
<td>73</td>
</tr>
<tr>
<td>5.8</td>
<td>Platform workload intensity vs. stretch factors of mean, median, and mode</td>
<td>74</td>
</tr>
<tr>
<td>5.9</td>
<td>Platform workload intensity vs. 1. quartile response times</td>
<td>75</td>
</tr>
<tr>
<td>5.10</td>
<td>Platform workload intensity vs. means, medians, modes of response times</td>
<td>76</td>
</tr>
<tr>
<td>5.11</td>
<td>Platform workload intensity vs. 3. quartile response times</td>
<td>77</td>
</tr>
<tr>
<td>5.12</td>
<td>Platform workload intensity vs. variance, standard deviation, and skewness</td>
<td>78</td>
</tr>
<tr>
<td>5.13</td>
<td>Platform workload intensity vs. outlier ratios</td>
<td>79</td>
</tr>
<tr>
<td>5.14</td>
<td>Examples for all identified density shapes</td>
<td>80</td>
</tr>
<tr>
<td>5.15</td>
<td>Goodness of fit visualizations for an operation</td>
<td>82</td>
</tr>
<tr>
<td>5.16</td>
<td>Box-and-whisker plot for varying workload intensity</td>
<td>83</td>
</tr>
<tr>
<td>6.1</td>
<td>Anomaly detection scenario with constant workload intensity (PAD)</td>
<td>86</td>
</tr>
<tr>
<td>6.2</td>
<td>Anomaly detection scenario with increasing workload intensity (PAD)</td>
<td>87</td>
</tr>
<tr>
<td>6.3</td>
<td>Anomaly detection scenario with increasing workload intensity (WISAD)</td>
<td>88</td>
</tr>
<tr>
<td>A.1</td>
<td>New entries in context menu</td>
<td>96</td>
</tr>
<tr>
<td>B.1</td>
<td>Sample trace timing diagrams for JPetStore requests.</td>
<td>101</td>
</tr>
<tr>
<td>B.1</td>
<td>Sample trace timing diagrams for JPetStore requests (cont.)</td>
<td>102</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mean and variance for discrete and continuous probability distributions</td>
<td>14</td>
</tr>
<tr>
<td>3.4</td>
<td>Configuration of HTTP Request Samplers</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Configuration of guards and actions</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Identified service and request types of JPetStore</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Overview of varying parameters for all experiments</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Response time statistics with different monitoring configurations</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Identified monitoring points and coverage of request types</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Table description of JPetStore database schema</td>
<td>62</td>
</tr>
<tr>
<td>A.1</td>
<td>Available JMeter Test Elements</td>
<td>95</td>
</tr>
<tr>
<td>B.1</td>
<td>Response time statistics and request coverage of JPetStore operations</td>
<td>103</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Motivation

Today’s enterprise applications are large-scale multi-tiered software systems involving Web servers, application servers and database servers. Examples are banking and online shopping systems or auction sites. Especially if these systems are accessible through the Internet and thus exposed to unpredictable workload, they must be highly scalable. The availability of such systems is a critical requirement since operational outages are cost-intensive.

Anomaly detection is used for failure detection and diagnosis not only in large software systems. A common approach for detecting anomalies is building a model of a system’s “normal behavior” in terms of monitored parameters, and comparing this model with the respective current behavior to uncover deviations. The data being monitored can be obtained from different levels, e.g. network-, hardware-, or application-level. Failures may be detected proactively but at least quickly after they occur. Repair times can be reduced, by taking appropriate steps immediately, thus increasing availability.

Timing behavior anomaly detection approaches exist which are based on monitored component response times on application-level. However, most of them do not explicitly consider that a varying workload intensity leads to varying response times. For example, when using preset threshold values, this often leads to spurious events when the workload intensity increases.

This work targets on a timing behavior anomaly detection which explicitly considers this additional parameter. For this purpose, we statistically analyze the relation between workload intensity and response times in a case study. A workload driver is developed which generates varying workload based on probabilistic models of user behavior. The results of the analysis are used for a workload-intensity-sensitive anomaly detection prototype but they are interesting for timing behavior evaluation of multi-user systems in general.

The goals of our work are presented in the following Section 1.2. An overview of the document structure is given in Section 1.3.
1.2 Goals

Our work is divided into the three parts covering workload generation, component response time analysis in a case study, and developing an anomaly detection prototype based on the findings from the analysis part. These three parts are outlined in the following paragraphs.

Workload Driver

To systematically obtain workload-dependent performance data from Web-based applications, workload is usually generated synthetically by executing a number of threads emulating users accessing the application under test. A common approach is to replicate a number of pre-recorded traces to multiple executing threads. Tools exist which allow for capturing and replaying those traces. A major drawback of this approach comes with the fact that only a limited number of traces is executed, instead of dynamically generating valid traces which cover the application in a more realistic manner. In our case we need such realistic workload since we want to obtain response time data of all components and thus, the application functionality must be covered much more thoroughly.

We aim at developing a technique which leads to more realistic workload than this is the case with the classical capture-and-replay approach. The intended procedure is as follows. First, the possible usage sequences are modeled for an application. This model may be enriched with probabilities to weight possible usage alternatives. Based on this model, valid traces are generated and a configurable number of users is emulated.

Case Study

In a case study, workload-dependent distributions of service response times shall be obtained from an existing Web-based application. The functionality to measure the response times is considered to be given. First, our developed workload generation approach needs to be applied to this specific application. Moreover, its appropriateness has to be evaluated. A large number of experiments must be executed, exposing the application to varying workload. The obtained response time data has to be processed by a statistical processing and graphics tool such as the GNU R Environment [R Development Core Team, 2005]. The results have to be analyzed to derive characteristics of the response time distributions with respect to the varying workload. For example we are interested in the similarity of the response times when workload varies. Mathematical probability density functions containing the workload parameter as a third dimension shall be determined, approximating these distributions.

The Java BluePrints group [Sun Microsystems, Inc., 2007] provides the Java Pet Store J2EE reference application [Sun Microsystems, Inc., 2006] which is intended to be used in our case study. It is the sample application presented in [Singh et al., 2002] and used in literature, e.g. by [Chen et al., 2005], [Kiciman and Fox, 2005]. The Java Pet Store has been extended by the above-mentioned monitoring functionality already. First, the application’s stability in terms of long periods of high workload needs to be evaluated. Alternative applications which may be used in case our Pet Store stability evaluation
fails, are the TPC-W online bookstore (Transaction Processing Performance Council, 2004) and RUBiS (ObjectWeb Consortium, 2005) which models an online auction site. Both applications are available in J2EE implementation variants and are also commonly used in literature, e.g. by Amza et al. (2002), Cecchet et al. (2002), Agarwal et al. (2004), and Pugh and Spacco (2004).

Workload-sensitive Anomaly Detection Prototype

Based on the relations between workload intensity and response times derived in the analysis part of the case study, a prototype of a workload-sensitive anomaly detection shall be implemented. A degree of anomaly for service call response times shall be computed and the prototype shall provide simple visualization functionality.

1.3 Document Structure

This document is structured as follows.

- Chapter 2 contains the foundations of our work. Starting with a description of the considered system model, an introduction into performance metrics and scalability, workload characterization and generation for Web-based system, probability and statistics as well as anomaly detection follows. Moreover, we describe the software we used and present related work.

- Chapter 3 deals with the probabilistic workload driver. Based on a requirements definition, the design of the workload driver is described. The implementation called Markov4JMeter is outlined and an example of use is presented.

- Chapter 4 contains the description of the experiment design. A probabilistic workload driver profile for the sample application JPetStore, according to the design in Chapter 3 is created. Appropriate monitoring points have been determined and a workload intensity metric is defined. Moreover, the configuration of the machines, the software, and the experiment runs is described.

- Chapter 5 deals with the statistical analysis of the data obtained in the experiments. After outlining the analysis methodology, we give a detailed description of the results and conclude with a summary and discussion of these.

- Based on the results of Chapter 5, a workload-intensity-sensitive anomaly detection prototype has been developed. This is part of Chapter 6.

- Chapter 7 contains the conclusion of our work including a summary, a discussion, and the presentation of future work.

- The Appendix contains additional resources which are referenced by the related chapters of this document.
Chapter 2
Foundations

This chapter contains the foundations of our work. In Section 2.1 we describe the considered system model. An introduction into performance metrics and scalability is given in Section 2.2. Section 2.3 deals with workload characterization and generation for Web-based system. An introduction into the theory of probability and statistics, as far as this is relevant for our work, is presented in Section 2.4. Section 2.5 outlines the concept of anomaly detection and presents existing approaches. The workload driver JMeter, our probabilistic workload driver presented in Chapter 3, is based on, is described in Section 2.6. Sections 2.7 and 2.8 present the JPetStore sample application and the monitoring infrastructure Tpmon which are both used in the case study. Section 2.9 gives an overview about related work.

2.1 System Model

This section gives an overview of the system model used throughout this document. It contains a description of an enterprise information system, the HTTP request/response model used by those systems as well as the considered execution model and related terms.

Enterprise Information Systems

Enterprise information systems (EIS) are large software systems, e.g. banking and online shopping systems or auction sites. Usually they are component-based and multi-tiered, i.e. they consist of a Web Server, an application server and a database server (Menasce and Almeida, 2000). The Web server executes an HTTP server software listening for incoming HTTP requests (see section below), establishing the required connection between itself and the client, sending the requested response, and returning to its listening functionality. An application server runs the enterprise software that processes all services provided through the Web server. The database server executes a database management system (DBMS) holding the persistent data accessed by the application.

HTTP Request/Response Model

The Hypertext Transfer Protocol (HTTP) is a request/response protocol. An HTTP communication is initiated by an HTTP request issued by a client and results in an
Figure 2.1: Example HTTP communication. A client requests the resource /news.shtml from the server foo.com. The server responds with a message body containing an HTML file.

HTTP response from the server. Details can be obtained from RFC 2616 [Fielding et al., 1999].

We model the relevant elements of an HTTP communication by means of the function \(\text{comm}_{http} \): an HTTP request \(\text{req} \in \text{Req}_{http} \) results in an HTTP response \(\text{resp} \in \text{Resp}_{http} \) (see Equations 2.1–2.3). An example is illustrated in Figure 2.1.

\[
\begin{align*}
\text{comm}_{http} : & \text{Req}_{http} \mapsto \text{Resp}_{http} \\
\text{Req}_{http} : & = \text{Method}_{http} \times \text{URI}_{http} \times \text{Header}_{http} \times \text{Body}_{http} \\
\text{Resp}_{http} : & = \text{Status}_{http} \times \text{Header}_{http} \times \text{Body}_{http}
\end{align*}
\]

\(\text{Method}_{http} \) is a string describing the HTTP method, e.g. “GET” simply requests the content of a resource referred to by the Uniform Resource Identifier (URI) \(\text{URI}_{http} \). \(\text{Header}_{http} \) simply as a list of name-value pairs containing meta-information about the request or the response, e.g. a set of content encodings accepted by the client or the content type of the message body \(\text{Body}_{http} \) sent by the server. \(\text{Status}_{http} \) is a string indicating the status of the result, e.g. “OK” or “Not Found”.

We give the ordered tuple as in Figure 2.1 when referencing complete HTTP messages, using left and right braces \(\langle, \rangle \) to denote lists. When referencing specific fields of a message, we use an indexed notation, e.g. \(\text{resp.body} \) or \(\text{resp.status} \) to get the body and the status of an HTTP response.

Execution Model

As [Menascé and Almeida (2000)], we consider a component a “modular unit of functionality, accessed through defined interfaces”. A component provides a set of operations which can be called by other components.

Operation calls may be synchronous or asynchronous. When synchronously calling an operation, the caller blocks until the operation has executed. The caller immediately proceeds when calling an operation asynchronously.

We consider a trace a record of synchronous operation calls of an application processing a single user request. Traces are assigned a unique identifier. Active traces are those traces currently processed by the system. Possible starts of a trace are denoted application entry points. The sequence diagram in Figure 2.2 illustrates a sample trace.
2.2 Performance Metrics and Scalability

Performance denotes the time behavior and resource efficiency of a computer system (Kozoliek 2007). The ISO 9126 standard (ISO/IEC 2001) contains a definition of the term *efficiency* with an analogous meaning. It consists of time behavior and resource utilization metrics (see Figure 2.3). The following sections introduce the metrics used throughout this document.

Figure 2.3: Efficiency in the ISO 9126 standard (Kozoliek 2007).

Time Behavior

Response Time and Execution Time

On system-level, the *(end-to-end)* response time denotes the time interval elapsed between a request is issued by a user and the time the system answers with an according response (Jain 1991). Depending on the measurement objective, the time interval ends with the system starting to serve its response or the response completion. Jain (1991) considers this as the “realistic request and response” since the duration of the response transmission is taken into account (see Figure 2.4(a)).
Chapter 2 Foundations

On application-level, response times can be related to operation calls. In this case the response time is the time interval between the start and the end of an operation execution. A second metric is the operation’s execution time which is its response time minus the response times of other operations called in between. Figure 2.4(b) illustrates both operation call metrics in a sequence diagram.

Throughput

Throughput is the rate at which a system or a system resource handles tasks. The maximum throughput a system can achieve is referred to as its capacity (Jain, 1991).

The respective unit depends on the system and the measurement objective. For example, the throughput of a Web server may be expressed by the number of requests served per second. The throughput of a network device can be expressed by the transmitted data volume per time unit.

Think Time and Reaction Time

The time interval elapsed between two subsequent requests issued by the same user is called the think time. This can be divided into client-side and server-side think time depending on from which perspective the measurement takes place (Menascé et al., 1999). The time interval between a user finishes a request and the system starts its execution is denoted as the reaction time. Both metrics are included in Figure 2.4(a) (Jain, 1991).

Resource Utilization

The utilization of a system resource is the fraction of time this resource is busy (Jain, 1991). System bottlenecks can be uncovered by monitoring resources with respect to this metric. For example, the response time of a system may considerably decreases due to a fully utilized CPU or because the free memory has exceeded.
2.3 Workload Characterization and Generation

Workload and Scalability

The term *workload* refers to the amount of work that is currently requested from or processed by a system. It is defined by *workload intensity* and *service demand characteristics* (Kozoliek 2007).

- Workload intensity includes the number of current requests mainly based on the current number of users and the think times between the requests.
- Service demand characteristics include resource usage on server-side required to service the requests.

Increasing workload generally implies a higher resource utilization which leads to decreasing performance. The *stretch factor* is a measure of performance degradation. It is defined by the ratio of the response time at a particular workload and the response time at the minimum load.

The term *scalability* is used to relate to “the ability of a system to continue to meet its response time or throughput objectives as the demand for the software functions [workload] increases” (Smith and William 2001).

Figure 2.5 illustrates the characteristic impact of workload on throughput and response time. The *knee capacity* denotes the point until which the throughput increases as the workload does while having only a small impact on the response time. Until the usable capacity is reached, response time raises considerably while there’s only little gain for the throughput. With workload continuing to increase, the throughput may even decrease. The *nominal capacity* denotes the maximum achievable throughput under ideal workload conditions (Jain 1991).

2.3 Workload Characterization and Generation

This Section gives an overview about how synthetic workload for Web-based systems can be generated based on models of user behavior. First, a hierarchical workload model and basic terms for Web-based systems are presented. Examples on how to model user behavior and how to generate synthetic workload follow.
Hierarchical Workload Model

Following Menascé et al. (2000), workload for Web-based systems can be considered to concern the three layers session layer, functional layer, and HTTP request layer (see Figure 2.6).

Functional Layer

On the functional layer, an EIS provides a number of services (see Section 2.1), e.g. a user can browse through product categories, add items to a shopping cart and order its content. A service call usually requires parameters to be passed, e.g. a product identifier when adding an item to the cart.

HTTP Request Layer

A service call on the functional layer may involve more than one lower-level HTTP communications (see Section 2.1) on the HTTP request layer. For example, for creating a user account it might be necessary to send and confirm a number of HTML forms, each requiring an HTTP request.

As defined in Section 2.2 the time interval elapsed between the completion of a server response related to the last request and the invocation of the next one is denoted as the think time.

Session Layer

A series of consecutive and related requests to the system issued by the same user is called a session (Menascé et al., 1999). A session starts with the first request and times out after a certain period of inactivity (Arlitt et al., 2001).

Each session has a unique identifier and is associated with state information about the user, e.g. the items in the shopping cart. The identifier is passed to the server on each interaction, e.g. by using client-side cookies or by passing the identifier as a parameter value.
2.3 Workload Characterization and Generation

Figure 2.7: Costumer Behavior Model Graph (Menascé et al., 1999).

Modeling User Behavior

Synthetic user sessions may be based upon captured real traces or on analytic workload models (Barford and Crovella, 1998). Primarily in research papers, workload generators are presented which base upon mathematical workload models such as Markov chains or queued networks. In this section we will present two approaches by Menascé et al. (1999) and Shams et al. (2006).

Costumer Behavior Model Graphs

A (first order) Markov chain is a probabilistic finite state machine with a dedicated entry and a dedicated exit state. Each transition is weighted with a probability. The sum of probabilities of outgoing transitions of a state must be 1. Given the current state, the next state is randomly selected solely based on the probabilities associated with the outgoing transitions which are stored in a transition matrix.

Menascé et al. (1999) defined a Customer Behavior Model Graph (CBMG) to formally model the user behavior in Web-based systems using a Markov chain. A CBMG is a pair \((P, Z)\) of \(n \times n\) matrices, containing \(n\) nodes (states) representing the available requests a user can issue through the system interface. The matrix \(P = [p_{i,j}]\) represents the transition probabilities between the states and \(Z = [z_{i,j}]\) represents the average (server-side) think time.

A single CBMG represents the behavior of a class of users, e.g. “heavy buyers”, in terms of the requests issued within a session. Menascé et al. present an algorithm how to obtain a desired number of CBMGs from Web log files by means of filtering and clustering techniques. A state transition Graph for an example CBMG including its transition probabilities is shown in Figure 2.7.
Extended Finite State Machines

Shams et al. (2006) state that CBMGs are inappropriate for modeling valid users sessions. CBMG are supposed to allow invalid sequences of requests (inter-request dependencies) and do not provide means for dynamically setting parameter values to be passed with a request (data dependencies). Shams et al. use Extended Finite State Machines (EFSM) to model valid application usage. Like a CBMG, an application’s EFSM consists of different states modeling the request types as well as allowed transitions between them. Transitions are labeled with predicates and actions. A transition can only be taken if its associated predicate evaluates to true. When a transition is taken, the respective action is performed. An EFSM contains a set of variables which can be used in predicate and action expressions. Values of request parameters are set in actions. A select operation is provided for assigning values dynamically on trace execution for those values which are not known before the response of the former request has been received. For example by means of \(\text{Browse.Item.ID=select()} \), the item to browse is chosen dynamically from the former response. An example EFSM following Shams et al. (2006) is shown in Figure 2.8.

Workload Generation

Many freely available and commercial Web workload generators exist which provide functionality to record and replay traces, e.g. Mercury LoadRunner (Mercury Interactive Corporation, 2007), OpenSTA (OpenSTA, 2005), Siege (Fulmer, 2006), and Apache JMeter (Apache Software Foundation, 2007b) (see Section 2.6). Moreover, sample applications, e.g. TPC-W (Transaction Processing Performance Council, 2004) and RUBiS (Pugh and Spacco, 2004), exist for benchmarking Web or application servers. They include functionality to generate workload for the respective application.
Synthetic workload is usually based on generated user sessions. The included requests are then executed by a number of threads each representing a virtual user (Ballocca et al., 2002). We consider the combination of the number of active sessions and the think times the means to imply the workload intensity. The service demand characteristics are related to the services called within a session.

Menascé et al. (1999) simulated users whose behavior was derived from CBMGs. Ballocca et al. (2002) propose an integration between existing benchmarking tools and the CBMG workload characterization model. According to the algorithm by Menascé et al., Ballocca et al. derived CBMGs from Web logs. To emulate user behavior matching a class described by a certain CBMG, they first chose the respective CBMG, selected a session and then generated a script executing the session reconstructed from the original session from the Web log. The scripts were executed by the Web stressing tool OpenSTA.

Based on an EFSM capturing inter-request- and data-dependencies, a sequence generator produces a set of sessionlets. A single sessionlet is a valid sequence of request types representing a session. The stress-testing tool SWAT generates and executes the synthetic workload based on the set of sessionlets as well additional workload information such as think time and session length distributions. The approach is illustrated in Figure 2.9 (Shams et al., 2006).

2.4 Probability and Statistics

This section gives an introduction into the theory of probability and statistics as far as this is relevant for this thesis. Most of the definitions follow Montgomery and Runger (2006).
Chapter 2 Foundations

Basic Terms

A random experiment is an experiment which can result in different outcomes even though repeated under the same conditions. The set of all possible outcomes of such an experiment is called the sample space \(S \). It is discrete if its cardinality is finite or countable infinite. It is continuous if it contains a finite or infinite interval of real numbers.

The probability is a function \(P : \mathcal{P}(S) \mapsto [0, 1] \) used to quantify the likelihood that an event \(E \subseteq S \) occurs as an outcome of a random experiment. Higher numbers indicate that an outcome is more likely. A discrete or continuous random variable \(X \) is a variable that associates a number with the outcome of a random experiment.

For example, when throwing a single dice once, the sample space of this experiment is \(S = \{1 \ldots 6\} \). Let \(E = \{1,2\} \) be the event that a number smaller than 3 occurs and let \(X \) be the discrete random variable denoting the occurring number within the experiment. The probability for the event \(E \) is \(P(E) = \frac{1}{3} = P(X < 3) \).

Probability Distribution

The probability distribution of a random variable \(X \) defines the probabilities associated with all possible values of \(X \). Its definition depends on whether \(X \) is discrete or continuous and is given below. The (cumulative) distribution function \(F : \mathbb{R} \mapsto [0, 1] \) for a discrete or continuous random variable \(X \) gives the probability that the outcome of the random variable is less than or equal \(x \in \mathbb{R} \):

\[
F(x) = P(X \leq x).
\]

For a discrete random variable \(X \) with possible values \(x_1, x_2, \ldots, x_n \), the probability distribution is the probability mass function \(f : \mathbb{R} \mapsto [0, 1] \) satisfying

\[
f(x_i) = P(X = x_i). \tag{2.5}
\]

A probability density function \(f \), satisfying the properties in Equation 2.6, defines the probability distribution for a continuous random variable \(X \).

\[
(1) \ f(x) > 0 \ ; \ (2) \ \int_{-\infty}^{\infty} f(x) \, dx = 1 \ ; \ (3) \ P(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx \tag{2.6}
\]

The statistics mean, variance, and standard deviation are commonly used to summarize a probability distribution of a random variable \(X \). The mean \(\mu \) or \(E(X) \) is a measure of the middle of the probability distribution. The variance \(\sigma^2 \) or \(V(X) \), and the standard deviation \(\sigma = \sqrt{\sigma^2} \) are measures of the variability in the distribution. The definitions are given in Table 2.1.

<table>
<thead>
<tr>
<th></th>
<th>Discrete</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>(\mu = E(X) = \sum_{i} x_i f(x_i))</td>
<td>(\mu = E(X) = \int_{-\infty}^{\infty} xf(x) , dx)</td>
</tr>
<tr>
<td>Variance</td>
<td>(\sigma^2 = V(X) = E(X^2) - \mu^2)</td>
<td>(\sigma^2 = V(X) = E(X^2) - \mu^2)</td>
</tr>
<tr>
<td></td>
<td>(= \sum_{i} (x_i - \mu)^2 f(x_i))</td>
<td>(= \int_{-\infty}^{\infty} (x - \mu)^2 f(x) , dx)</td>
</tr>
</tbody>
</table>

Table 2.1: Definition of mean and variance for discrete and continuous probability distributions.
2.4 Probability and Statistics

Normal Distributions

The most widely used model for the probability distribution of a random variable is the normal distribution. It approximates the distribution of a continuous random variable X which can be modeled by the sum of many small independent variables. It is parameterized by mean μ and variance σ^2. Its distribution function is denoted by $N(\mu, \sigma^2)$ (see Equation 2.7). The symmetric bell-shaped probability density function is illustrated in Figure 2.10(a) using three different pairs of parameter values. $N(0, 1)$ is the standard normal distribution.

Log-normal Distribution

A positive random variable X is said to be log-normally distributed with two parameters μ and σ^2 if $Y = \ln X$ is normally distributed with mean μ and variance σ^2. A variable might be modeled as log-normal if it can be thought of as the multiplicative product of many small independent factors. The 2-parameter log-normal distribution

$$N(x \mid \mu, \sigma^2) = P(X \leq x)$$ (2.7)
Chapter 2 Foundations

IQR 1.5 IQR 1.5 IQR 1.5 IQR

Normal outliers

Normal outliers

1. quartile Median 3. quartile

Whisker extends to smallest data point within 1.5 interquartile ranges from first quartile

Whisker extends to largest data point within 1.5 interquartile ranges from third quartile

Figure 2.11: Description of a box-and-whisker plot (Montgomery and Runger 2006).

is denoted by \(\Lambda(\mu, \sigma^2) \) (see Equation 2.8). Two log-normal density functions are illustrated in Figure 2.10(b). In contrast to a normal distribution, a log-normal distribution is asymmetric. It is right-skewed and long-tailed.

\[
\Lambda(x | \mu, \sigma^2) = P(X \leq x) \tag{2.8}
\]

If a random variable \(X \) can only take values exceeding a fixed value \(\tau \), the \(3 \)-parameter log-normal distribution can be used. \(X \) is said to be log-normally distributed with the three parameters \(\tau, \mu \) and \(\sigma^2 \) if \(Y = \ln(X - \tau) \) is \(N(\mu, \sigma^2) \). The distribution is denoted by \(\Lambda(\tau, \mu, \sigma^2) \). The parameter \(\tau \) is called the threshold parameter and denotes the lower limit of the data (Aitchison and Brown 1957; Crow and Shimizu 1988). Figure 2.10(b) contains the density graph of a 3-parameter log-normal distribution.

Descriptive Statistics

Assume that in an experiment, a sample of \(n \) observations, denoted by \(x_1, \ldots, x_n \), has been made. The relative frequency function \(f : \mathbb{R} \mapsto [0, 1] \) gives the relative number of times a value occurs in the sample. \(F : \mathbb{R} \mapsto [0, 1] \) is the cumulative relative frequency function according to the cumulative distribution function described above.

The sample mean \(\bar{x} \) is the arithmetic mean of the observed values (see Equation 2.9). Analogous to the variance of a probability distribution, the sample variance \(s^2 \) and the sample standard deviation \(s \) describe the variability in the data. Minimum and maximum denote the smallest and greatest observations in the sample.

\[
(1) \ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i ; \quad (2) \ \ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2 \tag{2.9}
\]

A \(p \)-Quantile \(x_p \), for \(p \in [0, 1[\), is the smallest observation \(x \) satisfying \(F(x) \geq p \) (see Equation 2.10). The quantiles for \(p = 0.25, \ p = 0.5, \) and \(p = 0.75 \) are denoted as the 1., 2. and 3. quartiles. The 2. quartile is also called the median. The interquartile range (IQR) is the range between the 1. and the 3. quartile. Figure 2.11 shows the description of a box-and-whisker plot which is commonly used to display these statistics.

\[
x_p = \min\{x \mid F(x) \geq p\} \tag{2.10}
\]
2.4 Probability and Statistics

Figure 2.12: Kernel density estimations of a data sample using a normal kernel and different window sizes.

The outside points in a box-and-whisker plots mark the outliers of a data sample. Value between 1.5 and 3 IQRs farther from the 1. or the 3. quartile are called (normal) outliers. All values more than 3 IQRs farther are called extreme outliers.

An observation that occurs with the highest frequency is called the mode. Data with more than one mode is said to be multimodal. A sample with one mode is called unimodal. A sample with two modes is called bimodal. Generally, for symmetric distributions mean, median, and mode coincide. If mean, median, and mode do not coincide, the data is said to be skewed (asymmetric, with a longer tail to one side) (Montgomery and Runger, 2006). It is right-skewed if mode < median < mean and left-skewed if mode > median > mean.

Density Estimation

Often one obtains sample data from an experiment and needs to estimate the underlying density function \(\hat{f} \). Density estimation denotes the construction of an estimate of the continuous density function from the observed data. It can either be parametric or non-parametric (Silverman, 1986).

When using the parametric strategy, one assumes that the sample is distributed according to a parametric family of distributions, e.g. the above-mentioned normal or log-normal distributions. In this case, the parameters are estimated from the sample data.

With non-parametric density estimation, less assumptions are made concerning the distribution. A popular non-parametric estimation is the kernel estimator as in Equation 2.12. Based on the observations \(x_i \) from the sample data, the density at a point \(x \) is estimated by summing up the weighted distance between \(x \) and all observations \(x_i \) within a given window width \(h \) around each observation. The distances are weighted by a kernel function \(K \) which satisfies the condition in Equation 2.11. If \(K \) is a density function such as the normal distribution, \(\hat{f} \) is a density function as well. The window width \(h \) is also called the smoothing parameter or the bandwidth. When \(h \) is small, spikes at the observations are visible whereas with \(h \) being large, all detail is obscured. Figure 2.12.
Chapter 2 Foundations

illustrates density estimation by means of a normal kernel using a small and a large window size.

\[\int_{-\infty}^{\infty} K(x)dx = 1 \] (2.11)

\[\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K \left(\frac{x - x_i}{h} \right) \] (2.12)

Other non-parametric estimation methods exist which adapt the smoothing parameter to the local density of the data sample, e.g. the nearest neighbor method or the variable kernel method. Details on these methods as well as a more detailed discussion of the kernel method can be found in [Silverman, 1986].

2.5 Anomaly Detection

An important quality of service attribute of EIS is availability. As defined in Equation 2.13 [Musa et al., 1987], availability is calculated using the two variables mean time to failure (MTTF) and mean time to repair (MTTR). Being able to decrease either of them yields an increased availability.

\[\text{Availability} = \frac{\text{MTTF}}{\text{MTTF} + \text{MTTR}} \] (2.13)

Anomaly detection is an approach to increasing availability by reducing repair times. Errors or failures, as defined in the following paragraph, shall be detected early or even proactively.

Fault, Error, Failure

According to the “fundamental chain of dependability and security threats” presented by [Avižienis et al., 2004], we distinguish between fault, error, and failure. A fault, e.g. a software bug, implies an error as soon as it has been activated. An error is that part of a corrupt system state which itself may cause a failure, i.e. an incorrect system behavior observable from outside the system. Moreover, a failure may cause a fault in a higher-level system. This is illustrated in Figure 2.13 (Avižienis et al., 2004).

... fault \(\xrightarrow{\text{activation}}\) error \(\xrightarrow{\text{propagation}}\) failure \(\xrightarrow{\text{causation}}\) fault ...

Figure 2.13: Chain of dependability threats (Avižienis et al., 2004).
2.5 Anomaly Detection

Approach

A common approach for detecting anomalies is building a model of a system’s “normal behavior” in terms of a set of monitored parameters, and comparing this model with a dynamically generated model of the respective current behavior in order to uncover deviations (Kiciman, 2005). The data being monitored can be obtained from different levels, e.g. network, hardware or application level. Typically the model of the normal behavior is created based on data monitored in a learning phase. Current system behavior is monitored and compared with the learned model in the monitoring phase which is the system in its productional use. If an adaptive approach is used, the normal behavior is updated with new data in the monitoring phase.

Thus, anomaly detection contributes to failure detection in that way, that anomalies are assumed to be indicative for failures. As soon as failures are detected, techniques can be used to localize the root cause. In the following section we present a selection of existing approaches covering anomaly detection in software systems. An approach by Agarwal et al. (2004) is presented in Section 2.9.

Examples

Chen et al. (2002) present an approach for detecting anomalies in component-based software systems and isolating their root cause. By having instrumented the middleware underlying the application to be monitored, the set of components used to satisfy a user request is captured. Internal and external failures, such as failing assertions or failing user requests, are detected. In a data clustering analysis, sets of components which are highly correlated with failures are discovered in order to determine the root cause.

Kiciman and Fox (2005) present an approach for detecting anomalies of internal system behavior in terms of component interaction. Based on the framework mentioned in the previous paragraph (Chen et al., 2002), they capture component interactions and path shapes. Two components (or component classes) interact with each other if one uses the other to service a request. A path shape is defined as “an ordered set of logical components used to service a client request”. The approach is divided into three phases: observation, learning and detection phases. While observing and learning, the path shapes and component interactions are derived from monitored data. A reference model of the application’s normal behavior in terms of the above-mentioned characteristics is build. Sets of path shapes are modeled by a probabilistic context-free grammar (PCFG). In the detection phase, anomalies in the current behavior are searched with respect to the reference model, using anomaly scores to determine whether an observed shape is anomalous.

Based on the correlations between input and internal system behavior variables, Chen et al. (2006) present an approach for anomaly detection. Both sets of variables are transformed into a number of correlating pairs. Based on a threshold, the system variables are divided into those having a highly correlated input partner and those being uncorrelated or having a low correlated partner. The correlation for the highly correlated system variables and its input is recalculated during operation in order to detect deviations as indicators of failing behavior. The low correlated variables are monitored with respect to
2.6 Apache JMeter

Apache JMeter ([Apache Software Foundation], 2007b) is a Java-implemented workload generator mainly used for testing Web applications in terms of functionality and performance. This section contains a description of those aspects relevant for our work.

Overview

Traces are defined by a Test Plan which is a hierarchical and ordered tree of Test Elements. The number of users to be emulated, as well as other global parameters such as the duration of the test, i.e. the trace generation phase, are configured within a Thread Group element forming the root of a Test Plan. The core Test Elements are Logic Controllers and Samplers. Logic controllers group Test Elements and define the control flow of a Test Plan. Samplers are located at the leaves of the tree and send the actual requests. Examples for Logic Controllers are If and While Controllers which have an intuitive meaning known from programming languages. HTTP Request or FTP Request are examples for Samplers and are located at the leaves of the Test Plan.

JMeter provides a graphical user interface (GUI) for creating a Test Plan and executing the test. Figure 2.14 shows the JMeter GUI. Existing Test Plans can also be executed in non-GUI mode in order to save system resources.
Additional Test Elements include Timers, Listeners, Assertions, and Configuration Elements. Timers add a think time, e.g. constant or based on a normal distribution, between Sample executions of the same thread. Assertions are used to make sure that the server responds the expected results, e.g. it contains a certain text pattern. By using Listeners, results of the Sample executions can be logged, e.g. HTTP response codes or failed assertions. The set of Configuration Elements includes an HTTP Cookie Manager to enable client-side cookies as well as Variables. Table A.1 lists all Test Element types included in JMeter version 2.2. The user’s manual (Apache Software Foundation, 2006) contains a description of functionality and available parameters of all Test Elements.

Architecture

JMeter includes components required for the GUI and non-GUI mode, for holding the configuration of the Test Plan, and those required for the test execution. This categorization is illustrated by the pillars shown in Figure 2.15.

GUI components provide the functionality to graphically define a Test Plan and to start and stop the test execution. As mentioned above, test can also be started in non-GUI mode. The Engine is responsible for controlling the test run. It initializes the Thread Group and the included Threads each of which is assigned a private instance of the Test Plan to be executed.
A Test Plan is internally represented by a tree of Test Element classes itself representing the respective element in Test Plan. A Test Plan can be saved in a file with an XML-based JMX format. In addition to the configuration parameters, the Test Element classes contain the implementation of the Test Element’s behavior.

Any Test Element class has an associated GUI class providing a configuration dialog for the Test Element. It is responsible for creating and modifying the related Test Element classes. Figure 2.14 shows the dialog for configuring an HTTP Request Sampler.

2.7 JPetStore Sample Application

JPetStore is a sample Java Web application that represents an online shopping store offering pets. In the following two sections, those details which are relevant for our work are described.

Overview

The application has originally been developed to demonstrate the capabilities of the Apache iBATIS persistence framework [Apache Software Foundation, 2007a]. It is based on the J2EE sample application **Java Pet Store** [Sun Microsystems, Inc., 2006] which has been used in a variety of scientific studies, e.g. [Chen et al., 2005; Kiciman and Fox, 2005].
An HTML Web interface provides access to the application (see Figure 2.16(a)). The catalog is hierarchically structured into categories, e.g. “Dogs” and “Cats”. Categories contain products such as a “Bulldog” and a “Dalmation”. Products contain the actual items, e.g. “Male Adult Bulldog” and “Spotted Adult Female Dalmation”, which can be added to the virtual shopping cart, the content of which can later be ordered after having signed on to the application and having provided the required personal data, such as the shipping address and the credit card number.

Architecture

The architecture is made up by three layers, i.e. the presentation layer, the service layer and the persistence layer. Clients communicate with the application through the HTML Web interface using the HTTP request/response model (see Section 2.1). A database holds the application data. The architecture is illustrated in Figure 2.16(b).

The presentation layer is responsible for providing the user interface which gives a view of the internal data model and its provided services. The layer is realized using the Apache Struts framework (Apache Software Foundation, 2007a) which includes the so-called ActionServlet constituting the application entry point (see Section 2.1).

The service layer maintains the internal data model and actually performs the requested services. Data is accessed and modified through the persistence layer.

For each component of the data model, data access objects (DAOs) exist within the persistence layer acting as an interface to the database. The DAOs and the actual database access are realized using the Apache iBATIS persistence framework which provides a common interface to SQL-based relational database management systems. Table 4.5 gives an overview of the tables contained in the database schema of the application.

2.8 Tpmon

Tpmon is a monitoring tool which can be integrated into Java applications in order to monitor the response times (see Section 2.2) of operations as well as other application-level information. The core implementation is based on Focke (2006) but has been considerably modified in the meantime.

The monitoring functionality is woven into the code of an application using the concept of Aspect-Oriented Programming. Depending on the configuration, Tpmon stores the data into a database or the filesystem. An example, showing a system instrumented with Tpmon storing the monitored data into a database, is illustrated in Figure 2.17(a).

Tpmon provides a Web interface for enabling and disabling the monitoring as well as for setting monitoring parameters.

In the following two sections we will describe the concept of Aspect-Oriented Programming and give details on how instrumentation of applications takes place.
In an execution environment, three components \(a\), \(b\) and \(c\) each provide services which are monitored by means of \text{Tpmon} using the AOP concept. \text{Tpmon} stores the monitored data into the database.

Figure 2.17: Sample system instrumented with \text{Tpmon} (a) and how an annotated operation is woven (b).

An aspect weaver weaves the aspects and the functional part of an application into a single binary (following (Kiczales et al., 1997)).
Aspect-Oriented Programming

Often, application code is tangled with cross-cutting concerns which are not directly responsible for application functionality. Examples are logging, error handling, and performance measurement. In a certain way it may be possible to encapsulate those concerns by procedure abstraction, but often this still leads to code which is hard to maintain.

Aspect-Oriented Programming (AOP) is a concept which strives to separate cross-cutting concerns from application functionality as far as possible (Kiczales et al., 1997). The cross-cutting concerns are called aspects and are expressed in a form which is separate from the application code. Positions in the code to which aspects are to be woven are called point-cuts. A so-called aspect weaver automatically combines the application and the aspects into binaries. Following Kiczales et al. (1997), the procedure of enriching an application with aspects using AOP is illustrated in Figure 2.18.

AspectJ (Eclipse Foundation, 2007) is an AOP extension to the Java programming language. The AspectJ weaver allows for weaving aspects into an application at compile-time, post-compile time, and load-time (AspectJ Team, 2005). Independent of the time the weaving takes place, the AspectJ weaver produces equal Java binaries. Using compile-time weaving, the AspectJ compiler weaves the aspects to the defined point-cuts inside the application sources. When using post-compile time weaving, the aspects are woven into the already existing application binaries. Thus, post-compile time weaving is also denoted as binary weaving. In order to use load-time weaving, an AspectJ weaving agent is registered inside the Java virtual machine tool interface (JVMTI) (Sun Microsystems, Inc., 2004) and basically performs binary weaving at the time a class to be woven is loaded by the class loader. Point-cuts inside the application can be defined within external configuration files without modifying the application’s source code or by enriching the application code with annotations which were introduced with Java 5.

Instrumentation Modes

Tpmon is based on the AOP extension AspectJ. A configuration file contains a specification of classes to be considered by the weaving agent, e.g. by using the directive `<include within="com.ibatis.jpetstore..*/">`, any of the JPetStore classes (see Section 2.7) the name of which matches the given pattern would be considered. In order to consider the application entry operations of the presentation layer as well, one would also include the pattern `org.apache.struts.ActionServlet`. The preferred weaving method is load-time weaving – one of the weaving alternatives mentioned above.

Tpmon offers the two below-described instrumentation modes, i.e. the way operations to be monitored are specified.

1. **Full Instrumentation Mode**: Using this mode, the weaving agent weaves the monitoring functionality into all operations in those classes specified in the configuration file. No source code modifications are necessary.

2. **Annotation Mode**: Using this mode, all methods to be monitored need to be labeled by the Java annotation @TpmonMonitoringProbe. Additionally, the related class must be specified in the configuration file.
As soon as the execution of an instrumented operation starts, \(T_{pmon} \) stores the current timestamp. The same holds when the method returns. Start time \(tin \) and stop time \(tout \) as well as the below-listed data form the monitoring entry for this invocation. Figure 2.17(b) illustrates how the weaving takes place for an annotated method.

- **experimentid**: A unique identifier for the current experiment.
- **operation**: The full operation name consisting of class and method name, e.g. `com.ibatis.jpetstore.presentation.CatalogBean.viewCategory()`.
- **sessionid, traceid**: The application-level session and trace identifier as described in Sections 2.1 and 2.3

2.9 Related Work

Work directly related to ours covers the characterization and generation of workload for Web-based systems, the analysis of response time in enterprise applications as well as timing behavior anomaly detection.

The results of workload characterization for specific enterprise application in real use are presented in a number of papers. For example, Arlitt et al. (2001), Menascé et al. (2000), and Menascé and Akula (2003) analyzed online bookstores, shopping systems, and auction sites. Menascé et al. (2000) suggest a hierarchical workload model for Web-based systems consisting of a session layer, a functional layer, and an HTTP request layer (see Section 2.3).

Many freely available and commercial Web workload generators exist, e.g. Mercury LoadRunner (Mercury Interactive Corporation, 2007), OpenSTA (OpenSTA, 2005), Siege (Fulmer, 2006), and Apache JMeter (Apache Software Foundation, 2007b) (see Section 2.6).

In many performance-related experiments, simple techniques were used to generate synthetic workload. For example, Cohen et al. (2005) used the standard request generator httperf (Mosberger and Jin, 1998) to generate workload for the Java Pet Store. In this case, the order of issued requests within a session was dynamically determined using probabilities.

Menascé et al. (1999) defined a Customer Behavior Model Graph (CBMG) to formally model the user behavior in Web-based systems using Markov chains. Shams et al. (2006) state that CBMGS are inappropriate for modeling valid users sessions and present Extended Finite State Machines (EFSM) which include additional elements such as predicates and actions. Ballocca et al. (2002) propose an integration of CBMGS and a Web stressing tool to generate realistic workload. In Section 2.3 we provided a detailed description of these approaches.

Mielke (2006) statistically analyzed the end-to-end response times of transactions in three Enterprise Resource Planning (ERP) systems in real use. The response times were measured with built-in performance measurement tools. The main contributions to the response times were caused by process time and database request time. Mielke found out that the distributions of the data samples could be estimated by the log-normal distribution – including body and tail. Sample mean and variance from the response time
2.9 Related Work

data were used as the parameters for the probability density function of the log-normal function. Deviations from the log-normal distributions occurred and were often caused by performance problems. Thus, Mielke suggests to use response time distributions to locate performance problems in ERP systems.

Agarwal et al. (2004) combined dependency graphs and monitored response time samples from system components for problem determination, i.e. detecting misbehavior in a system and locating the root cause. Agarwal et al. assume existing end-user service level agreements (SLAs) with specified end-to-end response time thresholds for each transaction type. Dependency graphs model the relation between components in terms of synchronous or asynchronous invocations among each other. At run-time, a so-called dynamic threshold is computed for each component based on average component response times. As soon as a SLA violation is detected, all components are classified into good and bad behavior depending on whether or not they are affected by the problem, i.e. they exceed their dynamic threshold or are in a relation with components exceeding their dynamic threshold. The components in a bad state are ranked in order of their current response time samples compared with the dynamic threshold in order to determine the root cause of the problem. Agarwal et al. claim that by using their dynamic threshold approach, changes in operating conditions, such as workload changes, can be accommodated.
Chapter 3

Probabilistic Workload Driver

This chapter deals with the development of the workload driver used in the case study. We introduce an approach for a model-based definition and generation of probabilistic workload for enterprise applications. The definition of the user behavior is separated from application- and protocol-specific details. The models are based on hierarchical finite state machines and Markov chains. We implemented our approach by extending the existing workload generator JMeter (see Section 2.6). This extension named Markov4JMeter has been released under an open source license (van Hoorn 2007).

Section 3.1 contains the requirements definition of the workload driver. The conceptual design of the workload driver including the definition of the workload configuration and execution semantics are given in Section 3.2. Section 3.3 outlines the resulting implementation and integration into JMeter. A description on how to model and generate probabilistic workload with Markov4JMeter is illustrated in Section 3.4.

3.1 Requirements Definition

The Sections 3.1.1 and 3.1.2 introduce how requirements are labeled and classified in this requirement definition and states the assumptions made. Which applications and use cases must be supported is defined in Sections 3.1.3 and 3.1.4. Requirements for the workload configuration and the provided user interface follow in Sections 3.1.5 and 3.1.6.

3.1.1 Requirements Labeling and Classification

Each requirement is labeled with a unique identifier such as scope::applications(m). An identifier consists of a descriptive component, in this case scope::applications, and a classification component, which is either m (mandatory) or s (secondary). The classification is as follows:

Mandatory: A mandatory requirement, emphasized by must, is a requirement which must be fulfilled in every case.

Secondary: A secondary requirement, emphasized by should, is a requirement which should be fulfilled. The non-fulfillment of a secondary requirement must be carefully weighted and reasoned.
3.1.2 Assumptions

The application which workload is to be generated for is denoted as the application under test (AUT). The term tester relates to the person using the workload driver.

The workload configuration is divided into an application and user behavior configuration and a behavior mix and workload intensity configuration.

- The application and user behavior configuration contains the application- and protocol-specific details required to generate valid workload. Moreover, it includes models of the probabilistic user behavior for the AUT.

- The behavior mix and workload intensity configuration contains the information related to a specific workload execution, e.g. the used application and user behavior configuration, the relative distribution of behavior models to use as well as the number of simulated users and the duration of the execution.

3.1.3 Supported Applications

The workload driver must support applications that satisfy the following properties:

- The application has an HTML Web interface based on the HTTP request/response model (see Section 2.1) solely using the HTTP methods GET and POST.

- If the application uses sessions, the session identifier is managed by cookies contained in the HTTP header, by URL-rewriting or by hidden HTML input fields.

- The application does not rely on code embedded in its HTML response that must be interpreted on client-side, such as JavaScript or AJAX.
3.1.4 Use Cases

In this section we define the use cases, the workload driver must support. Each use case is defined by means of a template containing the fields actors, pre- and post-condition, as well as a description. Figure 3.1 shows the UML use case diagram.

uc::aum::define(m) - Configure Application and User Behavior

<table>
<thead>
<tr>
<th>Actors:</th>
<th>Tester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-condition:</td>
<td>-</td>
</tr>
<tr>
<td>Post-condition:</td>
<td>A new application and user behavior configuration for the AUT has been created and is accessible to the workload driver.</td>
</tr>
<tr>
<td>Description:</td>
<td>The user defines and stores an application and user behavior configuration for the AUT (the required configuration parameters are defined in Section 3.1.5.1).</td>
</tr>
</tbody>
</table>

uc::workloadmix::define(m) - Configure Behavior Mix and Workload Intensity

<table>
<thead>
<tr>
<th>Actors:</th>
<th>Tester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-condition:</td>
<td>The application and user behavior configuration to be used is accessible.</td>
</tr>
<tr>
<td>Post-condition:</td>
<td>A behavior mix and workload intensity configuration which can be executed by the workload driver has been defined.</td>
</tr>
<tr>
<td>Description:</td>
<td>The user defines and stores the behavior mix and workload intensity configuration (the required configuration parameters are defined in Section 3.1.5.2).</td>
</tr>
</tbody>
</table>

uc::workload::execute(m) - Execute Configured Workload

<table>
<thead>
<tr>
<th>Actors:</th>
<th>Tester, AUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-condition:</td>
<td>The workload to be executed has been configured and is accessible to the workload driver (see use cases uc::aum::define(m) and uc::workloadmix::define(m)).</td>
</tr>
<tr>
<td>Post-condition:</td>
<td>The workload configuration has been executed by the workload driver.</td>
</tr>
<tr>
<td>Description:</td>
<td>The user invokes the workload driver to generate the configured workload (see Section 3.1.5) for the AUT.</td>
</tr>
</tbody>
</table>
3.1.5 Workload Configuration

This section contains the requirements for the workload driver configuration. As mentioned above, this configuration is divided into an application-specific application and user behavior configuration and a behavior mix and intensity configuration for specific experiment runs.

config::loadstore(m) - Load and Store Configuration

The workload driver *must* provide functionality to load and store configurations such that they can be reused. This includes the definition of an appropriate file format.

3.1.5.1 Application and User Behavior Configuration

config::aub::ifaceDetails(m) - Application Interface Definition

A description format *must* be defined to specify the details on the HTTP communication between client and application under test for all provided interactions.

config::aub::dynValueAssignment(s) - Dynamic Value Assignment

Means *should* be provided to dynamically assign values for HTTP request parameters. This includes selecting values which depend on the last response, as well as functionality to select values from prepaired data, e.g. login credentials for user authentication.

config::aub::naviBehaviorModel(m) - User Behavior Model

A description format *must* be defined to model user session in terms of the issued requests within a session. This *must* include probabilistic elements to model weighted alternatives. Varying the assigned probabilities allows for modeling behavior of different behavior classes.

config::aub::userThinkTimesConst(m) - Client-side Think Times (constant)

A constant value to be used as the client-side think times between two subsequent requests of the same user *must* be configurable.

config::aub::userThinkTimesDistr(s) - Client-side Think Times (distribution)

Think time distributions *should* be configurable for each user class to enable think times that vary based on a parameterizable probability distribution family, such as the normal distribution. This requirement extends config::aub::userThinkTimes ← Const(m).
3.2 Design

3.1.5.2 Behavior Mix and Workload Intensity Configuration

config::bmwi::userCountSingle(m) - Single User Count

The workload driver *must* provide an option to configure the number of concurrent users to simulate.

config::bmwi::userCountVarying(s) - User Count Variation

The workload driver *should* provide means to define a varying number of concurrent users to be simulated, e.g. specified by mathematic formulae depending on the elapsed experiment time. This requirement extends `config::wmic::userCountSingle(m)`.

config::bmwi::duration(m) - Duration of Workload Execution

The workload driver *must* provide an option to configure the duration of the workload execution, e.g. by specifying a time value or by specifying the number of iterations per user.

config::bmwi::userClassSingle(m) - User Class Assignment

The workload driver *must* allow to assign a single user class to be used for an entire workload execution.

config::bmwi::userClassMix(s) - User Class Mix

The workload driver *should* allow to use multiple user classes during a single workload execution. The number of users being associated to every single class *should* then be relative to the total number of emulated users. This requirement extends `config::bmwi::userClassSingle(m)`.

3.1.6 User Interface

ui::workload::execute(m) - Workload Execution User Interface

The workload driver *must* provide a command line option to allow batch execution of previously configured workload (see use case `uc::workload::execute`).

3.2 Design

This section contains the high-level design of the workload driver which is based on the requirements definition presented in Section 3.1. In Section 3.2.1 we refine the system model of the applications to be supported and define basic terms. The workload configuration data model and the design of the architecture and the execution model follow in Sections 3.2.2 and 3.2.3.
3.2.1 System Model

We consider a system model which is based on the system model presented in Section 2.1 and on the hierarchical workload model presented in Section 2.3.

An EIS provides a number of services. An invocation of a service involves the invocation of possibly more than one request on protocol level. A series of consecutive and related requests to the system issued by the same user is called a session. As soon as the first request has been issued, the user begins a new session which is then denoted as an active session until the last request has been issued. The time interval elapsed between the completion of a server response and the invocation of the next one is denoted as the think time.

3.2.2 Workload Configuration Data Model

Based on the requirements related to the workload configuration (see Section 3.1.5) including the application and user behavior configuration and the behavior mix and intensity configuration, we defined a workload configuration data model. It consists of an application model, a set of user behavior models related to the application model as well as a definition of the user behavior mix and the workload intensity. The configuration elements are described in the following Sections 3.2.2.1–3.2.2.4. Figure 3.2 shows the class diagram for this data model.

Figure 3.2: Class diagram of the workload configuration data model including the basic elements application model, a set of user behavior models related to the application model, as well as a definition of the user behavior mix and the workload intensity.
3.2 Design

Figure 3.3: Sample application model illustrating the separation into session layer and protocol layer.

3.2.2.1 Application Model

The application model contains all information required by the workload driver to generate valid sessions for an application. It is a two-layered hierarchical finite state machine consisting of a session layer on top and a protocol layer underneath. Figure 3.3 shows a sample application model.

Session Layer

The session layer consists of a non-deterministic finite state machine. The states are denoted as application states. The transitions are called application transitions. Each application state is related to a service provided by the application, e.g., adding an item to a shopping cart. An application transition between two states represents a valid sequence of service calls within a session. No application state is marked as the state machine’s entry or exit state.

Transitions can be labeled with guards and actions. A guard is a boolean expression stating that a transition can only be taken if the expression evaluates to true. An action is a list of statements, such as variable assignments or function calls, which are executed when a transition is taken. Variables and functions used within guards and actions are assumed to be globally defined outside the application model.

The session layer in Figure 3.3 contains the states S0, S1, and S2 using the variables a, b, and c in the guards and actions. For example, a transition from state S2 to S1 is only possible if b! = 0 evaluates to true. When this transition is taken, the value of b is assigned the value 1.

Protocol Layer

Each application state has an associated deterministic finite state machine on the protocol layer. The states are denoted as protocol states. The transitions are called protocol transitions.
A state machine is executed when the related application state is entered and models the sequence of protocol-level requests to be invoked (see Section 3.2.1). Analogous to the session layer, transitions between states may be labeled with guards and actions using the same global variables and functions.

For example, the state machine related to the application state S_0 in Figure 3.3 contains the three protocol states $a.shtml$, $b.shtml$, and $c.shtml$ that correspond to HTTP request URIs. After the request for $a.shtml$ has been issued, the next state depends on the outcome of the evaluation of the expression $a > 0$ in the guard.

3.2.2.2 User Behavior Model

A user behavior model consists of a Markov chain (see Section 2.3) and a mathematical formula modeling the client-side think time. It is associated with an application model and each state of the Markov chain relates to an application state.

Formally, we define a user behavior model B_A for an application A as a tuple $(Z \cup \{\text{Exit}\}, P, z_0, f_{tt})$. Z denotes the set of states contained in the Markov chain with entry state z_0. The state Exit is the dedicated exit state which has no related application state. P denotes the transition matrix. f_{tt} contains the think time formula.

Figure 3.4 shows the transition diagrams of two user behavior models $B_{A,0}$ and $B_{A,1}$ for the application model shown in Figure 3.3. Both user behavior models solely differ in their transition probabilities.

3.2.2.3 User Behavior Mix

A user behavior mix $BMIX_A$ for an application model A is a set $\{(B_{A,0}, p_0), \ldots, (B_{A,n-1}, p_{n-1})\}$ assigning relative frequencies p_i to user behavior models $B_{A,i}$. The property in Equation 3.1 must hold.

$$
\sum_{i=0}^{n-1} p_i = 1 \quad (3.1)
$$

A tuple $(B_{A,i}, p_i)$ states that user sessions based on the user behavior model $B_{A,i}$ occur with a relative frequency $p_i \in [0, 1]$ during workload execution.
3.2 Design

3.2.2.4 Workload Intensity

The workload intensity configuration includes the definition of the duration and a mathematic function $\mathbb{R}_{\geq 0} \mapsto \mathbb{N}$ defining the number of active sessions, i.e., the number of concurrent users, to simulate relative to the elapsed experiment time.

3.2.3 Architecture and Iterative Execution Model

The architecture of the workload driver includes a workload driver engine, a behavior mix controller, a session arrival controller, and a pool of user simulation threads the size of which is constant throughout the entire execution.

The workload driver engine initializes and controls the other components based on a workload configuration as defined in the previous Section 3.2.2. Each user simulation thread represents one user at a time and issues the requests based on a session model which is composed by the application model and a user behavior model assigned by the behavior mix controller. The session arrival controller controls the respective number of active sessions.

A more detailed description of components is given in the following Sections 3.2.3.1–3.2.3.3. Figure 3.5 shows a UML class diagram illustrating how they are related. The composition and execution of the probabilistic session model is described in Section 3.2.3.4.

3.2.3.1 Behavior Mix Controller

The behavior mix controller maintains the assignment of user behavior models to user sessions executed by the user simulation threads. The assignment is performed based on the relative frequencies configured in the behavior mix which is part of the workload configuration.

Figure 3.5: Architecture overview of workload driver in UML class diagram notation.
Figure 3.6: Sketch of core algorithm executed by each user simulation thread to execute a session. \(B_A \) denotes the user behavior model \((Z, P, z_0, E, f_{tt})\) which has already been assigned based on the behavior mix. The method \emph{enter}\ executes the application state \(z \) passed as parameter and returns the set of outgoing transitions. The method \emph{evaluate}\ evaluates the expression passed as parameter and returns the evaluation result. The operator \(\bullet \) is used to concatenate lists.

3.2.3.2 Session Arrival Controller

The session arrival controller controls the number of active user sessions during workload generation. It provides a session entrance and exit protocol for the user simulation threads. Before entering a session, the method \emph{enterSession()} must be called which may block the thread in a queue until the session entrance is granted. After leaving a session, a user simulation thread invokes the method \emph{exitSession()} in order to notify the session arrival controller that the number of active session can be decremented. The session arrival controller is configured according to the active sessions formula within the workload configuration.

3.2.3.3 User Simulation Threads

Each user simulation thread iteratively emulates users based on the configured application and user behavior models by executing the following steps:

1. Request a user behavior model from the behavior mix controller.
2. Request session arrival controller for a permission to execute a session.
3. Execute a probabilistic session model which is a composition of the application and the user behavior model assigned for this iteration. This step is described in the following Section 3.2.3.4.
3.3 Markov4JMeter

3.2.3.4 Session Model Composition and Execution

Sessions executed by the user simulation threads are based on probabilistic session models which are a composition of the application model (see Section 3.2.2.1) and a user behavior model (see Section 3.2.2.2). As mentioned above, the application model contains the protocol information and constraints required to generate valid sessions for an application. A user behavior model contains information about the probabilistic navigational behavior as well as a model of the think times.

The two models are directly related by associated states and transitions contained in the user behavior model (the set Z of states) and on the session layer of the application model. The composition of the two models to a single probabilistic model can be performed straightforward by enriching the application transitions with the probabilities contained in the user behavior model.

Starting with the entry state z_0 defined in the user behavior model, a probabilistic session model is executed as follows. Given a current state, the next state is determined by first evaluating the guards of the outgoing transitions related to the current state. One of these transitions is randomly selected based on their assigned probabilities. The action of the selected transition is executed and the requests towards the application are issued by traversing the deterministic state machine of the state within the protocol layer of the application model. A session ends when the determined transition leads to the destination state Exit which is the exit state of the user behavior model.

The semantic of the composition of an application model and a user behavior model is illustrated in Figure 3.6 using a pseudo-code notation for the code executed by a user simulation thread in each iteration. We assume that the user behavior model $B_A = (Z, P, z_0, E, f_{tt})$ has been assigned already. The tuple elements are accessed by means of $B_A.Z$, $B_A.P$, $B_A.z_0$ and $B_A.E$. First, the user simulation thread invokes a request to enter the session towards the session arrival controller. The thread may get blocked at this point, i.e. it might be put into a queue. This is the case when the number of active sessions would exceed the allowed number of active sessions if this entrance would be granted.

3.3 Markov4JMeter

A workload driver following the design presented in the previous Section 3.2 has been implemented and integrated into the existing workload generator JMeter (see Section 2.6) as an extension called Markov4JMeter.

Markov4JMeter includes the Test Elements Markov Session Controller and Markov State which allow the definition of a probabilistic session model within a JMeter Test Plan. The Test Elements are described in Section 3.3.1. The additional components Behavior Mix Controller and Session Arrival Controller are described in Sections 3.3.3 and 3.3.4. Behavior models are stored in external files. The file format will be described in Section 3.3.2.

Figure 3.7 illustrates how the Markov4JMeter components are integrated into JMeter.

The conceptual workload driver components workload driver engine and user simulation threads defined in Section 3.2.3 are realized by the JMeter components Engine and...
3.3.1 Test Elements

The Logic Controllers Markov Session Controller and Markov State both extend the JMeter class JMeter.control.GenericController. A Markov Session Controller forms the root of a probabilistic session model within a Test Plan. Markov State Test Elements are added directly underneath, each representing an application state of the session layer as defined in Section 3.2.2.1. Figure 3.8(a) shows the Markov4JMeter Test Plan for the sample application model illustrated in Figure 3.3.

3.3.1.1 Markov Session Controller

According to the JMeter Test Elements, the Markov Session Controller is divided into a Test Element class and a GUI class providing the configuration dialog.

The configuration dialog allows the definition of the behavior mix and the configuration of the session arrival controller. It is shown in Figure 3.8(b). The behavior mix is defined by selecting the respective behavior files and specifying the desired relative frequencies.
3.3 Markov4JMeter

Figure 3.8: Probabilistic Test Plan and Markov4JMeter configuration dialogs.

The formula defining the number of allowed active sessions during the test execution must evaluate to a positive integer.

The Test Element class contains the implementation of the session model composition and execution as described in Section 3.2.3.4. In each iteration, i.e. each time a new session is to be simulated, the Markov Session Controller requests a behavior from the Behavior Mix Controller and requests the Session Arrival Controller to start the execution of this session. An iteration ends when the exit state of the behavior model (see Section 3.3.2) is reached.

3.3.1.2 Markov State

As the implementation of the Markov Session Controller, the Markov State is divided into a Test Element class and a GUI class.

Any subtree of JMeter Test Elements can be added to a Markov State representing the related deterministic state machine on the protocol layer of the application model.

The configuration dialog of the Test Element allows the definition of the state transitions with guards and actions using JMeter’s variables and functions. The list of transitions is refreshed as the list of Markov States underneath the related Markov Session Controller is modified.

For example, the Markov State S0 in Figure 3.8(c) contains the HTTP Samplers f.shtml and g.shtml which are executed in this order according to the application model in Figure 3.3. The configuration of the transitions is shown in Figure 3.8(c).

3.3.2 Behavior Files

The transition matrix of a user behavior model as defined in Section 3.2.2.2 is stored in external files using a comma-separated value (CSV) file format. It contains the names of all Markov States underneath a Markov Session Controller. The entry state of the model is marked with an asterisk (at most one). The column labeled with $ represents the transition probability towards the exit state.
Chapter 3 Probabilistic Workload Driver

Figure 3.9 shows the behavior file of the user behavior model in Figure 3.4(a). Valid behavior file templates can be generated through the Markov Session Controller configuration dialog.

<table>
<thead>
<tr>
<th>State</th>
<th>Prob of Transition to State</th>
</tr>
</thead>
<tbody>
<tr>
<td>"S0"</td>
<td>0.00</td>
<td>0.70</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>"S1"</td>
<td>0.00</td>
<td>0.50</td>
<td>0.10</td>
<td>0.40</td>
</tr>
<tr>
<td>"S2"</td>
<td>0.10</td>
<td>0.50</td>
<td>0.00</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Figure 3.9: User behavior model stored in CSV file format.

3.3.3 Behavior Mix Controller

As mentioned above, the Behavior Mix Controller assigns user behavior models to the Markov Session Controller based on the configured behavior mix. The models are read from the behavior files and converted into an internal representation which is passed to the Markov Session Controller. A single Behavior Mix Controller is available which is implemented using the singleton pattern [Gamma et al., 2000].

3.3.4 Session Arrival Controller

According to Section 3.2.3.2, the Session Arrival Controller provides the methods enterSession() and exitSession() which are called by the Markov Session Controller before starting to execute a new session. Depending on the current number of active sessions and the configured active sessions formula (see Section 3.2.2.4), a thread might get blocked until the session entrance is granted. The Session Arrival Controller is also implemented using the singleton pattern.

3.4 Using Markov4JMeter

This section contains a step-by-step description how a simple probabilistic Test Plan for the JPetStore (see Section 2.6) is created. This Test Plan can then be executed just like any ordinary JMeter Test Plan. The JMX file of the Test Plan and the associated files can be found in the directory examples/jpetstore/ of the Markov4JMeter release. Appendix A.2 describes how to install Markov4JMeter.

Preparing the Test Plan

By performing the following steps, the basic Test Plan shown in the left-hand side of Figure 3.10 is created.

1. Add a Thread Group to the empty Test Plan and select to stop the test when a sampler error occurs. Set the number of threads to 5 and the loop count to 5 without using the Scheduler.
2. Add an *HTTP Cookie Manager* from the *Config Element* menu to the *Thread Group* and select the cookies to be deleted after each iteration.

3. Add the *HTTP Request Defaults* from the *Config Element* menu and insert the data shown in Figure 3.10.

4. Add a *View Results Tree* for debugging purposes and select “Save Response Data”.

Figure 3.10: A prepared JMeter Test Plan.

Adding a Markov Session Controller

After installing Markov4JMeter, the new Logic Controllers *Markov State* and *Markov Session Controller* appear in the respective menu (see Figure 3.11).

A *Markov Session Controller* needs to be added to the *Thread Group*. This is the root element of any probabilistic session model consisting of a number of *Markov States* and transitions between them. Also, it contains the configuration of the behavior mix and the *Session Arrival Controller*. A *Gaussian Random Timer* added to the *Markov Session Controller* emulates client-side think times between subsequent requests.

It is highly recommended to use at most one *Markov Session Controller* within a Test Plan. The *Markov Session Controller* should be placed at the root level of the Thread Group. Especially, *Markov Session Controllers* must not be nested.

Adding Markov States

After adding four *Markov States* named “Index”, “Sign On”, “View Category”, and “Sign Off” to the *Markov Session Controller*, the Test Plan has the tree structure shown in Figure 3.12. *Markov States* must be placed directly underneath a *Markov Session Controller*.
Chapter 3 Probabilistic Workload Driver

<table>
<thead>
<tr>
<th>Name</th>
<th>Path</th>
<th>Method</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markov State:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>[JPSROOT]/index.shtml</td>
<td>GET</td>
<td></td>
</tr>
<tr>
<td>Markov State:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sign On</td>
<td>[JPSROOT]/signonForm.shtml</td>
<td>GET</td>
<td></td>
</tr>
<tr>
<td>Sign On</td>
<td>[JPSROOT]/signonForm.shtml</td>
<td>GET</td>
<td></td>
</tr>
<tr>
<td>Markov State:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View Category</td>
<td>[JPSROOT]/viewCategory.shtml</td>
<td>GET</td>
<td>categoryId</td>
</tr>
<tr>
<td>Markov State:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sign Off</td>
<td>[JPSROOT]/signoff.shtml</td>
<td>GET</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Markov State:</th>
<th>Path</th>
<th>Method</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>[JPSROOT]/index.shtml</td>
<td>GET</td>
<td></td>
</tr>
<tr>
<td>Sign On</td>
<td>[JPSROOT]/signonForm.shtml</td>
<td>GET</td>
<td></td>
</tr>
<tr>
<td>Sign On</td>
<td>[JPSROOT]/signonForm.shtml</td>
<td>GET</td>
<td></td>
</tr>
<tr>
<td>View Category</td>
<td>[JPSROOT]/viewCategory.shtml</td>
<td>GET</td>
<td>categoryId</td>
</tr>
<tr>
<td>Sign Off</td>
<td>[JPSROOT]/signoff.shtml</td>
<td>GET</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.4: Data to fill in to the HTTP Request configuration dialogs. “[JPSROOT]” needs to be replaced with “/servlets/jpetstore5/shop”. Also, the check boxes “Redirect Automatically” and “Follow Redirects” must be selected.

and must especially not be nested – neither directly nor indirectly. Each Markov State must have a unique name. HTTP Request Samplers should be added to the Markov States according to Table 3.4.

![Markov4JMeter Test Plan](image)

Figure 3.12: Markov4JMeter Test Plan.

Defining Transition Guards and Actions

When selecting a Markov State within the Test Plan, the configuration dialog including the table to define guards and actions for transitions to all states of the same Markov Session Controller appears. The table is automatically updated each time Markov States are added, removed or renamed. Transitions can be assigned guards in order to allow a transition to be taken only if the specified expression evaluates to true. By selecting the respective check box, transitions can be deactivated completely, which is equivalent to entering a guard evaluating to false. An action is a list of statements, such as function calls or variable assignments, separated by a semicolon which is evaluated when a transition is taken.

In our example a variable signedOn is used to remember whether a user has logged in or not. A User Parameters Pre-Processor to the Markov Session Controller with a
new variable named `signedOn` with the value `false` to initialize the variable. The check box “Update Once Per Iteration” needs to be activated. The guards and actions of the transitions should be configured as listed in Table 3.5.

<table>
<thead>
<tr>
<th>Source State</th>
<th>Destination State</th>
<th>Disabled</th>
<th>Guard</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>any</code></td>
<td><code>Sign On</code></td>
<td></td>
<td>!${signedOn}</td>
<td>signedOn=true</td>
</tr>
<tr>
<td><code>any</code></td>
<td><code>Sign Off</code></td>
<td></td>
<td>${signedOn}</td>
<td>signedOn=false</td>
</tr>
</tbody>
</table>

Table 3.5: Guards and actions used to restrict transitions to the states “Sign On” and “Sign Off”. The variable `signedOn` is used to remember whether a user has logged in or not.

Creating User Behavior Models and Defining the BehaviorMix

A behavior file template can be exported by clicking the button “Generate Template” within the Markov Session Controller. This file can then be edited in a spreadsheet application or a text editor. The sum of probabilities in each row must be 1.0. This step needs to be performed for each behavior model to be used.

The behavior mix, i.e. the assignment of behavior models to their relative frequency of occurrence during execution, is defined in the configuration dialog of the Markov Session Controller. Entries can be added and removed using the buttons “Add” and “Delete”. Again, the sum of relative frequencies must be 1.0. Absolute and relative filenames can be used. Relative filenames are always relative to the directory JMeter has been started from. Figure 3.13 shows an example behavior mix.

If an error occurs while loading the behavior models, the entire test is aborted immediately. Details concerning this error are written to the file `jmeter.log`.

Using the Session Arrival Controller

The Session Arrival Controller controls the number of active sessions, given an expression evaluating to an integer value. It is configured within the configuration dialog of the Markov Session Controller. JMeter allows to use BeanShell scripts within text expressions. Particularly, this allows for varying the number of active sessions depending on the elapsed experiment time. Markov4JMeter adds the global variable `TEST.START.MS` to the JMeter context which is accessible in BeanShell scripts. The variable is set when the Test Plan is started.
import org.apache.jmeter.util.JMeterUtils;

long startMs = Long.parseLong(JMeterUtils.getPropDefault("TEST.START.MS", ""));
long curMs = System.currentTimeMillis();
double expMin = (curMs-startMs)/(1000*60);
return (int)Math.ceil(allowedNum(expMin));

Figure 3.14: Example BeanShell script which returns the elapsed experiment minute as an integer using the Markov4JMeter variable TEST.START.MS.

For example, when using the BeanShell script listed in Figure 3.14, the Session Arrival Controller limits the number of active sessions based on the elapsed experiment minute: in the i-th minute i active sessions are allowed in parallel. Figure 3.15 shows how to use this BeanShell script within the Session Arrival Controller configuration.

Figure 3.15: BeanShell scripts can be used with the function BeanShell. The BeanShell function source includes a script file.

The Session Arrival Controller doesn’t create any new threads. It simply blocks threads in a queue in case the number of active sessions would exceed the given maximum number. Hence, the maximum number of active sessions is limited to the number of threads configured in the Thread Group.

If an error occurs while evaluating the active sessions formula, the entire test is aborted immediately. Details concerning this error are written to the file jmeter.log.
Chapter 4

Experiment Design

In the case study, the JPetStore sample application (see Section 2.3) is exposed to varying workload in order to obtain related operation response times for the later analysis. The workload is executed by the workload driver JMeter extended by Markov4JMeter which has been described in Chapter 3. The response times are monitored using the monitoring infrastructure Tpmon (see Section 2.8).

This chapter outlines the experiment design. A description of the probabilistic Test Plan is given in Section 4.1 including the underlying application and user behavior models as defined in Sections 3.2.2.1 and 3.2.2.2. The configuration of the machines, the software environment, and the experiment runs is specified in Section 4.2. Section 4.3 describes which operations are monitored and how these monitoring points have been determined. We define a workload intensity metric called platform workload intensity (PWI) which is part of Section 4.4. Section 4.5 deals with the methodology how the experiments are executed.

4.1 Markov4JMeter Profile for JPetStore

Based on identified service and request types of the JPetStore we created an application model and two user behavior models. These models have been integrated into a probabilistic Test Plan which can be executed by JMeter extended by Markov4JMeter. A description of the service and request types, the application and behavior models as well as the probabilistic Test Plan is given in the following Sections 4.1.1–4.1.4.

4.1.1 Identification of Services and Request Types

According to our refined system model in Section 3.2.1, we identified 29 request types provided by JPetStore on HTTP protocol level and classified them into 15 services. Table 4.1 contains the services and their corresponding request types.

JPetStore provides its services through a Web interface using the HTTP protocol request/response protocol with the HTTP request types GET and POST as described in Section 2.1. Each request type listed in Table 4.1 relates to an HTTP request type provided through the Web interface.

We decided to focus our further investigation of the application to a subset of 9 services and 13 request types which we consider being part of a “typical” user session. They are labeled by an appended dagger symbol † in Table 4.1.
4.1.2 Application Model

We created an application model for the JPetStore modeling valid user sessions to be generated by Markov4JMeter. As mentioned above, we considered the subset services request types mentioned in Section 4.1.1. Figure 4.1 shows the session layer and two example state machines from the protocol layer. Details on both layers of the application model are described in the following two Sections 4.1.2.1 and 4.1.2.2.

4.1.2.1 Session Layer

The application transitions were defined based on the hyperlinks being present on the Web pages of the JPetStore. For example, by entering the application state Home the server would return the JPetStore index page which is shown in Figure 2.16(a). This page provides hyperlinks to the product categories, to the shopping cart, to the index page itself, and allows to sign in or sign off. This results in transitions to the respective application states.

The variables signedOn and itemInCart are used to store additional state information during a user session is simulated. A user can only sign on and sign off if the value of the variable signedOn is false or true, respectively. The variable itemInCart is set when an item is added to the shopping cart. A transition to the state Purchase can only be selected, when a user has signed on and has at least one item in its shopping cart.

Figure 4.1(a) shows the session layer of our application model which contains nine application states, each of which relates to one of the JPetStore services. If transitions without guards and actions exist in both directions between two states, e.g. this is the case for Home and View Cart, we combined them into a bidirectional transition with arrows at both end. A junction connector is used to combine a set of transitions from multiple source states directing to the same destination state. These transitions have at most one label consisting of a guard and actions which is considered the label of all transitions in this set.

Table 4.1: Identified service and request types of JPetStore.

<table>
<thead>
<tr>
<th>Service</th>
<th>Request Type</th>
<th>Service</th>
<th>Request Type</th>
<th>Service</th>
<th>Request Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home†</td>
<td>index†</td>
<td>Browse Category†</td>
<td>viewCategory</td>
<td>Remove Item</td>
<td>removeItemFromCart</td>
</tr>
<tr>
<td>Browse Help</td>
<td>help†</td>
<td>Browse Product†</td>
<td>viewProduct†</td>
<td>Purchase†</td>
<td>checkout†</td>
</tr>
<tr>
<td>Sign On†</td>
<td>signon-form†</td>
<td>switchProductListPage</td>
<td>newOrderForm†</td>
<td>newOrderData†</td>
<td></td>
</tr>
<tr>
<td>Edit Account</td>
<td>editAccountForm</td>
<td>View Item†</td>
<td>viewItem†</td>
<td>newOrderConfirm†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>editAccountForm</td>
<td>Add to Cart†</td>
<td>addItemToCart†</td>
<td>Search</td>
<td></td>
</tr>
<tr>
<td></td>
<td>listOrders</td>
<td>View Cart†</td>
<td>switchCartPage</td>
<td>switchSearchListPage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>viewOrder</td>
<td></td>
<td>switchMyListPage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sign Off†</td>
<td>signoff†</td>
<td>Update Cart</td>
<td>updateCartQuantities</td>
<td>Register</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>newAccountForm</td>
</tr>
</tbody>
</table>

48
4.1 Markov4JMeter Profile for JPetStore

4.1.2.2 Protocol Layer

As defined in Section 3.2.2.1, each application state on the session layer has an associated deterministic state machine on the protocol layer defining the order and protocol details of the requests to be executed when an application state on the session layer is entered.

In the case of the JPetStore each request is one of the 13 HTTP request types provided by the application. For each request type we determined its required HTTP request method, the URI, and parameters to be passed (see Section 2.1) on an invocation.

Figure 4.1(b) shows the state graphs which relate to the application states Sign On and Purchase. In order to sign on, a user first invokes an HTTP request of type signonForm using the method GET. The server returns a form asking for a username and a password. In a subsequent invocation, the user passes the filled in data of the completed form by invoking the HTTP request type signon. The variables userId and password are used as placeholders for the username and password. The state graph of the application state Purchase shows the sequence of HTTP requests to be executed. We omitted the HTTP protocol details for this state.

4.1.3 Behavior Models

In order to yield probabilistic user behavior in the user sessions generated by Markov4JMeter, we developed the behavior model representing users solely browsing through the JPetStore and a second one where a users tends to buy items from the shop. The models are created according to our definition of a behavior model in Sec-
In the following Sections 4.1.3.1 and 4.1.3.2 we will describe the two models. The transition graphs are visualized in Figure 4.2. For both profiles we specified a think time distribution \(f_t = N(300, 200^2) \) which is a parameterized normal distribution with \(\mu = 300 \) and \(\sigma = 200 \), both values given in milliseconds.

4.1.3.1 Browser

This model represents sessions of users mainly browsing among the categories, products, and items of the JPetStore, i.e. the application states View Category, View Product, and View Item. The user starts a session by entering the state Home. With a low probability a user returns to the state Home or enters the state View Cart. The transition graph of this behavior model is shown in Figure 4.2(a).

4.1.3.2 Buyer

This model represents sessions of users which tend to select an item by first selecting the category and the product. With a high probability, this item is added to the shopping cart. In contrast to the above-described browser behavior, this model contains all application states. A user does only sign on directly after having added an item to its cart, i.e. a transition from the state Add to Cart to Sign On is taken. Afterwards, the user either purchases the buy by sequentially entering the states View Cart, Purchase and Sign Off or it quits the session. The transition graph of this behavior model is shown in Figure 4.2(b).

4.1.4 Probabilistic JMeter Test Plan

Based on our application model we developed a probabilistic Test Plan for JMeter extended by Markov4JMeter (see Chapter 3). In this section we will describe the contained
4.1 Markov4JMeter Profile for JPetStore

(a) Probabilistic Test Plan for JPetStore. The subtree of the state Sign On is expanded.

(b) Configuration of state View Cart.

Figure 4.3: Probabilistic Test Plan and configuration of state View Cart.

elements and outline their configuration. The tree of the Test Plan and the configuration of the state View Cart are shown in Figure 4.3.

4.1.4.1 Basic Test Elements

The Test Plan contains the following core JMeter Test Elements:

- **Thread Group:**
 The thread group is configured to stop the entire test as soon as a sampler error occurs. The provided scheduler functionality is used to specify the test duration.

- **HTTP Cookie Manager:**
 Cookies are selected to be cleared after each iteration. This is necessary since in each iteration a new user shall be simulated and all former state information must be reset.

- **HTTP Request Defaults:**
 This configuration element globally sets the server name and the port number since they have the same value for all HTTP requests.

- **Constants:**
 All identifiers for categories, products, and items used in the JPetStore are stored in three dedicated constant variables as comma-separated lists.

- **Variables:**
 The two variables signedOn and itemInCart are defined, according to the variables of the same name used in the session layer of the application model (see...
Section 4.1.2. These variables are private to each thread and initialized with \texttt{false} when an iteration starts.

- **Counter:**
 A counter named \texttt{userId} is shared by all threads and incremented in each iteration. After reaching a specified maximum value, it is reset to 0.

- **Listeners:**
 Two listeners, namely \textit{Error Writer}, \textit{Assertion Results} log erroneous HTTP status codes and failing assertions in order to determine the reason for aborted tests.

4.1.4.2 Markov4JMeter Session Model

A Markov Session Controller forms the root of a probabilistic session model. A Markov State is added for each application state on the session layer of our application model as described in Section 4.1.2.1. The transitions among them are configured accordingly. The configuration dialog of the Markov State relating to the application state \textit{View Cart} is shown in Figure 4.3(b).

Underneath each Markov State, HTTP Request Sampler Test Elements are placed and configured according to the protocol layer of the application model. Identifiers for categories, products, and items are randomly chosen using a dedicated Markov4JMeter function before the respective request is issued.

We exported two behavior file templates using the configuration dialog of the Markov Session Controller and filled in the probabilities as defined in the behavior models in Section 4.1.3. These files were added to the behavior mix in the configuration dialog.

The session arrival formula is configured to be read from a file. A Random Timer Test Element realizes the think time \(f_{tt} = N(300, 200^2)\) as defined in Section 4.1.3.

4.1.4.3 Variation of Request Parameters

The counter and the constants mentioned in 4.1.4.1 were added to the Test Plan to vary some HTTP parameter values passed with requests:

- The counter value, which is automatically incremented when the simulation of a new user starts, is used within the login credentials. Of course, the respective user accounts need to be created before a test starts.

- The constants and a Markov4JMeter-provided function which randomly selects an item from a comma-separated list of values, are used to vary the identifiers of categories, products and items to be requested (see Section 4.1.4.1).

4.1.4.4 Response Assertions

Assertions are inserted to detect application errors which are not reflected in HTTP error codes. We check for specific text strings in the server response of some requests in order to make sure that the requests have been processed correctly by the JPetStore.

For example after having signed on, the returned Web page must contain the string “Welcome” as well as a hyperlink labeled “Sign Out”. “Thank you, your order has been submitted” must appear after having confirmed the order.
4.2 Configuration

A description of the node configurations, the monitoring infrastructure used, and the adjustment of the software settings is described in the Sections 4.2.1–4.2.3. The definition of the experiment runs to be executed follows in Section 4.2.4. Detailed installation instructions are given in Appendix B.1.

4.2.1 Node Configuration

For our experiment we used the following three nodes which are connected through a 100 Mbit switched local area network.

- The application server executes the JPetStore 5 Web application in a version 5.5.23 Apache Tomcat Servlet Container. It runs GNU/Linux 2.6.17.13 and is equipped with an Intel Pentium 4 3.00 GHz hyperthreaded CPU (two virtual cores) and 1 GiB physical memory.
- The client acts as the workload generating node executing JMeter version 2.2 extended by MarkovJMeter. It is of identical equipment and configuration as the application server node.
- The database server runs the MySQL relational database management system (DBMS) and provides the databases used by JPetStore and by Tpmmon. It runs GNU/Linux 2.6.15 and is equipped with 4 Intel Xeon 3.00 GHz CPUs and 2 GiB physical memory.

4.2.2 Monitoring Infrastructure

Three types of monitoring are used to obtain performance and resource utilization data during the experiment runs. They are outlined in the following sections.

4.2.2.1 Tpmmon

Tpmmon (see Section 2.8) is the main monitoring tool used in order to derive the application-level statistics regarding performance and control-flow of instrumented JPetStore’s operations as well as those regarding traces and user sessions. We developed a script to import the data written to the filesystem into the database. Hence, the Tpmmon-monitored data can be considered present in the database, regardless of where it has originally been written to.

4.2.2.2 Tomcat Access Logging

In addition to Tpmmon, we configured the file logging functionality of the Apache Tomcat server to monitor the below-listed parameters relating to incoming HTTP requests. Figure 4.2.2.2 shows a sample entry.

- Remote IP address,
- Date and time,
Figure 4.4: Access log entry of HTTP requests for JPetStore’s request type viewProduct.

![Graphs of monitored resource utilization data from server and client node.](image)

- CPU utilization.
- Free physical memory.

Figure 4.5: Graphs of monitored resource utilization data from server and client node.

The CPU utilization is in the range 0...200 since both server and client nodes are equipped with a single hyperthreaded CPU with two virtual cores (see Section 4.2.1).

- HTTP request method, URI, query String and status code,
- Size of response data in bytes,
- Session id, and
- Server-side response time in milliseconds.

4.2.2.3 Resource Monitoring

We implemented a simple tool which periodically collects resource utilization data of the hosts running both the client and the server. The data includes memory and CPU utilization. It is used to uncover unwished client-side performance bottlenecks and arguments for later discussion concerning the performance of the server. Figure 4.5 shows visualized resource utilization data of client and server monitored during an experiment.

4.2.3 Adjustment of Default Software Settings

Since the tests need to be run with a large number of simulated users, the configuration of the Tomcat server, JMeter and the JPetStore are adjusted. These adjustments are outlined in the following paragraphs. In Section B.1 the details on how to configure these settings are given.

Apache Tomcat

The following settings were modified:
4.2 Configuration

- **Heap Size:** The heap space available for the executing Java virtual machine is set to 512 MiB (default 64 MiB), regarding around 900 MiB available physical memory after the node has restarted and the operating system prompts the login screen.

- **Thread Pool Size:** The maximum number of available request processing threads is set to 300 (default 150) and the maximum number of simultaneously accepted requests to 400 (default 100).

- **Access Logging:** The default pattern of entries in the log file is extended by including a session identifier and the server-side response time as described in Section 4.2.2.3.

Apache JMeter

JMeter has been extended by Markov4JMeter. The heap space size is set to 768 MiB (default 256 MiB), 256 MiB (default 128 MiB) of which are reserved for the eden space, i.e. the space for newly created objects. JMeter needs a large eden space since many new objects are created during a test.

JPetStore

In addition to the usual configuration to setup the MySQL database and the connection properties within the JPetStore sources, it was necessary to correct issues with the configuration of the persistence layer (see Section 2.7): table names are inconsistently spelled in terms of capitalization in the original SQL initialization scripts and the iBATIS object-relational mapping files. For example, the database table holding the status of each order is spelled "orderstatus" within the respective SQL statements within the SQL scripts, whereas spelled “ORDERSTATUS” in the mapping files.

Since session identifiers are not reused by different threads, we decreased the time until a sessions times out within the JPetStore to 3 minutes (default 30 minutes) for saving resources needed to maintain session information.

The JPetStore source code is instrumented by annotating the operations described in Section 4.3 to allow application-level monitoring using Tpmon.

4.2.4 Definition of Experiment Runs

25 experiments runs are executed under increasing workload intensity conditions in order to obtain response time data of the instrumented JPetStore operations. These 25 experiments are executed once with Tpmon configured to write its monitored data to the filesystem and once writing it to the database.

As mentioned in Section 2.3, the workload intensity is considered to be implied by the number of active sessions and the client-side think times. It will solely be controlled by varying the number of active sessions simulated by the workload driver. The client-side think time distribution are set to \(f_{tt} = N(300, 200^2) \) (see Section 4.1.3). Depending on the respective number of active sessions simulated in an experiment run, we set two additional parameters: the length of the ramp-up period and the experiment duration. The values of these three parameters are described below. The varying values for all experiment configurations are listed in Table 4.2.
Table 4.2: Overview of varying parameters for all experiments.

<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Sessions</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>55</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>Ramp-up (seconds)</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Duration (minutes)</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

- **Active Sessions**: Starting with one simulated active session in the first experiment run, the number is incremented by 5 in each subsequent experiment until 45 active sessions are simulated. Afterwards, this number is incremented by 10 to 195 active sessions in the last run.

- **Ramp-Up Period**: During the ramp-up period, the number of threads is linearly increased to the maximum number in order to “warm-up” both, the workload driver and the application. We increased the duration of the ramp-up time for a higher number of configured active sessions.

- **Experiment Duration**: In order to obtain response time statistics based on a sufficient confidence interval, we selected a rather long duration for runs with a small number of active sessions. We aligned the duration with an increasing number of active sessions and an increasing ramp-up time since the ramp-up time is included in the duration of the run.

4.3 Instrumentation

In order to decide which of the Tpmon-provided instrumentation modes to select throughout our experiments, we investigated the impact of Tpmon to the end-to-end response times of all 13 considered request types of the JPetStore. As described in Section 4.3.1, full instrumentation does introduce a considerable overhead to the response times which can be reduced by using annotating specific operations. The methodology of identifying operations to be annotated is outlined in Section 4.3.2.

4.3.1 Assessment of Monitoring Overhead

We compared the end-to-end response times of all 13 request types using the below-listed three monitoring configurations. With each configuration 50 iterations of a Test Plan covering each request type were executed. Tpmon was configured to write the data to the database.

1. **Full Instrumentation**: Tpmon operates in full instrumentation mode, i.e. all JPetStore operations and the application entry points `struts.action.ActionServlet.doGet(...)` and `struts.action.ActionServlet.doPost(...)` provided by the Struts framework (see Section 2.7) are instrumented.
4.3 Instrumentation

<table>
<thead>
<tr>
<th>Instrumentation</th>
<th>Statistic</th>
<th>index</th>
<th>signoffForm</th>
<th>signon</th>
<th>viewCategory</th>
<th>viewProduct</th>
<th>viewItem</th>
<th>addItemToCart</th>
<th>viewCart</th>
<th>checkout</th>
<th>newOrderForm</th>
<th>newOrderData</th>
<th>newOrderConfirm</th>
<th>signoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>observations/request</td>
<td>5</td>
<td>12</td>
<td>83</td>
<td>40</td>
<td>89</td>
<td>59</td>
<td>119</td>
<td>75</td>
<td>88</td>
<td>78</td>
<td>107</td>
<td>159</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>4.00</td>
<td>7.00</td>
<td>48.00</td>
<td>25.00</td>
<td>50.00</td>
<td>33.00</td>
<td>62.00</td>
<td>35.00</td>
<td>41.00</td>
<td>38.00</td>
<td>51.00</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>9.52</td>
<td>13.48</td>
<td>57.08</td>
<td>31.28</td>
<td>57.24</td>
<td>40.76</td>
<td>72.20</td>
<td>44.70</td>
<td>49.74</td>
<td>44.14</td>
<td>81.04</td>
<td>15.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>7.54</td>
<td>12.74</td>
<td>15.52</td>
<td>5.39</td>
<td>14.11</td>
<td>11.14</td>
<td>16.69</td>
<td>11.57</td>
<td>5.83</td>
<td>5.03</td>
<td>33.03</td>
<td>5.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>40.00</td>
<td>97.00</td>
<td>157.00</td>
<td>47.00</td>
<td>148.00</td>
<td>103.00</td>
<td>173.00</td>
<td>114.00</td>
<td>75.00</td>
<td>65.00</td>
<td>54.00</td>
<td>285.00</td>
<td></td>
</tr>
<tr>
<td>Entry Points</td>
<td>observations/request</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>2.00</td>
<td>2.00</td>
<td>8.00</td>
<td>5.00</td>
<td>8.00</td>
<td>5.00</td>
<td>8.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>3.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>10.32</td>
<td>6.09</td>
<td>11.99</td>
<td>5.26</td>
<td>5.90</td>
<td>7.87</td>
<td>5.61</td>
<td>11.60</td>
<td>3.83</td>
<td>5.18</td>
<td>9.65</td>
<td>4.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>57.00</td>
<td>35.00</td>
<td>92.00</td>
<td>35.00</td>
<td>38.00</td>
<td>53.00</td>
<td>36.00</td>
<td>86.00</td>
<td>19.00</td>
<td>24.00</td>
<td>64.00</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>observations/request</td>
<td>0.00</td>
<td>0.00</td>
<td>6.00</td>
<td>6.00</td>
<td>4.00</td>
<td>6.00</td>
<td>4.00</td>
<td>6.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>1.00</td>
<td>1.00</td>
<td>7.00</td>
<td>5.00</td>
<td>6.00</td>
<td>5.00</td>
<td>7.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>7.50</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>0.36</td>
<td>1.11</td>
<td>7.18</td>
<td>5.06</td>
<td>6.58</td>
<td>5.38</td>
<td>7.58</td>
<td>2.08</td>
<td>1.90</td>
<td>1.74</td>
<td>6.09</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>0.49</td>
<td>0.57</td>
<td>0.83</td>
<td>0.79</td>
<td>0.86</td>
<td>0.95</td>
<td>0.91</td>
<td>0.85</td>
<td>1.52</td>
<td>0.88</td>
<td>3.99</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>2.00</td>
<td>11.00</td>
<td>9.00</td>
<td>9.00</td>
<td>10.00</td>
<td>11.00</td>
<td>5.00</td>
<td>12.00</td>
<td>5.00</td>
<td>15.00</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3: The table shows aggregated server-side end-to-end response time statistics derived from that Tomcat access logs for all 13 request from the experiments described in Section 4.3.1. The response times were measured with a granularity of 1 ms. Those of the request types newOrderData and newOrderConfirm cannot be distinguished since they have the same HTTP URI. The rows labeled with observations/request denote the number of observations for an issued request of the respective type.

2. Instrumentation of Entry Points: Tpmon operates in annotation mode with only the application entry points being annotated.

3. No Instrumentation: Tpmon is disabled completely, i.e. the aspect weaver is not registered at all.

Response time statistics for each configuration and request type are listed in Table 4.3. Additionally, the number of monitored operation calls is included.

The statistics show that a considerable overhead is introduced by Tpmon when solely the application entry points are instrumented. The minimum values indicate a constant overhead of about 1–2 ms. Each activated monitoring point adds an additional overhead, e.g. the median response time of the request type addItemToCart with 119 monitored operation calls increases from 5.9 ms with annotated application entry points to 68 ms using full instrumentation.

4.3.2 Identification of Monitoring Points

By executing four experiments, we identified 17 JPetStore operations and the two application entry points to annotate by iteratively reducing the number of annotations

\footnote{This relates to the version of Tpmon used in our experiments. In the meantime, Tpmon has been optimized due to this reason and those mentioned in Chapter 5.}
Figure 4.6: Sample trace timing diagrams for the request type newOrderConfirm.

Figure (a) shows the diagram derived from the data of the first iteration containing the 10 operations with the highest response times. Figure (b) shows the diagram for the fourth iteration consisting of the annotated operations.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Request Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>struts.action.ActionServlet.doGet(HttpServletRequest, HttpServletResponse)</td>
<td>•</td>
</tr>
<tr>
<td>struts.action.ActionServlet.doPost(HttpServletRequest, HttpServletResponse)</td>
<td>•</td>
</tr>
<tr>
<td>persistence.sqlmapdao.AccountSqlMapDao.getAccount(String, String)</td>
<td>•</td>
</tr>
<tr>
<td>persistence.sqlmapdao.ItemSqlMapDao.getItem(String)</td>
<td>•</td>
</tr>
<tr>
<td>persistence.sqlmapdao.ItemSqlMapDao.getItemListByProduct(String)</td>
<td>*</td>
</tr>
<tr>
<td>presentation.AccountBean.signon()</td>
<td>•</td>
</tr>
<tr>
<td>presentation.CatalogBean.viewCategory()</td>
<td>•</td>
</tr>
<tr>
<td>presentation.CatalogBean.viewProduct()</td>
<td>•</td>
</tr>
<tr>
<td>presentation.OrderBean.newOrder()</td>
<td>•</td>
</tr>
<tr>
<td>service.AccountService.getAccount(String, String)</td>
<td>•</td>
</tr>
<tr>
<td>service.CatalogService.getCategory(String)</td>
<td>•</td>
</tr>
<tr>
<td>service.CatalogService.getRem(String)</td>
<td>•</td>
</tr>
<tr>
<td>service.CatalogService.getProductListByCategory(String)</td>
<td>*</td>
</tr>
<tr>
<td>service.OrderService.getNeestId(String)</td>
<td>•</td>
</tr>
<tr>
<td>service.OrderService.insertOrder(Order)</td>
<td>•</td>
</tr>
</tbody>
</table>

Table 4.4: Identified monitoring points and coverage of request types.
starting with full instrumentation. With each configuration 50 iterations of a Test Plan covering each request type were executed. Tpmon was configured to write the data to the database.

The operations for the respectively next iteration were determined mainly based on their mean response times with respect to an iteration-specific threshold. For example, for the second iteration we only considered those operations which had a mean response time greater or equal 0.5 ms.

Moreover, from the monitored data we generated timing diagrams for each trace in order to visualize the relation between calling and called operation as well as to see the operation calls in their respective context. The x-axis defines the elapsed time during trace execution. The y-axis numbers the operations represented by the dotted horizontal lines. In contrast to a sequence diagram, relations between called and calling operations are displayed only implicitly by their times of operation entry and exit.

Figure 4.6 shows sample trace timing diagrams for the request type newOrderConfirm from the first (full instrumentation) and fourth (final set of annotated operations) iteration. A sample timing diagram for each request type is given in Section B.2.

The monitoring points finally determined after the fourth iteration are listed in table 4.4. The tables does also show within which traces these operations are called. Table B.1 contains this information for the 40 JPetStore operations in addition to the response time statistics for the first, second and fourth iteration.

4.4 Workload Intensity Metric

Workload is defined by workload intensity and service demand characteristics (see Section 2.2). This section deals with the metric we considered to quantify the workload on the server node at a given time. The metric explicitly relates to the workload intensity and considers the service demand characteristics only implicitly.

We denote this metric as the platform workload intensity (PWI). Given a point in time \(t \) and a window size \(\omega \), the PWI expresses the average number of active traces (see Section 2.1) during the time interval \([t - \omega, t] \).

Section 4.4.1 contains the formal definition how the metric is derived from tuples of monitored start and stop times of traces. An implementation is outlined in Section 4.4.2.

4.4.1 Formal Definition

The following enumeration defines how the PWI is determined from log data containing start and stop times of traces.

1. A trace history \(H \subseteq \mathbb{N}^2 \) contains tuples of trace start and stop times. \(H \) can contain duplicates.

2. An event history \(E \subseteq \mathbb{N} \times \{-1, 1\} \) is derived from the trace history. For each \((t_{in}, t_{out}) \in H \), \(E \) contains the tuples \((t_{in}, 1) \), \((t_{out}, -1) \). \(E \) can contain duplicates.

\[
E := \{(t_{in}, 1), (t_{out}, -1) \in \mathbb{N} \times \{-1, 1\} \mid (t_{in}, t_{out}) \in H\} \tag{4.1}
\]
Chapter 4 Experiment Design

3. The event history is used to define an active traces history \(A \subseteq \mathbb{N}^2 \). Each element \((t, k) \in A\) states that \(k \) traces were active at time \(t \).

\[
A := \{(t, k) \in \mathbb{N}^2 \mid \exists a \in \{-1, 1\} : (t, a) \in E \land k = \sum_{\forall (t', b) \in E : t' \leq t} b\} \quad (4.2)
\]

4. In order to state the number of active traces for times between events contained in an active traces history \(A \), we define the step function \(activeTraces_A : \mathbb{N} \mapsto \mathbb{N} \) with

\[
activeTraces_A(t) = \begin{cases} k, & \exists t^* \in \mathbb{N} : t^* = \max\{t' \in \mathbb{N} \mid t' \leq t \land (t', k) \in A\} \\ 0, & \text{else.} \end{cases}
\]

5. Given an active traces history \(A \), the function \(pwi_{A;\omega} : \mathbb{N} \mapsto \mathbb{R}^+ \) maps a time to the platform workload intensity at that time using a window size \(\omega \).

\[
pwi_{A;\omega}(t) = \frac{1}{\omega} \sum_{i=0}^{\omega-1} activeTraces_A(t - i) \quad (4.4)
\]

4.4.2 Implementation

We implemented the methodology defined in the previous Section 4.4.1 using the GNU R Environment ([R Development Core Team](https://www.r-project.org) 2005).

1. The trace history can be obtained from the Tpmon-monitored data by querying the entries for the application entry points `struts.action.ActionServlet.doGet(...)` and `struts.action.ActionServlet.doPost(...)`.

2. The trace history is converted into a two-column matrix representing the event history. It is sorted by the first element of the tuples representing the time of the event. The second row contains the summands which are either \(-1\) or \(1\).

Figure 4.7: Graphs visualizing active traces history and platform workload intensity.
3. A two-column matrix representing the active traces history is computed by sequentially traversing the trace history matrix and accumulating the entries in the second row. Due to performance issues concerning matrix manipulations in R, we implemented this functionality in C and created a dynamic library which can be used from within R.

4. The functionality provided by R to define step functions from two-dimensional matrices is used to define the step function \(\text{activeTraces} \).

5. We implemented the function \(\text{pwi}_{A,\omega}(t) \) which computes the platform workload intensity for time intervals using a defined step size. For example for a time interval \([0, 20]\) and a step size 5, \(\text{pwi}_{A,\omega}(t) \) is computed for \(t = 0, 4, 9, 14, 19 \).

Let \(n \) be the number of elements contained in the trace history. Each of the above steps unless sorting the event history are performed in linear time, i.e. in \(O(n) \). For sorting the event history, the R-provided variant of Shellsort with complexity \(O(n^{4/3}) \) by Sedgewick \(1986\) is used.

Figure 4.7 shows the graphs of the trace history (Figure 4.7(a)) and the platform workload intensity (Figure 4.7(b)) for an experiment interval of 1 minute using \(\omega = 61 \text{ ms} \) and a step size value of 30 ms. The green-colored horizontal line represents the mean of all platform workload intensities.

4.5 Execution Methodology

In order to achieve repeatable results, we restart the server node before each experiment run. The Test Plans are executed with JMeter in non-GUI mode in order to save resources.

An experiment run is automatically executed by shell script which started on the client node. A considerable parameterization provides repeatability, reproducibility, and eases configuration changes. The simplified version of the script listed in Figure 4.8 illustrates its basic structure. The script divides a run into the five below-described phases:

1. **Initial Preparation Phase**: The script determines the current monitoring configuration on the server node and removes log files of former experiment runs.

2. **Warm-up Execution Phase**: The script disables Tpmon and invokes JMeter in non-GUI mode with a 2 minute warm-up Test Plan executing 30 concurrent sessions.

3. **Main Preparation Phase**: The script reinitializes those JPetStore tables which are marked as r/w in Table 4.5. A configured number of JPetStore users is created which is later used by the main Test Plan (see Section 4.1.4). The resource utilization monitoring on client and server node is started. Tpmon is enabled and its experiment identifier is incremented.

4. **Main Execution Phase**: The script invokes JMeter in non-GUI mode with the probabilistic Test Plan which has been described in Section 4.1.4.
Chapter 4 Experiment Design

#!/bin/bash

variable initializations and function declarations
...

(1.) Initial Preparation Phase:
if [! -z "$@"]; then rm log/*; fi
if ! (callTpmCtrlServlet "action=disable" \
 & callTpmCtrlServlet "action=incExperimentId"); then
 echo "ERROR: ..."; exit 1
fi

(2.) Warm-up Execution Phase:
if ! jmeter-devel.sh -n -tt诊治testplan -errorlog=$ERROR.LOG then
echo "ERROR: ..."; exit 1;
fi
if test -s "$ERROR.LOG"; then echo "ERROR: ..."; exit 1; fi

(3.) Main Preparation Phase:
if ! resetDB; then echo "ERROR: ..."; exit 1; fi
if ! createUser; then echo "ERROR: ..."; exit 1; fi
if ! callTpmCtrlServlet "action=enable"); then echo "ERROR: ..."; exit 1; fi
if ! startSysmonitoring; then echo "WARNING: ..."; exit 1; fi

(4.) Main Execution Phase:
if ! jmeter-devel.sh -n -tt诊治testplan -errorlog=$ERROR.LOG \
 -assertionerrors=$ASSERTIONS_ERRORLOG -jmaxUserId=$(($USER_NUM-1)); then
 echo "ERROR: ..."; exit 1;
fi
if grep "ERROR" "$JMETER.LOG"; then echo "ERROR: ..."; exit 1; fi
if test -s "$ERROR.LOG"; then echo "ERROR: ..."; exit 1; fi
if test -s "$ASSERTIONS_ERRORLOG"; then echo "ERROR: ..."; exit 1; fi

(5.) Clean-up Phase:
if ! stopSysmonitoring; then echo "WARNING: ..."; fi
if ! (callTpmCtrlServlet "action=disable" &\
 callTpmCtrlServlet "action=incExperimentId"); then
 echo "ERROR: ..."; exit 1;
fi
if ! mvAccesslog; then echo "WARNING: ..."; fi

Figure 4.8: Sketch of experiment execution script.

<table>
<thead>
<tr>
<th>Table (r/w)</th>
<th>Description</th>
<th>Table (r/w)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>account (r/w)</td>
<td>User account data, e.g. login name, real name and address.</td>
<td>orders (r/w)</td>
<td>Order data, e.g. user, data, shipping and billing address.</td>
</tr>
<tr>
<td>bannerData (r)</td>
<td>Name and location of product category banners.</td>
<td>orderStatus (r/w)</td>
<td>Status of each order.</td>
</tr>
<tr>
<td>category (r)</td>
<td>Product category names and descriptions</td>
<td>product (r)</td>
<td>Product data, e.g. name and description.</td>
</tr>
<tr>
<td>inventory (r/w)</td>
<td>Quantity of each item in stock.</td>
<td>profile (r)</td>
<td>User profile data, e.g. preferred language and favorite category.</td>
</tr>
<tr>
<td>item (r)</td>
<td>Item data, e.g. price, supplier and description.</td>
<td>sequence (r/w)</td>
<td>Next order number to be used.</td>
</tr>
<tr>
<td>lineItem (r/w)</td>
<td>Item, quantity and price for each order position.</td>
<td>supplier (r)</td>
<td>Supplier data.</td>
</tr>
<tr>
<td>signon (r/w)</td>
<td>Login credentials, i.e. pairs of username and password.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.5: Table description of JPetStore database schema. Tables being written during normal operation are marked with mode r/w. Those which are solely read are marked with mode r.
5. **Clean-up Phase**: The scripts disables Tpmon, increments the experiment identifier and stops the resource utilization monitoring. The Tomcat access log file is copied from the server.

Each time after a Test Plan has executed, the script checks the log files whether errors indicated by HTTP status codes, failed assertions, or entries in the JMeter output occurred. The configuration of each experiment and the resulting log and monitoring data is archived.
Chapter 5

Analysis

This chapter deals with the analysis of the monitored data of 50 experiments with varying workload. The experiment design has been described in the previous Chapter 4. While examining the response time data before the actual analysis, we uncovered a problem existent in Tpmon when writing large amounts of data to the database. Due to this problem we only considered those experiments in which Tpmon stored the data in the filesystem.

The analysis methodology is described in Section 5.1. Section 5.2 contains the detailed description of results. Summary and discussion follow in Section 5.3.

5.1 Methodology

We used the GNU R Environment (R Development Core Team, 2005) for the analysis described in this Section. R provides means to directly access the monitoring data by executing SQL queries.

5.1.1 Transformations of Raw Data

As described in Section 2.8, each finished operation execution yields an entry in the database consisting of the operation name, the start and stop time as well as the trace and session identifiers. Start and stop times are given in milliseconds elapsed since the start of the respective experiment run.

Response Time and Throughput

The response time of an execution is computed by subtracting the start time from the stop time. By considering the entries belonging to the application entry points, the achieved throughput (see Section 2.2) of the application in terms of handled requests per minute is computed.

Platform Workload Intensity and Active Sessions

The platform workload intensity (PWI) is computed using the implementation described in Section 4.4.2. A similar implementation is used to compute the number of active sessions over time for each experiment run. Therefore, the start time of the first and the stop time of the last call to an application entry point are considered.
5.1.2 Visualization

This section contains a brief description of the plot types used to visualize and graphically analyze the resulting data and statistics of all experiment runs.

Scatter and Line Plots

Scatter and line plots are used to visualize series of bivariate data pairs in a two-dimensional coordinate system. Each pair is presented by a point. In line plots, adjacent points of the same series are connected through a line. In scatter plots, we added a local regression line.

Figure 5.1(a) shows a sample line plot visualizing the relation between the number of simulated users and the response time quartiles of an operation. The scatter plot in Figure 5.1(b) visualizes the occurring response times between the fourth and the eighth minute of an experiment.

Box-and-Whisker Plots

A box-and-whisker plot has been described in Section 2.4. Each of our box-and-whisker plots includes a box for each experiment minute in order to uncover changes in the response time distribution over time. Additionally, it contains a line representing the sample mean.
Figure 5.1(c) shows a sample box-and-whisker plot for the fifth, sixth, seventh, and eighth minute of an experiment.

Density Plots

In a density plot, a probability density function is visualized. Figure 5.1(d) shows a density plot of a kernel-estimated density using a normal kernel (see Section 2.4). A one-dimensional representation of the sample data called a rug as well as other statistics are included.

Quantile-Quantile Plots

A quantile-quantile plot (QQ plot) is a graphical technique to test whether two data samples come from equally distributed populations. Each point in the plot represents a pair of quantile (see Section 2.4) of both samples. The closer the points follow the 45-degree reference line, the likelier do both samples come from equally distributed populations.

In the QQ plot in Figure 5.1(e) the underlying distribution of the sample response times follows the given 3-parameter log-normal distribution quite well.

5.1.3 Examining and Extracting Sample Data

Before performing the analysis of the response times, we examined and extracted the sample data as outlined in the following Sections 5.1.3.1–5.1.3.3.

5.1.3.1 Sample Data Examination

We investigated the results for discrepancies between the configuration and the derived data. For example, we controlled the ramp-up time and the number of active sessions throughout the experiment run using a plot visualizing the number of active sessions over time. Moreover, we investigated the scatter plots and box-and-whisker plots for abnormal variability in the data or suspicious events.

We recognized gaps in the scatter plots related to those experiment runs in which Tpmon stored the data within the database. The gaps are obvious by comparing Figures 5.2(a) and 5.2(b) which show the scatter plots of the operation `service.CatalogService.getCategory(...)` in Experiment 23 executed both in database and filesystem mode.

Moreover, in these experiments the sample data has a significantly higher variance than when storing the data to the local filesystem. Figures 5.2(c) and 5.2(d) show box-and-whisker plots in two different scalings emphasizing the higher variance compared to the summarized data in Figure 5.2(e) (operation `presentation.CatalogBean.viewCategory()` in an experiment with 20 concurrent users).

5.1.3.2 Outlier Removal

In first examinations of the results, we determined that the response time distributions have a rather right-skewed shape. Thus, only normal and extreme outliers (see Sec-
5.1.3.3 Time Interval Extraction

In each case a trailing period of non-representative response times had to be removed. They were due to the configured ramp-up time and the warm-up periods which occurred within the application although a two-minute warm-up has been executed before each experiment run (see Section 4.5). We extracted time intervals considered representative and of sufficient duration.

Figure 5.3 shows the scatter plot and the box-and-whisker plot of an operation from Experiment 2 with one active session. Finally, the response times of the first ten minutes of Experiment 2 were removed.
5.1 Methodology

5.1.4 Considered Statistics

For each experiment run and operation the following statistics were computed (see Section 2.4):

- Minimum, maximum,
- Mean, variance, and standard deviation,
- Mode,
- 1. quartile, median, 3. quartile,
- Skewness, and
- Outlier ratio.

For the statistics minimum, maximum, mean, mode, and the quartiles, we considered the stretch factor (see Section 2.2) relative to the respective value in Experiment 2 in addition to the values that actually occurred. The mode was approximated by determining the response time value related to the maximum value of the kernel-estimated density.

5.1.5 Parametric Density Estimation

Based on the monitored response time sample X for each operation in each experiment run, we estimated the parameters for the normal as well as the 2- and 3-parameter log-normal distribution.

For the 2-parameter log-normal distribution $\Lambda(\mu, \sigma^2)$ and the normal distribution $N(\mu, \sigma^2)$ we used the mean and the variance of $\log(X)$ and X as their estimators.

The parameters for the 3-parameter log-normal distribution $\Lambda(\tau, \mu, \sigma^2)$ were estimated by using the method of maximum-likelihood with starting points t, m, s^2 and values defined in Equation 5.1. The variables m_0 and s_0^2 denote the mean and the variance of $\log(X - x_0)$, x_o being the smallest response time in the sample and v_0 being the
Chapter 5 Analysis

Figure 5.4: Number of users vs. platform workload intensity.

(a) 0–75 users. (b) 0–125 users. (c) 0–195 users.

5.2 Data Description

5.2.1 Platform Workload Intensity

With 5 users, the PWI has the value 0.03. It increases linearly with the number of concurrent users until it reaches 0.84 with 45 users (see Figure 5.4(a)). The PWI increases moderately between 55 and 85 users from 1.08 to 2.98 (see Figure 5.4(b)). For more than 85 users, the PWI increases with an extremely higher gradient. The PWI reaches 30.03 with 145 users and 60.90 with 195 users (see Figure 5.4(c)).

5.2.2 Throughput

The throughput increases linearly until a number of 75 concurrent users is reached (see Figure 5.5(a)). Between 85 and 155 users, it increases with a higher slope and a considerable oscillation. The throughput raises significantly up to a maximum of 70,000 requests

\[
N(0,1) \text{ quantile of order } \frac{ma}{n} \text{. This method is based on Cohen's least sample value method (Aitchison and Brown, 1957).}
\]

\[
t = x_0 - e^{m_0 + v \cdot s_0^2} ; \quad m = \frac{1}{n} \sum \log(x - t) ; \quad s^2 = \frac{1}{n} \sum \log(x - t)
\]

(5.1)
We identified the following two behavioral characteristics regarding the impact of workload intensity and the statistics listed in Section 5.1.4.

5.2.3 Descriptive Statistics

In the following Sections 5.2.3.1-5.2.3.10 we describe the observed relation between workload intensity and the statistics listed in Section 5.1.4.

5.2.3.1 Minimum

We identified the following two behavioral characteristics regarding the impact of increasing workload intensity on the minimum response times of all operations.
1. The operations `presentation.OrderBean.newOrder(...)` and `presentation.CartBean.addItemToCart(...)` have the lowest minimum around 9 µs and 15 µs respectively, considering all experiment runs.

Regarding the scale of microseconds, the minimum of these two operations decreases slightly with an increasing workload intensity. For `presentation.OrderBean.<-newOrder(...)`, it decreases from 11 µs in Experiment 1 to 8 µs in Experiment 25 and from 19 µs to 7 µs for `presentation.CartBean.addItemToCart(...)`. Figure 5.6(a) shows the minimum curve for the operation `presentation.CartBean.addItemToCart(...)`. In this case, the stretch factor 0.4 indicates the decreased minimum compared to the value in Experiment 1 and relates to an absolute deviation of 12 µs.

2. The minimum values of the remaining operations enclose averages between 1.5 ms (`service.CatalogService.getCategory(...)`) and 9.9 ms (`service.OrderService.insertOrder(...)`).

Up to a PWI of 7.63 (105 users) the stretch factors remain largely constant below 1.0 with the lowest value of 0.92 for the operation `service.CatalogService.<-getItemListByProduct(...). The minimum increases moderately with a higher workload intensity. The operations `presentation.AccountBean.signon(...), presentation.CartBean.<-addItemToCart(...), service.OrderService.getNextId(...), and service.<-OrderService.insertOrder(...)` reach stretch factors of 2.10, 2.71, 3.09, and 6.26 in the last experiment run (PWI 60.9). The remaining operations average a value of 1.2.

Figures 5.6(b) and 5.6(c) show two minimum curves for the operation `service.<-OrderService.getNextId(...), scaled to the range of 5–125 users (PWI 0.03–18.85) and 5–195 users (PWI 0.03–60.90).

5.2.3.2 Maximum

For a PWI up to 0.84 (45 users), the maximum stretch factors of all operations increase linearly to values between 1.53 (`persistence.sqlmapdao.OrderSqlMapDao.<-insertOrder(...)`) and 2.72 (`service.CatalogService.getCategory(...)`). Up to a PWI of 2.22 (75 users) the maximum stretch factors increase to values between 2.19 (`persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)`) and 18.46 (`service.<-OrderService.getNextId(...)`).

Figure 5.7(a) shows the maximum curve for the operation `service.CatalogService.<-getCategory(...)` with PWIs up to 2.22. This operation is the only one for which the slope doesn’t increase considerably for PWIs between 1.08 and 2.22.

For PWIs between 2.98 (85 users) and 60.9 (195 users), the maximum increases considerably for all operations up to peak values. The value for `persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)` increases rather moderately to 3.99. The operations `service.OrderService.insertOrder(...)` and `service.<-OrderService.getNextId(...)` show the highest stretch factors with 922.17 and...
3082.15. The stretch factors of the remaining operations raise to values between 128.07 \(\text{persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)}\) and 322.52 \(\text{presentation.OrderBean.newOrder(...)}\).

Unless for the operations \text{service.OrderService.insertOrder(...)}, \text{persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)}, and \text{service.OrderService getNextId(...)}, the maximum response times (intermediately) decrease considerably after having reached a (local) maximum. If present, peaks occur for PWIs around 30. Figure 5.7(b) shows the monotonically increasing curve for \text{service.OrderService.insertOrder(...)}. The curve for \text{service.CatalogService.getCategory(...)} with an intermediately decreasing maximum is shown in Figure 5.7(c).

5.2.3.3 Mean

For a PWI up to 0.84 (45 users), the mean response time stretch factor of all operations increases linearly to values between 1.11 and 1.26. As a representative of all operations, Figure 5.8(a) shows the curve for \text{service.CatalogService.getItem(...)} in this PWI range.

For a PWI up to 2.98 (85 users), the stretch factor increases with a slightly higher slope to values between 1.43 \(\text{persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)}\) and 2.62 \(\text{service.OrderService.getNextId(...)}\).

From a PWI of 4.54 (95 users), it increases to operation-related maximum values 2.06 \(\text{persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)}\), more considerably to values between 10.09 \(\text{persistence.sqlmapdao.ItemSqlMapDao.getItem(...)}\) and 33.59 \(\text{service.CatalogService.getCategory(...)}\); and the highest stretch factors 103.03 \(\text{presentation.OrderBean.newOrder(...)}\), 129.89 \(\text{service.OrderService.insertOrder(...)}\), and 362.94 \(\text{service.OrderService.getNextId(...)}\).

As described for the maximum in Section 5.2.3.2, the values of some operations decrease intermediately after having reached a local maximum. Usually, this occurs for PWIs around 24.50 (135 users) and 30.03 (145 users). Figure 5.8(b) shows the
curve for \texttt{service.CatalogService.getItem(...)}
with its local maximum at PWI 25. Figure 5.8(c) shows the curve for
\texttt{persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)}
which is the only one of this shape.

5.2.3.4 Mode

Up to a PWI of 0.84 (45 users), the mode stretch factor of the operations increases moderately
to values between 1.00 and 1.08. Up to a PWI of 2.22 (75 users) it increases with
a slightly higher slope to 1.41 for the operation \texttt{presentation.OrderBean.newOrder(...)}
and to values between 1.03 and 1.72 for the remaining. Figure 5.8(a) shows the curve for
\texttt{service.CatalogService.getItem(...)}
in the PWI range 0.22–2.22.

Up to PWI of 24.50 (135 users), the stretch factor of the operations \texttt{service.OrderService.nextId(...)}
and \texttt{service.OrderService.insertOrder(...)} increases
to 4.82 and 4.28. The response time mode of \texttt{presentation.OrderBean.newOrder(...)}
varies in a range between -0.01 ms (negative due to the approximation) and 0.03 for
PWIs between 0.22 and 4.54 (95 users) before increasing to 0.30 ms. This yields a stretch
factor exceeding 70. The stretch factors of the remaining operations increase to maximum
values between 1.56 (\texttt{persistence.sqlmapdao.AccountSqlMapDao.getAccount(...)})
and 3.08 (\texttt{presentation.CatalogBean.viewCategory(...)}).

In no experiment is the stretch factor of the persistence layer operations response
time mode values higher than 1.56 and 1.89. The mode of \texttt{presentation.OrderBean.newOrder(...)}
increases to 8.76 ms. Figure 5.8(c) shows the curve for the operation
\texttt{persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)}.

The impact of a further increasing workload intensity on the mode follows a similar
pattern for the remaining operations: it increases with a higher slope for PWIs
around 40 (165–175 users) before raising considerably to maximum values. The stretch
factors raise to values between 13.32 (\texttt{presentation.CatalogBean.viewItem(...)}) and

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.8}
\caption{Platform workload intensity vs. mean, median, and mode response time
stretch factors for the operations \texttt{service.CatalogService.getItem(...)} and
\texttt{persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)}.}
\end{figure}
5.2 Data Description

![Graphs showing response times and stretch factors](image_url)

Figure 5.9: Platform workload intensity vs. 1. quartiles of response times and stretch factors for the operations `presentation.OrderBean.newOrder(...)`, `presentation.AccountBean.signon(...)`, and `service.OrderService.getNextId(...)`.

30.90 (`service.CatalogService.getCategory(...)`). Figures 5.8(b) and 5.10(b) show the curves for `service.CatalogService.getItem(...)` and `presentation.CatalogBean.setViewItem(...)` which considerably increase starting with the PWIs 44.88 and 38.81.

5.2.3.5 1. Quartile

Up to a PWI of 25.5 (135 users), the 1. quartile stretch factors increase rather moderately to values between 1.25 (`presentation.OrderBean.newOrder(...)`) and 3.68 (`service.OrderService.insertOrder(...)`) in a linear way.

Up to the highest considered PWI 60.9 the operation `presentation.OrderBean.newOrder(...)` reaches a maximum stretch factor of 1.25 (see Figure 5.9(a)). The values of persistence layer operations remain between 1.41 and 1.76.

The impact of a further increasing workload intensity on the mode follows a similar pattern for the remaining operations: it increases with a higher slope for PWIs around 35 (165–175 users) before raising considerably to maximum values. The `service.OrderService.insertOrder(...)` and `service.OrderService.getNextId(...)` reach the highest stretch factors of values 34.47 and 66.53. As a representative to both, Figure 5.9(c) shows the curve for `service.OrderService.getNextId(...)`. All other operations reach stretch factors between 11.1 and 23.75. Figure 5.9(b) shows a representative curve: the stretch factor increases moderately up to a PWI around 35 (1.41–4.47) before it raises considerably to the maximum value.

5.2.3.6 Median

The operation `presentation.OrderBean.newOrder(...)` reaches its highest median 7.25 ms for a PWI of 0.27 (15 users).

For all other operations and a PWI up to 18.84 (125 users), the median increases rather moderately compared to the mean. Figures 5.10(a) and 5.10(b) illustrate this. Solely
Figure 5.10: Platform workload intensity vs. mean, median, and mode response times as well as quartile stretch factors for the operation presentation.CatalogBean.viewmodel(...)
5.2 Data Description

![Graphs](image)

(a) PWI 0.03–2.22.
(b) PWI 0.03–18.85.
(c) PWI 0.03–60.90.

Figure 5.11: Platform workload intensity vs. 3. quartiles of response times and quartile stretch factors for the operations `presentation.CartBean.addItemToCart(...)` and `service.OrderService.getNextId(...)`.

5.2.3.7 3. Quartile

Except for a smaller slope for PWIs up to 0.19 (10 threads), the 3. quartile stretch factors increase linearly up to PWI 5.0, reaching values between 1.7 (`service.OrderService.getOrderId(...)`) and 3.0 (`persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)`).

A PWI greater 5.0 heavily impacts the 3. quartile. The operations `service.OrderService.getOrderId(...)`, `service.OrderService.insertOrder(...)`, and `presentation.OrderBean.newOrder(...)` reach maximum values of 449.60, 157.99, and 70.40. The values for the persistence layer operations remain between 2.30 (`persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)`) to 7.28 (`persistence.sqlmapdao.ItemSqlMapDao.getListByProduct(...)`). As observed for the maximum and the mean before, the 3. quartile intermediately decreases for some operations after having reached a local maximum.

Figures 5.11(a) and 5.11(b) show the curves of the operation `presentation.CartBean.addItemToCart(...)` for PWI ranges 0.03–2.22 and 0.03–18.85. Figure 5.11(c) emphasizes the impact of the workload intensity on the quartile stretch factors of the operation `service.OrderService.getOrderId(...)` including a peak in the values observable in all three quartiles. Figure 5.11(c) shows this curves for the operation `presentation.CatalogBean.viewItem(...)` with only the 3. quartile containing a peak.

5.2.3.8 Variance and Standard Deviation

Unless for the operation `persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)`, all curves for the variance and standard deviation have the same shape: they increase considerable to a peak located around a PWI of 30 and considerably decrease afterwards.

As a representative, the curves for the operation `presentation.CatalogBean.viewItem(...)` are shown in Figure 5.12(a). The related curves showing the mean, median and mode stretch factors for this operation is shown in Figure 5.12(b).
Figure 5.12: Platform workload intensity vs. response time variance of operations presentation.CatalogBean.viewItem(...) and persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...) as well as skewness of operation service.CatalogService.getItem(...).

Figure 5.12(b) shows the curves for persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...). Figure 5.8(c) shows the curves for the mean, median and mode stretch factors for this operation.

5.2.3.9 Skewness

With the exception that the operation presentation.CartBean.addItemToCart(...) has the skewness −6.06 for PWI 0.22 increasing to a positive value for PWI 0.84 and service.CatalogService.getItem(...) which has a skewness of −0.11 in Experiment 1, in each case all skewness values are positive. Hence, the distributions are generally right-skewed or become right-skewed, respectively.

All skewness curves have a shape which is similar to the one shown for the operation service.CatalogService.getItem(...) in Figure 5.12(c). The curves have two peaks for PWI values 2.22 and 38.81. Unless the above-mentioned exceptions, the computed skewness values are in a range between 0.11 and 8.55.

5.2.3.10 Outlier Ratio

For all operations the ratio of normal outliers is between 0 % and 8.5 % with averages between 2.3 % (presentation.OrderBean.newOrder(...)) and 4.9 % (service.OrderService getNextId(...)). The ratio of normal outliers shows no correlation with the workload intensity.

At least one experiment exists for each operation showing no extreme outliers. Maximum ratios are between 0.96 % (persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)) and 20.44 % (service.CatalogService.getCategory(...)). The operations persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...) and service.OrderService.insertOrder(...) have the lowest average values of extreme outliers with values 0.1 % and 1.94 %. The remaining operations have an average ratio of extreme
outliers in all experiments between 3.75 % (presentation.OrderBean.newOrder(…)) and 6.11 % (persistence.sqlmapdao.ItemSqlMapDao.getItemListByProduct(…)). We observed that extreme outliers correlate with the considerable local maximums observed for some maximum, mean and 3. quartiles of response times. However, no general correlation with an increasing workload intensity could be determined.

Figure 5.13(a) and 5.13(b) show the correlating ratio of extreme outliers with the local maximum of the 3. quartile for the operation persistence.sqlmapdao.ItemSqlMapDao.getItem(…). Figures 5.7(b) and 5.13(c) show that the ratio of extreme outliers doesn’t generally correlate with an increasing maximum.

5.2.4 Distribution Characteristics

By analyzing the kernel-estimated densities of each operation in each experiment run, we identified four types of density shapes under increasing workload intensity. Generally, the elements of all distributions are right-skewed with long and heavy tails. The length of the tails and the skewness of the distribution increases as the workload intensity increases.

The density of the operation presentation.OrderBean.newOrder(…) is bimodal, i.e. two clusters of considerable size of occurring response times can be identified in all experiment runs. Figures 5.14(a) and 5.14(b) show the scatter plot and the kernel-estimated density of the response times monitored in Experiment 4. One cluster is located near 0 ms and shows no significant variance. The second cluster is right-skewed (see Section 2.4) with a mode around 8 ms.

The operation presentation.CartBean.addItemToCart(…) does also show a bimodal density throughout all experiments. But in contrast to presentation.OrderBean.← newOrder(…), a cluster located close to 0 ms contains response times which only occur sporadically and thus don’t have a considerable density. Figures 5.14(c) and 5.14(d) show the scatter plot and the kernel-estimated density of the response times monitored in Experiment 11.
Figure 5.14: Examples for all identified density shapes.
5.2 Data Description

The operations `persistence.sqlmapdao.ItemSqlMapDao.getItem(...)`, `persistence.sqlmapdao.ItemSqlMapDao.getItemListByProduct(...)`, `persistence.sqlmapdao.OrderSqlMapDao.insertOrder(...)`, `service.CatalogService.getCategory(...)`, `service.CatalogService.getItem(...)`, and `service.OrderService.insertOrder(...)` have multimodal distributions for a low workload intensity. The distributions turn unimodal as the workload increases. Figures 5.14(e) and 5.14(e) show the bimodal data of operation `service.CatalogService.getCategory(...)` in Experiment 2. Figure 5.14(h) shows the related unimodal distribution in Experiment 12.

The remaining operations have unimodal distributions in all experiments. Representatively, Figure 5.14(h) shows the density of operation `service.AccountService.getAccount(...)` in Experiment 7. The distribution for Experiment 11 is shown in Figure 5.14(i).

5.2.5 Distribution Fitting

In addition to the non-parametric kernel estimation, we estimated the values for the parametric normal, 2-parameter log-normal, and the 3-parameter log-normal distributions for all operations in each experiment (see Section 5.1.5). Remarks on the goodness of fit are given in the following Sections 5.2.5.1 and 5.2.5.2.

5.2.5.1 Kernel Density Estimation

As denoted in the previous Section 5.2.4, we observed that the distributions are right-skewed. Silverman (1986) remarks that a normal-kernel is not well-suited to model the steep height (in our case the left-hand side) of skewed distributions. This is obvious in Figure 5.14(b) where the curve considerably extends the range of response times which actually occurred and even estimates the density for values less than 0 ms.

5.2.5.2 Distribution Families

In no case is the normal distribution a good estimator of the distribution: neither does it estimate the steep left side nor the long tail. Figures 5.15(c) and 5.15(d) show the density curve and the QQ plot of the parameterized normal distribution.

The 2-parameter log-normal distribution doesn’t yield good fittings as well, since it doesn’t take the shift in the response time data into account (see Section 2.4). Thus, the distribution contains data starting with 0 ms although the sample data is generally shifted to the right.

In large part, the 3-parameter log-normal distribution fits the left sides of unimodal data samples (see Section 5.2.4) up to quantiles greater than the upper whiskers. In most cases, the tails of the response time samples are shorter than those found in samples of the estimated distribution. Representatively, Figures 5.15(e) and 5.15(f) show the fitting of the 3-parameter log-normal distribution for the operation `service.CatalogService.getCategory(...)` in Experiment 12. The QQ plot emphasizes that the distribution fits the data sample approximately up to 10 ms. Then, the sample of the estimated distribution shows a longer tail. Figure 5.1(e) shows a QQ plot of the
Figure 5.15: Visualization of the goodness of fit analysis for operation service.CatalogService.getItem(...) in Experiment 12. The box-and-whisker plot (a) and the rug included in the density plots (b, c, e) summarize the monitored sample data.
operation persistence.sqlmapdao.AccountSqlMapDao.getAccount(...). In this case, the
3-paramater log-normal distribution almost fits the entire response time sample including
the length of the tail.

5.3 Summary and Discussion of Results

The description of the processed experiment results show that the workload intensity
impacts response time statistics. The maximum is very sensitive and reaches the highest
stretch factors. The mean is more sensitive to varying workload than the median is.
Upper quartiles are more sensitive to the workload intensity than lower quantiles are,
yielding increasing interquartile ranges. The response time minimum is largely unaffected
by the workload intensity. The data is right-shifted, long-tailed, and right-skewed, i.e.
mode < median < mean. No correlation between the workload intensity and the outlier
ratio could be observed.

Figure 5.16 shows a box-and-whisker plot for an experiment of 30 minutes length. A
varying number of 60 to 160 users was emulated and the highest workload intensity oc-
curred in the 12. minute. The minimum remains constant. The mean and all quartiles
increase with increasing workload intensity. The mean is more sensitive than the quar-
tiles. Upper quartiles are more sensitive than the lower quartiles are. The interquartile
range increases.

Most of the monotonically increasing curves relating to a statistic increase in three
steps: The slope is rather moderate before increasing slightly starting with a certain PWI.
The curve raises considerably for an even higher PWI. These steps can be considered
performance knees according to the performance curve by Jain (1991) (Figure 2.5).

A large number of operations showed intermediate local maximums for more sensitive
statistics, e.g. maximum and mean. These maximums occurred for PWIs around 25–35
which we assume is related to the initial size of the thread pool provided by the Tomcat
server. The pool is extended when 25 requests are handled in parallel. The ratio of
extreme outliers did correlate with these maximums.
Four classes of distribution were identified: unimodal distributions, two types of bimodal distributions, and multimodal distribution becoming unimodal distributions as the workload intensity increases.

The operations `presentation.OrderBean.newOrder(...)` and `presentation.CartBean.addItemToCart(...)` constitute both types of bimodal distributions. We analyzed the reason for these shapes and obtained the following results:

- The operation `presentation.OrderBean.newOrder(...)` relates to the order process. Its data samples show two major clusters: one close to 0 ms and one shifted to the right (see Section 5.2.4). Each cluster relates to one request type, i.e. `newOrderData` and `newOrderConfirm` (see Section 4.1.1). The low response times belong to requests of type `newOrderData`. The data of the order form is only submitted in this case without being further processed. By requesting `newOrderConfirm`, the order is stored to persistent storage which. These response times belong to the second cluster. Figures B.1(k) and B.1(l) show the timing diagrams for both request types.

- The operation `presentation.CartBean.addItemToCart(...)` is included in traces of the request type `Add to Cart` issued when an item is to be added to the shopping cart. The response time samples of this operation show one minor cluster with sporadically occurring low response times close to 0 ms and a main cluster which is shifted further to the right. The response times of the minor cluster occur, when items which are already included in the cart, are added again. This involves a different control flow since mainly the number of items needs to be incremented instead of initially adding an item of this type. Figure B.1(g) shows a trace timing diagram for the request type `Add to Cart` relating to the main cluster.

The 3-parameter log-normal distribution fits most unimodal response time samples aside from their tails. These are in the majority of cases shorter than those of the respective theoretical samples.
Chapter 6

Workload-Intensity-sensitive Anomaly Detection

The experiment results presented in the last Chapter 5 showed, that workload intensity has a considerable impact on response time statistics, e.g. the mean. This chapter outlines a novel approach for timing behavior anomaly detection which explicitly considers varying workload. The details are presented elsewhere (Rohr et al., 2007b). The response time mean is used as the underlying statistic but others may be selected based on the results presented in the previous chapter.

Section 6.1 gives a short introduction on basic terms and the underlying approach for anomaly detection in software timing behavior. In Section 6.2 we introduce a basic anomaly detector and demonstrate that it performs badly when workload intensity variations occur. Our approach is presented in Section 6.3.

6.1 Anomaly Detection in Software Timing Behavior

The system model defined in Section 2.1 is used, particularly including the definition of traces and active sessions. Formally, an execution of an operation o is a tuple (o, st, rt), st denoting the start time and rt denoting the response time as defined in Section 2.2. Here, an anomaly is considered a response time exceeding a given mean value by α percent in a period β.

An anomaly detector has to decide for each element of a non-empty set of executions \mathcal{Y} whether or not it is an anomaly. It knows a set of observations \mathcal{X} of sufficient size. This set is called the history and is assumed to contain no anomalies. The anomaly detector decides by comparing a set of executions \mathcal{Y} with a history \mathcal{X}.

The error rate relates anomaly detection errors including false positives (type I errors) and false negatives (type II error) to the total number of decisions and is used to quantify the quality of an anomaly detector.

6.2 Plain Anomaly Detector

The very basic Plain Anomaly Detector (PAD) classifies an execution e as anomalous if its response rt exceeds an operation-specific threshold τ. The threshold τ for an operation is determined by multiplying the mean of the executions for this operation contained in
a given history \mathcal{X} with a tolerance factor δ. The historical variance could be used to determine a feasible value for δ.

Given a history \mathcal{X} and a set of executions \mathcal{Y}, let $e = (o, st, rt) \in \mathcal{Y}$ be an execution of operation o and let \overline{rt}_o denote the sample mean of historical executions of o in \mathcal{X}. The function $P_{\text{AD}} : \mathbb{N} \mapsto \mathbb{B}$ gives the value 1 for the execution e if and only if (iff) e is considered anomalous:

$$P_{\text{AD}}(e) := \begin{cases} 1, & rt > \delta \times \overline{rt}_o \\ 0, & \text{else} \end{cases} \quad (6.1)$$

In the following two sections, P_{AD} is applied to two different scenarios in terms of the workload intensity variation.

Example 1: P_{AD} with Constant Workload Intensity

Figure 6.1 shows a synthetic workload scenario for a single operation and a constant workload intensity. The response times were generated based on the parameterized normal distribution $\mathcal{N}(100, 3^2)$. The inter-start-times, i.e. the distance between execution start times, are exponentially distributed with constant parameters. 2 clusters of 8 anomalies whose response times are increased by 8% were randomly inserted. The data is shown in Figure 6.1(a). Executions that correspond to triangles are classified as anomalies and the circles as normal executions.

The curve of the error rate for P_{AD} applied to this scenario is shown in Figure 6.1(b). It shows the relation between the chosen threshold τ and the resulting error rate. The error rate is 0 for $\tau \in [106.4, 144.9]$. Assuming that $\overline{rt}_o \approx 100$, this implies that δ should be set to a value in [1.06, 1.44].

Example 2: P_{AD} with Varying Workload Intensity

Figure 6.2 show a scenario for a varying workload intensity. This is an extension of the scenario in Figure 6.1 by letting the mean response time increase over time while letting the inter-start-time decrease similarly.
6.3 Workload-Intensity-sensitive Anomaly Detector

Our approach, the Workload-Intensity-sensitive Anomaly Detection (WISAD), explicitly considers varying workload intensity in order to decrease the error rate in scenarios like the one presented in Example 2. WISAD extends PAD (see Equation 6.1) by including two additional functions:

1. The function \(pwi : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}^+ \) gives the average number of active traces during an execution \(e \) and is a slightly modified version of the one defined in Section 4.4. Given an active traces history \(A \) and a step function \(\text{activeTraces}_A : \mathbb{N} \rightarrow \mathbb{N} \) as defined in Section 4.4.1, the function \(pwi \) is defined as follows:

\[
pwi_A(e) := \frac{1}{rt} \sum_{t=st}^{st+rt} \text{activeTraces}_A(t)
\]

2. In order to estimate the expected response time for some workload intensity, we define the function \(\text{wnf}_o : \mathbb{R} \rightarrow \mathbb{R} ; \ w \rightarrow \text{wnf}_o(w) \).

For a given workload intensity \(w \), \(\text{wnf}_o(w) \) is a workload intensity normalization factor for the response time threshold that applies to a workload intensity of 1.

The function \(\text{wnf}_o \) is realized by mathematical polynomial function (of any order) whose parameters are learned from tuples \((rt, pwi(e')) \) which are computed for every execution \(e'(o, st, rt) \in \mathcal{Y} \).

Applying PAD to this scenario yields the error curve in Figure 6.2(b). The minimum error rate is 8 % for values of \(\tau > 176 \). But with these values, none of the anomalies is detected.

Figure 6.2: Anomaly detection scenario with increasing workload intensity.
Chapter 6 Workload-Intensity-sensitive Anomaly Detection

(a) Anomaly detection with threshold 110.
(b) Threshold vs. anomaly detection quality.

Figure 6.3: WISAD scenario: With a dynamic threshold, the response times of the anomalies can be correctly distinguished from the normal response times. The dotted line represents the dynamic threshold for \(\delta = 1.1 \).

Given a history \(\mathcal{X} \) and a set of executions \(\mathcal{Y} \), let \(e = (o, st, rt) \in \mathcal{Y} \) be an execution of operation \(o \) and let \(\overline{rt}_{o,1} \) denote the mean response time of historical executions of operation \(o \) at \(pwi \) value 1. For an execution \(e = (o, st, rt) \), WISAD is defined as follows:

\[
WISAD(e) := \begin{cases}
1, & rt > \overline{rt}_{o,1} \times wnf_o(pwi(e)) \times \delta \\
0, & \text{else}
\end{cases}
\] \hspace{1cm} (6.3)

According to PAD (see Equation 6.1), an execution \(e \) of an operation \(o \) is considered anomalous iff its response time exceeds a threshold. But using WISAD, this threshold depends on the workload intensity since the scale factor normalizes the impact of varying workload intensity to the response times of operation \(o \) at a \(pwi \) of 1.

Example 3: WISAD with Varying Workload Intensity

We applied WISAD to the scenario used in Example 2 (see Figure 6.2(a)). It is assumed that for executions \(e = (o, st, rt) \) the values of \(pwi \) follow the equation \(1 + \frac{st}{17.4} \). From the historical data we approximated \(wnf(x) = \frac{x^6}{7} \) and \(\overline{rt}_{o,1} = 100 \).

Figure 6.3 illustrates the results with the parameterized WISAD function \(A \) as given in Equation 6.4. For threshold values between 106 and 118, i.e., 106 - 118 \% of the mean response time for \(pwi = 1 \), WISAD has an error rate of 0.

\[
A(e) := \begin{cases}
1, & rt > (1 + \frac{st}{17.4}) \times \delta \\
0, & \text{else}
\end{cases}
\] \hspace{1cm} (6.4)
Chapter 7

Conclusion

In Section 7.1 we give a summary of our work. A discussion follows in Section 7.2. Future work is outlined in Section 7.3.

7.1 Summary

The foundations required for our work including performance metrics and scalability, workload characterization and generation for Web-based system, probability and statistics as well as anomaly detection have been presented in the beginning of this thesis. We designed and implemented a workload driver, performed a case study to analyze the relation between workload intensity and response times, and prototypely implemented a workload-intensity-sensitive anomaly detector.

Workload Driver

The development of our approach for modeling and generating realistic workload for enterprise applications has been presented in Chapter 3.

Design

Application-specific information required to generate valid user sessions is defined in an application model which is a hierarchical state machine. In contrast to the similar Extended Finite State Machine presented by Shams et al. (2006), it contains a second layer providing a separation of session-related constraints from technical details. Probabilistic user behavior models are used to define classes of users with Markov chains similar to the Costumer Behavior Model Graphs (CBMGs) by Menascé et al. (1999). Both application model and user behavior model are combined into a single probabilistic session model which the workload driver uses to generate and execute valid user sessions.

Moreover, the workload driver supports the definition of a user behavior mix. The number of emulated users within an experiment can be varied based on mathematical formulae to be specified in order to execute long-term experiments with varying workload.

Implementation

The approach has been implemented by extending the open source workload generator JMeter. We added new Logic Controllers which allow the definition of a probabilistic
session model within a usual JMeter Test Plan. This includes the application model, the definition of a user behavior mix, and the variation of the user count based on mathematical formulae.

This extension named Markov4JMeter has been released under an open source license [van Hoorn, 2007]. It can be used with any protocol supported by JMeter, e.g. HTTP, LDAP, and Web services. We know of companies which are successfully using Markov4JMeter for more than two months.

Case Study

The sample application JPetStore has been exposed to varying workload in a large number of experiments in order to obtain response time data. Based on this, we statistically analyzed the relation between varying workload intensity and response time statistics.

Methodology

We carefully designed and executed a large number of experiments. JMeter extended by Markov4JMeter was used to generate the workload. The response times were monitored using Tpmon. We set up an automatic execution environment in order to obtain reproducible and meaningful results. This can be reused for similar experiments.

In order to define the workload to be executed, we defined the application and user behavior models according to our developed methodology and created a probabilistic Test Plan. A subset of JPetStore’s operations was instrumented since we found out that using full instrumentation has a considerable impact on the occurring response times.

The platform workload intensity metric (PWI) has been developed and implemented to quantify the workload on the server node. This is based on the number of active traces within the application.

Analysis and Results

The response times obtained from the executed experiment runs were statistically analyzed in terms of the relation between workload intensity and response times statistics. We set-up an analysis environment using R to transform and visualize the raw monitored data. This environment is application-generic and can be used for any data derived from Tpmon.

We showed that workload intensity does have a considerable impact on the response times. For example, the mean is much more sensitive to varying workload than the median or the mode are. Response times were generally right-skewed. Four classes of distributions have been identified within the response time samples. The 3-parameter log-normal distribution is well suited to fit the class of unimodal operations. Solely the tails of the measured distributions are generally too short.

Workload-intensity-sensitive Anomaly Detection

Based on the findings in the case study, we developed the Workload-Intensity-sensitive Anomaly Detector WISAD. WISAD considers an executions anomalous if its response
time exceeds a threshold which is dynamically determined based on historical data, the workload intensity, and a tolerance factor.

A prototype of WISAD has been implemented and applied to synthetically generated samples of operation executions with varying workload intensities. Its gain has been illustrated by comparing the performance with that of a basic anomaly detector which doesn’t consider varying workload.

7.2 Discussion

The following sections include a discussion of design alternatives and experiences made throughout our work. Generally, we gained insight into a variety of related topics and applications including applied statistics and density estimation, performance evaluation and anomaly detection for enterprise applications, and aspect-oriented programming.

Workload Driver

When modeling workload using the presented approach, application transitions can be labeled with guards corresponding to pre-conditions. However, these conditions are not regarded in the user behavior models. During workload execution, only those applications are considered for which the guard evaluates to true (see Section 3.2.3.4). As a consequence, the probabilities from the transition matrix of the user behavior model do not in every case relate to those actually used when the workload is executed. Doing so would have required the definition of conditional probabilities considering all possible outcomes of evaluated guard expression. We decided not to include conditional probabilities since this would come with an additional overhead of keeping application and user behavior models consistent and a lot more probabilities to be defined.

The design of the workload driver resulted in an extension named Markov4JMeter. Additionally, the following implementation options were considered before:

1. The Development of a new stand-alone workload driver “from scratch”.
2. A transformation of the workload model into a JMeter Test Plan according to the transformation of GOTO programs into WHILE programs. An outer WHILE Controller contains a list of If Controllers, each representing an application state. A global variable stores the current state of the session model. A pre-processor executed before each iteration would be used to select the next state based on externally defined user behavior models and the current state.

Option 1, the implementation of a new stand-alone workload driver, would have required lots of implementation of protocol-related functionality which on the other hand has been implemented in a number of workload drivers already. The open source workload driver JMeter provided this benefit. Option 2 outlined above, would have either required the generation of Test Plans in the JMX file format or the manual definition of such models in JMeter.

First, we are confident that selecting JMeter as the basis was the right decision since we experienced it as a greatly maintained and active open source project. Further more, it
was the right decision to integrate our approach by implementing Markov4JMeter allowing the convenient definition of probabilistic session models into an ordinary JMeter test plan. After spending a lot of time and efforts to implement Markov4JMeter, we created a stable product forming the basis of our cases study and being helpful to a number of other users.

Case Study

As described in Section 1.2, originally the Java Pet Store was considered the sample application to be used. It turned out, that it could not cope with workload intensities required in the case study. Moreover, the alternatives TPC-W (Transaction Processing Performance Council, 2004) and RUBiS (ObjectWeb Consortium, 2005) seemed out-dated. Finally, we selected the JPetStore which in the meantime is being used in other universitary theses as well.

We spent a long time for setting up and configuring the final experiment environment including JPetStore, Tpmon, and Markov4JMeter as well as for developing the software supporting the execution and the analysis of the experiments. This evolved to a reliable environment for performance evaluations. Additionally, we experienced that when performing timing behavior evaluations like ours, a large number of parameters need to be configured appropriately.

The characteristics of the operation `presentation.CartBean.addItemToCart(...)` (see Section 5.3) indicate the need for probabilistic testing but at least for the exact emulation of user behavior when testing enterprise applications. Most likely, the minor cluster of response times due to special use cases would not have been uncovered otherwise.

Anomaly Detection

As all anomaly detectors, WISAD has its limitations in terms of that there exist scenarios which lead to a higher number of detection errors. For example for scenarios with bimodal distributions, all executions of a cluster with higher response times than the other might be classified as anomalies due to the nature of the mean. In order to use WISAD with these types of distributions, it could be combined with additional techniques such as a control flow analysis for determining the context of an operation call (Rohr et al., 2007a). Moreover, WISAD only detects anomalies which exceed a given threshold but not those whose response time are considerably below normal.

7.3 Future Work

Based on our results, the following topics could be worked on in the future.

- The presented approach for generating probabilistic workload could be further evaluated, e.g. by applying it to an enterprise system in productional use. The probabilities needed for the transition matrices of the user behavior models could be derived from Web log files. This could be based on the approach by Menascé et al. (1999) for CBMGs.
7.3 Future Work

- Suitable monitoring points within the JPetStore were determined based on an iterative process (see Section 4.3). Approaches for an application-generic automatic identification of suitable monitoring points in enterprise applications would be valuable.

- A node with a single physical CPU core was used as the application server. By executing equally configured experiments with a server node equipped with multiple physical CPU cores and performing a similar analysis, the results could be compared with those we derived.

- The platform workload intensity (PWI) has been computed based on historical data using an implementation in R and C. A real-time computation could be implemented. This would require additional efforts in minimizing the influence on server performance.

- We did not optimize the PWI parameters window and step size. An evaluation of these could be future work.
<table>
<thead>
<tr>
<th>Test Element Category</th>
<th>Available elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampler</td>
<td>FTP Request</td>
</tr>
<tr>
<td></td>
<td>HTTPClient</td>
</tr>
<tr>
<td></td>
<td>Access Log Sampler</td>
</tr>
<tr>
<td></td>
<td>JUnit Request</td>
</tr>
<tr>
<td></td>
<td>JMS Point-to-Point</td>
</tr>
<tr>
<td></td>
<td>LDAP Extended Request</td>
</tr>
<tr>
<td></td>
<td>TCP Sampler</td>
</tr>
<tr>
<td></td>
<td>AJP/1.3 Sampler</td>
</tr>
<tr>
<td></td>
<td>SOAP/XML-RPC Request</td>
</tr>
<tr>
<td></td>
<td>BSF Sampler</td>
</tr>
<tr>
<td></td>
<td>Java Request</td>
</tr>
<tr>
<td></td>
<td>JMS Publisher</td>
</tr>
<tr>
<td></td>
<td>LDAP Request</td>
</tr>
<tr>
<td></td>
<td>Test Action</td>
</tr>
<tr>
<td>Logic Controller</td>
<td>forEach Controller</td>
</tr>
<tr>
<td></td>
<td>Interleave Controller</td>
</tr>
<tr>
<td></td>
<td>Module Controller</td>
</tr>
<tr>
<td></td>
<td>Random Order Controller</td>
</tr>
<tr>
<td></td>
<td>Throughput Controller</td>
</tr>
<tr>
<td></td>
<td>Recording Controller</td>
</tr>
<tr>
<td></td>
<td>IT Controller</td>
</tr>
<tr>
<td></td>
<td>Simple Controller</td>
</tr>
<tr>
<td></td>
<td>Once Only Controller</td>
</tr>
<tr>
<td></td>
<td>Runtime Controller</td>
</tr>
<tr>
<td></td>
<td>Transaction Controller</td>
</tr>
<tr>
<td></td>
<td>Include Controller</td>
</tr>
<tr>
<td></td>
<td>Loop Controller</td>
</tr>
<tr>
<td></td>
<td>Random Controller</td>
</tr>
<tr>
<td></td>
<td>Switch Controller</td>
</tr>
<tr>
<td></td>
<td>While Controller</td>
</tr>
<tr>
<td>Listener</td>
<td>Assertion Results</td>
</tr>
<tr>
<td></td>
<td>Graph Full Results</td>
</tr>
<tr>
<td></td>
<td>Simple Data Writer</td>
</tr>
<tr>
<td></td>
<td>Aggregate Report</td>
</tr>
<tr>
<td></td>
<td>View Results Tree</td>
</tr>
<tr>
<td></td>
<td>BeanShell Listener</td>
</tr>
<tr>
<td></td>
<td>Graph Results</td>
</tr>
<tr>
<td></td>
<td>Spline Visualizer</td>
</tr>
<tr>
<td></td>
<td>Summary Report</td>
</tr>
<tr>
<td></td>
<td>Distribution Graph</td>
</tr>
<tr>
<td></td>
<td>Monitor Results</td>
</tr>
<tr>
<td></td>
<td>Aggregate Graph</td>
</tr>
<tr>
<td></td>
<td>View Results in Table</td>
</tr>
<tr>
<td>Assertion</td>
<td>Response Assertion</td>
</tr>
<tr>
<td></td>
<td>HTML Assertion</td>
</tr>
<tr>
<td></td>
<td>XML Assertion</td>
</tr>
<tr>
<td></td>
<td>BeanShell Assertion</td>
</tr>
<tr>
<td></td>
<td>MDSHex Assertion</td>
</tr>
<tr>
<td></td>
<td>XML Schema Assertion</td>
</tr>
<tr>
<td></td>
<td>Duration Assertion</td>
</tr>
<tr>
<td></td>
<td>Size Assertion</td>
</tr>
<tr>
<td></td>
<td>XPath Assertion</td>
</tr>
<tr>
<td></td>
<td>XPath Assertion</td>
</tr>
<tr>
<td>Timer</td>
<td>BeanShell Timer</td>
</tr>
<tr>
<td></td>
<td>Constant Timer</td>
</tr>
<tr>
<td></td>
<td>Constant Throughput Timer</td>
</tr>
<tr>
<td></td>
<td>Gaussian Random Timer</td>
</tr>
<tr>
<td></td>
<td>Synchronizing Timer</td>
</tr>
<tr>
<td></td>
<td>Uniform Random Distribution</td>
</tr>
<tr>
<td>Configuration Element</td>
<td>CSV Data Set Config</td>
</tr>
<tr>
<td></td>
<td>Simple Config Element</td>
</tr>
<tr>
<td></td>
<td>HTTP Authorization Manager</td>
</tr>
<tr>
<td></td>
<td>Java Request Defaults</td>
</tr>
<tr>
<td></td>
<td>LDAP Request Defaults</td>
</tr>
<tr>
<td></td>
<td>User Defined Variables</td>
</tr>
<tr>
<td></td>
<td>FTP Request Defaults</td>
</tr>
<tr>
<td></td>
<td>HTTP Cookie Manager</td>
</tr>
<tr>
<td></td>
<td>JDBC Connection Configuration</td>
</tr>
<tr>
<td></td>
<td>LDAP Extended Request Defaults</td>
</tr>
<tr>
<td></td>
<td>Login Config Element</td>
</tr>
<tr>
<td></td>
<td>HTTP Request Defaults</td>
</tr>
<tr>
<td></td>
<td>HTTP Header Manager</td>
</tr>
<tr>
<td></td>
<td>JNDI Default Configuration</td>
</tr>
<tr>
<td></td>
<td>TCP Sampler Config</td>
</tr>
<tr>
<td>Pre Processor</td>
<td>BeanShell PreProcessor</td>
</tr>
<tr>
<td></td>
<td>HTML Link Parser</td>
</tr>
<tr>
<td></td>
<td>HTML User Parameter Modifier</td>
</tr>
<tr>
<td></td>
<td>Counter</td>
</tr>
<tr>
<td></td>
<td>HTML Parameter Mask</td>
</tr>
<tr>
<td></td>
<td>User Parameters</td>
</tr>
<tr>
<td></td>
<td>HTTP URL Re-writing Modifier</td>
</tr>
<tr>
<td>Post Processor</td>
<td>BeanShell PostProcessor</td>
</tr>
<tr>
<td></td>
<td>Result Status Action Handler</td>
</tr>
<tr>
<td></td>
<td>Regular Expression Extractor</td>
</tr>
<tr>
<td></td>
<td>Save Response to a file</td>
</tr>
<tr>
<td></td>
<td>XPath Extractor</td>
</tr>
<tr>
<td></td>
<td>Generate Summary Results</td>
</tr>
</tbody>
</table>

Table A.1: Available Test Elements in JMeter 2.2.
A.2 Installing Markov4JMeter

Two types of Markov4JMeter archives are available (van Hoorn 2007):

Source Archives: The source archive contains the Markov4JMeter sources. These archive names follow the pattern `markov4jmeter-<version>_src.{zip|tgz}`. This archive is required when Markov4JMeter shall be modified and compiled. It includes further instructions to do so.

Runtime Archives: The runtime archive contains a runnable version of Markov4JMeter, which can be used with JMeter. These archive names follow the pattern `markov4jmeter-<version>.{zip|tgz}`.

In order to install a runnable version of Markov4JMeter, the following steps need to be performed:

1. Download and extract the Markov4JMeter runtime archive in the desired file type (tgz- or zip-format).
2. Copy the `Markov4JMeter.jar`, which resides inside the `dist/` directory, to the directory `lib/ext/` of the JMeter installation.
3. After restarting JMeter, two new entries within the Logic Controllers menu exist: Markov State and Markov Session Controller (see Figure A.1).

![Figure A.1](image)

Figure A.1: After installing Markov4JMeter, the Logic Controller menu shows two new entries: Markov State and Markov Session Controller.
Appendix B

Case Study

B.1 Installation Instructions for Instrumented JPetStore

Section B.1.1 contains the steps to install and configure the servlet container Apache Tomcat. In Section B.1.2 we give instructions to build and install the iBATIS JPetStore. In Section B.1.3 we describe how to monitor the JPetStore with Tpmon.

B.1.1 Install and Configure Apache Tomcat

The Apache Tomcat server is installed by extracting its binary archive. After executing the script `bin/startup.sh` the server is started and presents a welcome page through the URL `http://localhost:8080`. For remote access, firewall settings may need to be modified.

Web applications are installed by copying them into the `webapps/` directory. This does also work while the server is running.

Our changes of some default settings of the server configuration are described in the following paragraphs.

Heap size. By adding the following line to the file `bin/catalina.sh`, we increased the maximum heap space to be usable by the Java virtual machine to 512 MiB.

```
JAVA_OPTS="-Xms64m -Xmx512m $JAVA_OPTS"
```

Thread Pool Size. By modifying the following XML element in the configuration file `conf/server.xml`, we increased the maximum number of available request processing threads (attribute `maxThreads`) to 300 and the maximum number of simultaneously accepted requests (attribute `acceptCount`) to 400.

```
<Connector port="8080" maxHttpHeaderSize="8192"
    maxConnections="300" minSpareThreads="25" maxSpareThreads="75"
    enableLookups="false" redirectPort="8443" acceptCount="400"
    connectionTimeout="20000" disableUploadTimeout="true" />
```
Appendix B Case Study

Access Logging. Access logging can be enabled by activating the following XML element in the configuration file conf/server.xml. We modified the attribute pattern in order to obtain a slightly modified log format with the session identifier and the server-side response time in milliseconds being included in each log entry.

```
<Valve className="org.apache.catalina.valves.AccessLogValve"
     directory="logs" prefix="localhost_access_log." suffix=".txt" pattern="%h %t %m %U "%q"%b %S %D"
     resolveHosts="false"/>
```

B.1.2 Build and Install JPetStore

In the following sections we describe how to build and install the JPetStore application on Unix- and Linux-based systems. A running Apache Tomcat MySQL DBMS server installation is necessary which is not necessarily located on the same machine as the JPetStore application.

B.1.2.1 Source Code Modifications

The JPetStore source code needs to be modified in order to work with a MySQL installation on a server with case-sensitive filesystem semantics. In the original source code table names are inconsistently used in SQL scripts and the object-relational mapping files in terms of capitalization.

The file JPetStore-5.0_mysql_unix.tar.gz included on the DVD attached to this thesis contains our modified JPetStore version. We changed all table names in the mapping files located in the folder src/com/ibatis/jpetstore/persistence/sqlmapdao/sql/ to lower case letters.

B.1.2.2 Struts Session Timeout

The duration after which a user session expires is configured within the file web/WEB-INF/web.xml. We decreased the default value 30 given in minutes to 3 in the session-timeout element as listed below.

```
  <session-config>
    <session-timeout>3</session-timeout>
  </session-config>
```

B.1.2.3 Database Properties

The database connection parameters must be defined in the file src/properties/database.properties. The listing below shows example settings for using a MySQL database named jpetstore running on host jupiter. The MySQL user with the given credentials must have the appropriate rights to access the data within the database.

```
# Database Connectivity Properties
```

98
B.1 Installation Instructions for Instrumented JPetStore

driver=com.mysql.jdbc.Driver
url=jdbc:mysql://jupiter/jpetstore
username=jpetstore
password=ibatis9977

B.1.2.4 Initialize Database

The JPetStore sources include scripts to initialize the database and populate the tables with application data. The following scripts for a MySQL database reside in the directory src/ddl/mysql/. They must be executed in the given order.

jpetstore-mysql-schema.sql: Creates the database schema with all tables.

petstore-mysql-create-user.sql: Creates a new MySQL user and grants the appropriate rights for the newly created database. The credentials are those to be entered in the database.properties file as mentioned in Section B.1.2.3.

jpetstore-mysql-dataload.sql: Inserts application data, e.g. a default user profile, categories, products, and items, into the database.

B.1.2.4.1 Build and Deploy

In order to build the sources, ant must be called from within the directory build/. After a successful run, the file jpetstore.war exists inside the directory build/wars/. This file needs to be copied or linked to the webapps/ directory of the Tomcat server together with the MySQL driver. The JPetStore is now accessible through the URL http://localhost:8080/jpetstore/

B.1.3 Monitor JPetStore with Tpmon

The required steps to monitor the JPetStore with Tpmon are given in the following sections.

B.1.3.1 Initialize Tpmon Database

The file table-for-monitoring.sql contains the SQL query to create a database table to be used by Tpmon. The query must executed in order to obtain the required database schema.

B.1.3.2 Configure Tpmon

The file dbconnector.properties.example must be copied to src/META-INF/dbconnector.properties. It contains the Tpmon configuration parameters.

Depending on the value of the property storeInDatabase, Tpmon writes the monitored data into a database or the local filesystem. When a database is to be used, the properties dbConnectionAddress and dbTableName must be set appropriately. Otherwise, the property filenamePrefix, the directory and filename prefix of the file to be used by Tpmon, can be specified.
Appendix B Case Study

The property `setInitialExperimentIdBasedOnLastId`, stating whether the experiment identifier is to be incremented automatically on each startup, is only evaluated in database mode.

B.1.3.3 Create aop.xml

The file `src/META-INF/aop.xml` in the source tree of Tpmon is used as the AspectJ configuration file. It should be created by copying the example configuration given in `aop.xml.example`.

In order to monitor the JPetStore and the entry points to the application, the following entries must be added.

```xml
<include within="com.ibatis.jpetstore.*"/>
<include within="org.apache.struts.action.ActionServlet"/>
```

To enable full instrumentation the aspect `TpmonMonitorFullInstServlet` must be activated according to the element given in the following listing. The aspect `TpmonMonitorAnnotationServlet` is used for instrumentation by annotations.

```xml
<aspect name="tpmon.aspects.TpmonMonitorFullInstServlet"/>
```

B.1.3.4 Build and Install Tpmon

Tpmon is build by calling `ant` from within the top-level directory of the sources. The Java binary `tpmonLTW.jar` must be copied or preferably linked to the directory `common/lib/` of the Tomcat installation together with the MySQL driver.

The following line must be added to the file `bin/catalina.sh` with the path to `aspectjweaver.jar` being set appropriately in order to register the AspectJ weaving agent on server startup.

```
JAVA_OPTS=-javaagent:/path/to/aspectjweaver.jar
```

B.1.3.5 Build and Install Tpmon Control Servlet

Tpmon can be controlled by a servlet included in the directory `tpmon-control-servlet/` of the Tpmon source tree. It is installed by copying the file `tpmon-control-servlet.war` to the `webapps/` directory of the Tomcat installation and can be accessed through the URL `http://localhost:8080/tpmon-control-servlet`.

B.1.3.6 Annotate JPetStore

If only specific methods of the JPetStore shall be monitored, the source code needs to be instrumented. In each class containing methods to be monitored, the line `import tpmon.aspects.*;` must be added. The annotation `@TpmonMonitoringProbe()` must directly precede each method to be monitored.

The Tpmon binary `tpmonLTW.jar` must be copied or preferably linked to the folder `devlib/` of the JPetStore sources before rebuilding them.
B.2 Trace Timing Diagrams

Figure B.1: Sample trace timing diagrams for JPetStore requests.
Figure B.1: Sample trace timing diagrams for JPetStore requests (cont.).
B.3 Iterative Monitoring Point Determination

Table B.1: Response time statistics and request coverage of iterative monitoring point determination.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Request Type</th>
<th>Full Instrumentation</th>
<th>Annotation (1st Iteration)</th>
<th>Annotation (2nd Iteration)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>to process</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>domain.CatalogBean.addStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.CatalogBean.addStockToCart()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.CatalogBean.removeItem()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.CatalogBean.updateStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addItem()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addStockToCart()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.decreaseStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.removeItem()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.updateStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.ServiceAccountService.getQuantity()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.ServiceStockService.getStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addStockToCart()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.decreaseStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.removeItem()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.updateStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.ServiceAccountService.getQuantity()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.ServiceStockService.getStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addStockToCart()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.decreaseStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.removeItem()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.updateStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.ServiceAccountService.getQuantity()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.ServiceStockService.getStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addStockToCart()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.decreaseStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.removeItem()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.updateStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.ServiceAccountService.getQuantity()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.ServiceStockService.getStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.addStockToCart()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.decreaseStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.removeItem()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.OrderBean.updateStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.ServiceAccountService.getQuantity()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>domain.ServiceStockService.getStock()</td>
<td></td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Activated Monitoring Points
Acknowledgement

I’d like to thank

- my parents who unconditionally supported me throughout my entire life,
- Matthias Rohr for having provided this interesting topic and for being a great advisor,
- all members of the Software Engineering Group of Prof. Dr. W. Hasselbring for the enjoyable working atmosphere and for notifying me when it’s time for lunch – in case I missed it,
- and last but not least Merle for being an awesome girlfriend!
Declaration

This thesis is my own work and contains no material that has been accepted for the award of any other degree or diploma in any university.

To the best of my knowledge and belief, this thesis contains no material previously published by any other person except where due acknowledgment has been made.

Oldenburg, September 14, 2007

André van Hoorn
Bibliography

Bibliography

Gamma, Helm, Johnson, and Vlissides (2000). Design Patterns – Elements of Reusable Object-Oriented Software. Amsterdam: Addison-Wesley.

