Response of Nodularia spumigena to pCO$_2$ – Part 1: Growth, production and nitrogen cycling

N. Wannicke1,2, S. Endres3,4, A. Engel3,4, H.-P. Grossart2,5, M. Nausch1, J. Unger1, and M. Voss1

1Leibniz Institute for Baltic Sea Research, Seestrasse 15, 18119 Rostock, Germany
2Leibniz Institute of Freshwater Ecology and Inland Fishery, Alte Fischerhütte 2, 16775 Stechlin, Germany
3Alfred Wegener Institute for Polar and Marine Research, Am Handelsfahnen 12, 27570 Bremerhaven, Germany
4Helmholtz Institute for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany
5Potsdam University, Institute for Biochemistry and Biology, Am Neuen Palais 10, 14469 Potsdam, Germany

Correspondence to: N. Wannicke (nicola.wannicke@io-warnemuende.de)

Received: 1 February 2012 – Published in Biogeosciences Discuss.: 6 March 2012
Revised: 26 June 2012 – Accepted: 28 June 2012 – Published: 6 August 2012

Abstract. Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO$_2$) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N$_2$) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 µatm), mid (median 353 µatm), and high (median 548 µatm) CO$_2$ concentrations. Our results demonstrate an overall stimulating effect of rising pCO$_2$ on C and N$_2$ fixation, as well as on cell growth. An increase in pCO$_2$ during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38 % (low vs. high pCO$_2$) and 40 ± 25 % (mid vs. high pCO$_2$), as well as in N$_2$ fixation by 93 ± 35 % and 38 ± 1 %, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO$_2$ treatment was elevated compared to the other two treatments by 97 % (high vs. low) and 44 % (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO$_2$. Our findings suggest that rising pCO$_2$ stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.

1 Introduction

In summer, the heterocystous diazotrophic cyanobacteria of the genus Nodularia form extensive blooms in the open Baltic Sea with more than 200 mg m$^{-3}$ wet weight (Wasmund, 1997), along with cyanobacteria of the genus Aphanothecmon. These blooms are usually promoted by low nitrogen-to-phosphorus ratios in the surface waters (e.g. Niemistö et al., 1989; Nausch et al., 2008; Raateoja et al., 2011), exhibiting an average annually primary production rate of ~21 mol C m$^{-2}$ yr$^{-1}$ in the Baltic Proper (Wasmund et al., 2001b). The capacity of community N$_2$ fixation in the Baltic Sea is comparable to nitrogen inputs from the land and atmosphere (e.g. Larsson et al., 2001; Wasmund et al., 2001b, 2005b). Annual N$_2$ fixation rates during a moderate bloom in the Baltic Proper were averaged to 101–263 mmol N m$^{-2}$ yr$^{-1}$ (Wasmund et al., 2001a).

A significant fraction of the newly fixed nitrogen can be directly released by cyanobacteria, thereby dispensing 35 to 80 % of nitrogen into the surrounding environment (Wannicke et al., 2009; Ploug et al., 2011). Nitrogen fixed by
diazotrophs can be transferred to lower food web levels via dissolved organic matter (Ohlendieck et al., 2000) and to higher trophic levels by grazing directly on cyanobacteria or indirectly via the microbial loop (Engström-Ost et al., 2011). The extra load of nitrogen thus increases overall ecosystem productivity and meets 20 to 90 % of the nitrogen requirements for community primary production during summer blooms (Sörensson and Sahlsten, 1987; Larsson et al., 2001; Wasmund et al., 2005a). Aggregation and sedimentation of primary production accounts for ∼ 30 up to 72 % of biomass loss from the upper mixed layer, which is a considerable proportion of the seasonal sinking flux (Lignell et al., 1993; Heiskanen and Leppänen, 1995). This process is supported by the formation of aggregates including Nodularia filaments (Engel et al., 2002).

To date, it is not well understood and barely investigated how future changes in climate caused by anthropogenic elevation of atmospheric CO₂ concentration will affect Nodularia performance and their potential to alter biogeochemical fluxes. At present, an atmospheric partial pressure of CO₂ (pCO₂) of 380 ppm prevails, elevated by 27 % compared to pre-industrial times of 280 ppm. This accounts for the highest levels since approximately half a million years (e.g. Lüthi et al., 2008). With atmospheric CO₂ dissolving in seawater, it is expected that current pCO₂ in the oceans will nearly double to 780 µatm by 2100, and lower the oceans’ pH by about 0.35 units (IPCC, 2007), assuming that emissions will carry on at the present rate. This has severe implications for marine phytoplankton, as they appear to directly respond to increasing pCO₂ by altering their physiology (e.g. Riebesell et al., 2007), relative abundance (e.g. Tortell et al., 2002), and biogeography (e.g. Boyd and Doney, 2002). Additionally, unicellular marine cyanobacteria such as Synechococcus and Prochlorococcus can show species-specific responses to increasing pCO₂ (e.g. Fu et al., 2008). Several studies demonstrate that elevated pCO₂ supports C and N₂ fixation, as well as growth rates in the non-heterocyst diazotroph Trichodesmium (Hutchins et al., 2007; Levitan et al., 2007; Barcelos e Ramos et al., 2007). It has been hypothesized that these trends are facilitated by changes in activity of the carbon concentrating mechanism (CCM) and modified protein activity (Levitan et al., 2010a; Kranz et al., 2011) of the enzyme ribulose-1,5-bisphosphate carboxylase oxygenase (RUBISCO), resulting in a decrease of energy and nutrient demand of the cell at high pCO₂. The enzyme RUBISCO has a naturally low affinity to CO₂. Subsequently, energy saved can be relocated to other metabolic processes such as N₂ fixation. But experimental data so far are not able to prove this hypothesis on a gene expression level and no publication is available to verify this notion for heterocystous cyanobacteria.

In general, there is little knowledge on the response of heterocystous cyanobacteria to pCO₂. Czerny et al. (2009) directly addressed the effects of different pCO₂ conditions on growth and C fixation of the genus Nodularia and observed an overall detrimental effect of rising pCO₂ on the cells associated with a decrease in growth and production. They suggested that this pattern could be typical for heterocystous cyanobacteria compared to non-heterocystous cyanobacteria of the genus Trichodesmium and potentially relate to physiological and structural dissimilarities of both cyanobacteria groups. Even less information is available on the coupling of fluxes of carbon, nitrogen and phosphorus in relation to pCO₂ mediated by heterocystous cyanobacteria.

The purpose of this study was to examine the relationship between pCO₂ and diazotrophic growth of Nodularia spumigena and the related fluxes of carbon, nitrogen and phosphorus. Cultures of Baltic Sea Nodularia spumigena isolates were grown in a batch mode at three different pCO₂ levels (low, medium and high), which were supposed to simulating glacial (180 µatm), present day values (380 µatm) and values projected for the year 2100 (780 µatm), respectively. Here, we present data on growth and production parameters, as well as N₂ fixation and nitrogen turnover in response to increasing pCO₂. Carbon cycling and extracellular enzyme activities, as well as phosphorous cycling and utilization of dissolved organic phosphorous (DOP), will be presented in two companion publications (Endres et al., 2012; Unger et al., 2012).

2 Material and methods
2.1 Culture condition and design of the batch culture experiment

The experimental set-up we applied can be divided into three parts: firstly, the preparation of aged seawater, secondly, culturing of the parent culture and its acclimation to the pCO₂ treatments, and thirdly, inoculation with pre-acclimated cultures, amendment with DIP and the actual experimental run. The three individual steps taken are described in detail below and illustrated in Fig. 1.

The first part began with sampling of 1000 litre of seawater in the open Baltic Sea (54.22749° N, 12.1748° E, salinity of 9.1 psu), four months before the start of the experiment. Plankton growth was allowed for three months, resulting in aged sea water with low concentration in dissolved inorganic nutrients. After this growth phase, sterilisation was achieved by UV light treatment and 0.2 µm filtration under a clean bench. Concentrations of inorganic nutrients in this seawater (DIN and DIP) were below the detection limit.

The second part included the growth of three litre parent culture of the heterocystous cyanobacterium N. spumigena, which was isolated by L. Stal and coworkers (NIOO) from the Baltic Sea and maintained since 2000 at the Leibniz Institute for Baltic Sea Research in batch cultures in f/2 medium free of any combined inorganic N compounds. Three weeks prior to the start of the experiment, an axenic parent culture was transferred to sterile filtered aged
Baltic Sea water amended with 0.3 µmol l\(^{-1}\) PO\(_4\) every week to assure an exponential growth phase. The parent culture was cultured at 15 °C in a walk-in incubation chamber under 16:8 h light:dark cycle (cool, white fluorescent lighting, 100 µmol photons m\(^{-2}\) s\(^{-1}\)). One week before the start of the acclimation period, the parent culture was still in a stationary growth phase and removed from the walk-in incubation chamber to a climate controlled room. There, temperature was increased to 23 °C (representing typical summer temperatures at the Baltic Sea water surface) and light supply raised to 200 µmol photons m\(^{-2}\) s\(^{-1}\) (light: dark cycle of 16:8 h, cool, white fluorescent lighting). The chosen light intensity was rather low compared to light intensities experienced by cyanobacteria in summer time in the Baltic Sea (ca. 1000 µmol photons m\(^{-2}\) s\(^{-1}\)). Higher light intensities (> 200 µmol photons m\(^{-2}\) s\(^{-1}\)) were not achievable by using fluorescent light and would have led to an unwanted large increase in experimental temperature. Cultures were routinely mixed by manually shaking to prevent adhesion of cyanobacteria to the walls of the culture vessels.

Acclimation of the *N. spumigena* parent culture to the different \(pCO_2\) level started three days before the beginning of the experiment. The parent culture was separated into three pre-cultures, one litre for each \(pCO_2\) treatment, and acclimated to the target \(pCO_2\) by aeration with pre-mixed gases (Linde gas). Three levels of \(pCO_2\) were used, i.e. 180 µatm representing glacial conditions, 380 µatm representing present day and 780 µatm representing year 2100 conditions (Boer et al., 2000). During the course of the experiment (including the acclimation period: 18 days), aeration took place in the early afternoon (02:00 p.m.) for one hour per day in order to avoid continuously high turbulence that could potentially harm the integrity of the cyanobacteria filaments.

Aeration, however, was not sufficient to yield equilibration with the pre-mixed gases, i.e. the calculated \(pCO_2\) (from CT and pH) values in the pre-cultures were 402 µatm, 422 µatm
and 548 µatm for the glacial, present-day and future pCO$_2$ treatments, respectively. For this reason, we re-defined the three pCO$_2$ levels based on the true pCO$_2$ determined during the experiment. These are the low pCO$_2$ treatment (median 315 µatm), medium pCO$_2$ treatments (median 398 µatm) and high pCO$_2$ treatment (median 548 µatm) pCO$_2$ treatment.

The third part started with the inoculation of each experimental bottle. After three days of pre-acclimation, chlorophyll a concentrations were determined in the three precultures, yielding 28 µg chl a l$^{-1}$ in the low pCO$_2$ treatment, 27 µg chl a l$^{-1}$ in the mid and 38 µg chl a l$^{-1}$ in the high pCO$_2$ scenario. In order to inoculate the same quantity, 0.8 µg chl a l$^{-1}$, we added 296 ml to replicate bottles of the low pCO$_2$ treatment, 308 ml to the mid pCO$_2$ treatment and 221 ml to replicate bottles of the high pCO$_2$ treatment. Heterotrophic bacteria cells counts at the start of the experiment were below the blank value of 1000 cells l$^{-1}$. Overall, bacterial biomass during the course of the experiments (18 d, 15 d + 3 days acclimation) never exceeded 1% of cyanobacterial biomass.

After inoculation with *N. spumigena*, each of the 36 bottles was amended with phosphate to 0.35 µmol l$^{-1}$ at time 0 and at day 3.

Four sampling time points were chosen for the three pCO$_2$ treatments (time 0, +3, +9 and +15 days, Fig. 1) with three replicate bottles harvested at each time point. Each bottle contained 10 litres of aged and sterile filtered seawater that had been aerated with premixed gases for three days in parallel with the pre-cultures. One replicate bottle of the low pCO$_2$ treatment at day 9 was omitted in the data compilation due to inaccurate inoculation with DIP. Samples were taken between 08:00 and 09:00 LT before daily aeration.

2.2 Analytical methods

2.2.1 Carbonate chemistry

The pH was measured with an electrode (Knick Mikroprozessor pH Meter 761 with Typ SE 100 glass electrode), calibrated directly before measurement with standard NBS buffer. Values of pH are given relative to the total scale.

Total carbon (C$_T$) was analysed directly after sampling using the colorimetric SOMMA system according to Johnson et al. (1993). The system was calibrated with carbon reference material provided by A. Dickson (University of California, San Diego) and yielded a precision of about ±2 µmol kg$^{-1}$.

Total alkalinity and pCO$_2$ were calculated using CO2SYS (Lewis et al., 1998) parallel to C$_T$, pH, salinity and temperature.

2.2.2 Nutrient and chlorophyll a analysis

Dissolved inorganic nutrients (NH$_4^+$, NO$_3^-$ and PO$_4^{3-}$) were determined colorimetrically from 60 ml filtered subsamples (combusted GF/F) using a spectrophotometer U 2000 (Hitachi-Europe GmBH, Krefeld, Germany) according to Grasshoff et al. (1983). The detection limits were 0.02 µmol l$^{-1}$ for DIP, 0.05 µmol l$^{-1}$ for ammonium and 0.05 µmol l$^{-1}$ for NO$_3$. A subsample of 100 ml was filtered onto Whatman GF/F filters for chlorophyll a analysis, immediately after sampling. Filters were stored in liquid nitrogen or at −80°C and were extracted with 96% ethanol for at least 3 h. Chlorophyll a fluorescence was measured with a Turner fluorometer (10-AU-005) at an excitation wavelength of 450 nm and an emission of 670 nm (HELCOM, 2005). Chlorophyll a concentrations were calculated according to the method of Jeffrey and Welschmeyer (1997).

2.2.3 *Nodularia* filament and bacteria cell counts

Subsamples of 50 ml were taken for phytoplankton analysis (preserved with acetic Lugol’s (KI/I$_2$) solution to 1% fixation) and counted using an inverted microscope (Leica) (Utermöhl, 1958) at 100× magnification. Cell length and diameter were measured using a micrometer eyepiece and converted to biovolume assuming the geometrical approximation of a cylinder.

Bacteria were counted using a flow cytometer (Facs Calibur, Becton Dickinson) and the protocol of Gasol and del Giorgio (2000). Four ml samples were preserved with 100 µl formaldehyde (1% v/v final concentration), shock frozen in liquid nitrogen and stored at −70°C until measurement. A stock solution of SYBR GREEN (Molecular Probes) was prepared by dilution of 1 µl dye with 49 µl DMSO. Three µl potassium citrate solution, 10 µl of the dye stock solution and 10 µl fluoresbrite microspheres (Polysciences) were added to 300 µl of the thawed sample and incubated for 30 min in darkness. Cell counting was done at a medium flow rate and calculations were performed using the software program “Cell Quest Pro”. Mean abundance of heterotrophic bacteria was 4.45 ± 2.28 × 102 cells l$^{-1}$ (low pCO$_2$), 2.38 ± 2.09 × 102 cells l$^{-1}$ (mid pCO$_2$) and 4.80 ± 2.82 × 105 cells l$^{-1}$ (high pCO$_2$).

2.2.4 Dissolved organic matter (DON, DOC, DOP)

For analysis of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN), subsamples were filtered through pre-combusted GF/F filters, collected in 20 ml pre-combusted (8 h, 500°C) glass ampoules, acidified with 80 µl of 85% phosphoric acid and stored at 2–5°C in a refrigerator. TDN and DOC concentrations were determined simultaneously by high temperature catalytic oxidation with a Shimadzu TOC-VC58 analyser. In the auto sampler, 18 ml of sample volume plus 9 ml of ultrapure (Type 1) water (in pre-combusted vials) were acidified with 50 µHCl (1 M) and sparged with oxygen (150 ml min$^{-1}$) for 6 min to remove all inorganic C. 100 µl sample volume was injected directly on the catalyst (heated to 720°C). Detection of the generated CO$_2$ was performed with an infrared detector. Final DOC
concentrations were average values of quadruplicate measurements. If the coefficient of variation exceeded 0.1%, up to 4 additional analyses were performed and outliers were eliminated. Total N was quantified by a chemiluminescence detector (gas flow oxygen: 0.61 min⁻¹). After every 8th sample, one standard for quality control and one blank was measured. Values of TDN were corrected for nitrate, and ammonium, and thereafter referred to as DON.

Subsamples (40 ml) for the determination of total (TP) and dissolved phosphorus (DP) were stored at −20°C until processing either unfiltered (for TP) or filtered through pre-combusted (450°C, 4 h) Whatman GF/F filters (for DP). Thawed samples were oxidized with an alkaline peroxodisulfate solution (Grasshoff et al., 1983) in a microwave (MarsXpress, CEM) to convert organic phosphorus into DIP. The subsequent DIP determination was done using a 10 cm-cuvette reducing the detection limit to 0.01 μmol l⁻¹. Dissolved organic phosphorus (DOP) was calculated as the difference between dissolved phosphorus (DP) and dissolved inorganic phosphorous (DIP), detected as described above.

2.2.5 Particulate organic matter analysis (PON, POC, POP)

Stable N and C isotope ratios (δ¹⁵N-PON, δ¹³C-POC), as well as PON and POC concentration were measured by means of flash combustion in a Carlo Erba EA 1108 at 1020°C and a Thermo Finnigan Delta S mass-spectrometer. Filters containing particle samples were trimmed, sectioned and then loaded into tin capsules and pelleted for isotopic analysis. Particulate organic phosphorus (POP) was calculated as the difference between total and dissolved phosphorus.

2.2.6 Isotopic analysis and rates measurements (primary production, N₂ fixation)

The stable N and C isotope ratios measured for each sample were corrected for values obtained from standards with defined N and C isotopic compositions (International Atomic Energy Agency IAEA: IAEA-N1, IAEA-N2, NBS 22 and IAEA-CH-6) by means of mass balance. Values are reported relative to atmospheric N₂ (δ¹⁵N) and VPDB (δ¹³C-Vienna Peedee belemnite). The analytical precision for both stable isotope ratios was ±0.2‰. Calibration material for C and N analysis was acetalide (Merck). N₂ fixation activity was measured using the ¹⁵N-N₂ assay, C fixation using the ¹³C-NaHCO₃ assay. Tracer incubations were terminated by gentle vacuum filtration (<200 mbar) through pre-combusted GF/F filters. These filters were dried at 60°C and stored for isotopic analysis. Rates were calculated using the approach of Montoya et al. (1996). Incubation time for rate measurements was 6 h, guaranteeing a sufficient dissolution of the ¹⁵N gas in the incubation bottle (method consideration, Mohr et al., 2010).

2.3 Statistical analysis

Statistical analyses were done using the software SPSS 9.0 and Sigma Plot 10. The effect of the pCO₂ treatment on biological and chemical variables was tested by analysis of variance of data (ANOVA, t-test). Dependencies of growth and production parameters from other environmental parameters were tested using Pearson’s correlation “stepwise” multiple regression analysis. Prior to ANOVA and correlation analysis, data were tested for normality and homogeneity of variances using Wilk-Shapiro and Levene’s tests. Linear regression analysis was applied to calculate growth rates from changes in natural logarithm transformed filament/cell numbers, PON, POC, as well as chlorophyll a values.

3 Results

3.1 Carbonate chemistry

Throughout the study, the pCO₂ treatments were different with respect to pH and total carbon (C₇), as well as calculated total alkalinity (A₇) and pCO₂ (Table 1). The pCO₂ treatments differed significantly in pH and C₇ between mid and high pCO₂ treatment, as well as between the low and high pCO₂ treatment (p ≤ 0.001, n = 12, Supplement Table S2). Ranges of calculated values for the single treatments were for the low pCO₂ treatment 248.5–498.6 μatm with a median of 315.7 μatm (mean value 340 ± 80 μatm), for the mid pCO₂ treatment 286.5–571.1 μatm with a median of 353.3 μatm (mean value 398 ± 104 μatm) and for the high pCO₂ treatment 395.2–630.4 μatm with a median of 548.8 μatm (mean value 508 ± 89 μatm). The large deviation in pCO₂ within the treatments occurred partly because CO₂ was consumed during photosynthesis. The calculated pCO₂ was significantly different between all three pCO₂ set-ups (p ≤ 0.001, n = 12, Supplement Table S2).

3.2 Inorganic nutrients

There were no significant differences in concentrations of inorganic nutrients between pCO₂ treatments (Supplement Table S2). Dissolved inorganic phosphate was depleted in all treatments after three days of incubation (Table 2). DIP amended on day 3 was again below the detection limit at day 9. Throughout the experiment, mean concentration of dissolved inorganic nitrogen (DIN = NO₃⁻ + NO₂⁻) was 0.26 ± 0.1 μmol l⁻¹ in the low pCO₂ treatment, 0.13 ± 0.1 μmol l⁻¹ in the mid pCO₂ treatment and 0.1 ± 0.1 μmol l⁻¹ in the high pCO₂ treatment (Table 2), whereas ammonium was not detectable. Due to the uptake of nutrients during cell growth, an inverse relationship was observed between DIP and abundance, chlorophyll a, PON and POP (R² = −0.567, −0.686 and −0.599, 0.359, respectively, p ≤ 0.05 and p ≤ 0.01, n = 12, Supplement Table S1).
Table 1. Carbonate system variables for the four sampling time points. pH and total carbon (C_T) were measured, total alkalinity (A_T) and pCO2 in seawater were calculated from pH and C_T using CO2SYS (Lewis et al., 1998). Values are means and standard deviations of three replicates (except one replicate bottle of the 180 ppm treatment at day 9). Samples were taken between 08:00 and 09:00 LT, after daily aeration.

<table>
<thead>
<tr>
<th>Date</th>
<th>pCO2 Target [µatm]</th>
<th>Incubation Time [d]</th>
<th>pH Total scale</th>
<th>C_T [µmol kg⁻¹]</th>
<th>A_T [µmol kg⁻¹]</th>
<th>pCO2 [µatm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 March 2010</td>
<td>180</td>
<td>0</td>
<td>8.02 ± 0.02</td>
<td>1651.9 ± 8.9</td>
<td>1724.2 ± 6.4</td>
<td>472.9 ± 29.9</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>0</td>
<td>7.95 ± 0.01</td>
<td>1656.8 ± 3.6</td>
<td>1714.3 ± 2.8</td>
<td>561.0 ± 8.7</td>
</tr>
<tr>
<td></td>
<td>780</td>
<td>0</td>
<td>7.93 ± 0.03</td>
<td>1657.2 ± 2.7</td>
<td>1703.5 ± 2.6</td>
<td>592.7 ± 35.3</td>
</tr>
<tr>
<td>1 April 2010</td>
<td>180</td>
<td>3</td>
<td>8.16 ± 0.03</td>
<td>1607.4 ± 10.2</td>
<td>1709.7 ± 3.2</td>
<td>330.1 ± 26.3</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>3</td>
<td>8.09 ± 0.03</td>
<td>1617.5 ± 11.4</td>
<td>1703.5 ± 3.5</td>
<td>388.8 ± 36.0</td>
</tr>
<tr>
<td></td>
<td>780</td>
<td>3</td>
<td>7.94 ± 0.02</td>
<td>1667.9 ± 1.9</td>
<td>1720.5 ± 5.1</td>
<td>576.8 ± 23.3</td>
</tr>
<tr>
<td>7 April 2010</td>
<td>180</td>
<td>9</td>
<td>8.22 ± 0.04</td>
<td>1570.4 ± 14.6</td>
<td>1690.8 ± 5.0</td>
<td>276.7 ± 27.1</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>9</td>
<td>8.18 ± 0.03</td>
<td>1581.1 ± 2.8</td>
<td>1690.9 ± 5.9</td>
<td>305.3 ± 20.3</td>
</tr>
<tr>
<td></td>
<td>780</td>
<td>9</td>
<td>8.07 ± 0.02</td>
<td>1620.7 ± 5.3</td>
<td>1702.3 ± 3.8</td>
<td>412.2 ± 16.9</td>
</tr>
<tr>
<td>13 April 2010</td>
<td>180</td>
<td>15</td>
<td>8.20 ± 0.04</td>
<td>1568.0 ± 11.4</td>
<td>1683.3 ± 22.6</td>
<td>291.8 ± 29.3</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>15</td>
<td>8.14 ± 0.01</td>
<td>1595.9 ± 4.9</td>
<td>1696.7 ± 2.0</td>
<td>339.6 ± 12.5</td>
</tr>
<tr>
<td></td>
<td>780</td>
<td>15</td>
<td>8.03 ± 0.06</td>
<td>1626.9 ± 21.1</td>
<td>1702.2 ± 6.7</td>
<td>452.9 ± 82.2</td>
</tr>
</tbody>
</table>

Table 2. Abiotic and biotic variables for the four sampling time points. Values are means and standard deviations of three replicates (except one replicate bottle of the 180 ppm treatment at day 9).

<table>
<thead>
<tr>
<th>Date</th>
<th>pCO2 treatment</th>
<th>PO₄³⁻ [µM]</th>
<th>DIN [µmol l⁻¹]</th>
<th>Chlorophyll a [µg l⁻¹]</th>
<th>Bacterial abundance [10⁶ l⁻¹]</th>
<th>DOC [µmol l⁻¹]</th>
<th>DON [µmol l⁻¹]</th>
<th>DOP [µmol l⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 March 2010</td>
<td>low</td>
<td>0.29 ± 0.02</td>
<td>0.22 ± 0.31</td>
<td>0.74 ± 0.08</td>
<td>4.31 ± 2.54</td>
<td>306.5 ± 18.6</td>
<td>16.02 ± 0.07</td>
<td>0.34 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>0.32 ± 0.08</td>
<td>0.28 ± 0.16</td>
<td>0.87 ± 0.09</td>
<td>5.61 ± 2.22</td>
<td>295.6 ± 23.9</td>
<td>18.02 ± 1.17</td>
<td>0.33 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>0.34 ± 0.02</td>
<td>0.22 ± 0.02</td>
<td>0.71 ± 0.04</td>
<td>3.14 ± 0.22</td>
<td>330.1 ± 76.3</td>
<td>17.67 ± 1.74</td>
<td>0.38 ± 0.06</td>
</tr>
<tr>
<td>1 April 2010</td>
<td>low</td>
<td>0.05 ± 0.02</td>
<td>0.41 ± 0.35</td>
<td>3.04 ± 0.12</td>
<td>2.68 ± 0.82</td>
<td>270.6 ± 8.7</td>
<td>15.61 ± 0.01</td>
<td>0.27 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>0.03 ± 0.01</td>
<td>0.24 ± 0.03</td>
<td>4.04 ± 0.79</td>
<td>4.95 ± 1.68</td>
<td>297.8 ± 8.5</td>
<td>15.35 ± 0.14</td>
<td>0.24 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>0.04 ± 0</td>
<td>0.22 ± 0.02</td>
<td>3.46 ± 0.07</td>
<td>4.33 ± 1.65</td>
<td>296.8 ± 1.6</td>
<td>16.18 ± 1.56</td>
<td>0.28 ± 0.07</td>
</tr>
<tr>
<td>7 April 2010</td>
<td>low</td>
<td>0.01 ± 0.01</td>
<td>0.28 ± 0.27</td>
<td>3.38 ± 2.27</td>
<td>5.14 ± 1.56</td>
<td>308.7 ± 19.6</td>
<td>15.44 ± 1.79</td>
<td>0.27 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>0.02 ± 0.02</td>
<td>0.20 ± 0.12</td>
<td>5.15 ± 0.23</td>
<td>5.41 ± 2.39</td>
<td>319.9 ± 17.2</td>
<td>15.91 ± 0.82</td>
<td>0.25 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>0.01 ± 0</td>
<td>0.14 ± 0.15</td>
<td>7.27 ± 0.42</td>
<td>5.34 ± 3.85</td>
<td>322.6 ± 6.1</td>
<td>15.81 ± 0.44</td>
<td>0.23 ± 0.04</td>
</tr>
<tr>
<td>13 April 2010</td>
<td>low</td>
<td>0.03 ± 0.01</td>
<td>0.20 ± 0.04</td>
<td>1.49 ± 0.28</td>
<td>6.62 ± 3.22</td>
<td>318.7 ± 26.8</td>
<td>14.65 ± 0.74</td>
<td>0.24 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>0.02 ± 0.01</td>
<td>0.21 ± 0.15</td>
<td>3.05 ± 0.45</td>
<td>2.20 ± 0.33</td>
<td>323.7 ± 16.4</td>
<td>15.13 ± 0.49</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td>0.02 ± 0.01</td>
<td>0.10 ± 0</td>
<td>4.41 ± 1.09</td>
<td>6.10 ± 5.24</td>
<td>306.0 ± 15.8</td>
<td>16.79 ± 0.41</td>
<td>0.21 ± 0.04</td>
</tr>
</tbody>
</table>

3.3 Dissolved organic matter (DOM)

DOM concentration and stoichiometry did not differ significantly between the treatments. DO concentrations were 303 ± 26 µmol l⁻¹ in the low pCO2 treatment, 309 ± 21 µmol l⁻¹ in the mid and 313 ± 36 µmol l⁻¹ in the high pCO2 treatment. During the first 3 days of the experiment, DOC concentration decreased in the low and high pCO2 treatment by 35 and 33 µmol l⁻¹, respectively, while it increased in the mid pCO2 treatment by 2 µmol l⁻¹. From thereon, until the end of the experiment at day 15, concentrations of DOC increased by 24 µmol l⁻¹ in the low pCO2 treatment, by 13 µmol l⁻¹ in the mid pCO2 treatment and by 5 µmol l⁻¹ in the high pCO2 treatment.

DON concentrations were 15 ± 1.0 µmol l⁻¹ in the low, 16 ± 1.3 µmol l⁻¹ in the mid and 17 ± 1.2 µmol l⁻¹ in the high pCO2 treatment. They were reduced in the low compared to high pCO2 level, indicating a higher accumulation of DON at high pCO2. From day 3 onwards, DON concentration decreased by 0.3 µmol l⁻¹, 0.11 µmol l⁻¹ and 0.9 µmol l⁻¹, respectively. Nevertheless, it has to be kept in mind that calculated differences in concentration were of the same magnitude as standard deviation of the single measurements and have to be considered carefully. DON showed a significantly negative correlation with PON, POP and pH (R² = −0.351, −0.574 and −0.619, p < 0.05 and p ≤ 0.01, n = 12, Supplement Table S1) and positive ones with C.
fixation, PO_4^{3-}, pCO_2 and C_T ($R^2 = 0.557, 0.599$ and $0.622, p \leq 0.01, n = 12$, Supplement Table S1). DOP concentrations were $0.3 \pm 0.1 \mu\text{mol l}^{-1}$ in the low, $0.27 \pm 0.1 \mu\text{mol l}^{-1}$ in the mid and $0.27 \pm 0.08 \mu\text{mol l}^{-1}$ in the high pCO_2 treatment.

Mean values for DOC : DON ratios were 20 ± 3 (low pCO_2), 19 ± 2 (mid pCO_2) and 19 ± 2 (high pCO_2). Mean DOC:DOP ratios were 1094 ± 383 (low pCO_2), 1249 ± 421 (mid pCO_2) and 1243 ± 378 (high pCO_2). Ratios of DON : DOP were 57 ± 14 (low pCO_2), 64 ± 17 (mid pCO_2) and 66 ± 19 (high pCO_2).

3.4 Responses of Nodularia

3.4.1 Nodularia abundance

There was a steady increase in the abundance of Nodularia filaments in all pCO_2 treatments until day 9 (Fig. 2). Afterwards, abundance remained in a stationary phase. Nodularia abundance correlated significantly positive with chlorophyll a, POC, PON and POP ($R^2 = 0.74, 0.83, 0.88$ and $0.88, p < 0.01, n = 12$).

Mean filament length in the high pCO_2 treatment increased from $74 \pm 28 \mu\text{m}$ (day 0) to $88 \pm 38 \mu\text{m}$ (day 9), but this trend was not statistically significant. Filament length in the low pCO_2 treatment and mid pCO_2 treatments increased from $67 \pm 24 \mu\text{m}$ to $117 \pm 53 \mu\text{m}$, and from $71 \pm 29 \mu\text{m}$ to $100 \pm 50 \mu\text{m}$, respectively. Differences in filament length between treatments were not statistically significant, but filaments were slightly shorter at the highest pCO_2 by ~23%. On day 3, there was a significant higher number of heterocysts per filament in the high pCO_2 treatment compared to the mid pCO_2 ($p = 0.005, n = 50$, data not shown) and to the low pCO_2 treatment ($p = 0.0001, n = 50$, data not shown). From thereon, heterocyst number per filament decreased significantly in all treatments, while differences between the treatments were no longer statistically significant.

3.4.2 Chlorophyll a

Chlorophyll a increased over time in all pCO_2 treatments (Table 2). Highest mean chlorophyll a values occurred in the high pCO_2 treatment ($3.96 \pm 0.42 \mu\text{g l}^{-1}$), medium values at the mid pCO_2 treatment ($3.28 \pm 0.72 \mu\text{g l}^{-1}$), and lowest values at low pCO_2 levels ($2.28 \pm 0.79 \mu\text{g l}^{-1}$). Nevertheless, only differences between the high pCO_2 treatment and the low pCO_2 treatment were statistically significant according to the t-test ($p = 0.009, n = 12$).

3.4.3 Concentration and stoichiometry of particulate organic matter (POM)

Concentrations of POC, PON and POP increased in all pCO_2 treatments, but most pronounced at the high pCO_2 level (Fig. 3). POC and PON concentration differed significantly between pCO_2 treatments, with highest concentrations being observed at high pCO_2 (Table 2). Normalized to filament abundance, however, POC, PON, and POP were lowest in the high pCO_2 treatment (Fig. 3). Thereby, differences in POC content per filament were statistically significant for the mid vs. the high pCO_2 level ($p = 0.05, n = 12$, data not shown), but not for the other combinations of pCO_2 levels. PON and POP per filament differed significantly between the low and high pCO_2 ($p = 0.05$ and $p = 0.01, n = 12$, data not shown) and between mid and high pCO_2 ($p = 0.05$ and $p = 0.01$, respectively, $n = 12$, data not shown).

Box-plots of POM elemental composition demonstrate an elevation in all treatments relative to Redfield ratios for POC : POP and PON : POP, but near Redfield stoichiometry for POC : PON (Fig. 4). Elemental ratios decreased with pCO_2 ($R^2 = -0.552, -0.653$ and -0.634, respectively, $p \leq 0.01, n = 12$, Supplement Table S1), as well as with biomass specific C fixation ($R^2 = -0.708, -0.732$ and -0.711, respectively, $p \leq 0.01, n = 12$, Supplement Table S1) and DIP ($R^2 = -0.633, -0.653$ and -0.634, respectively, $p < 0.01, n = 12$, Supplement Table S1). This might imply a more balanced incorporation of C, N and P at higher pCO_2 if we assume incorporation of nutrients according to Redfield ratios.

POC : PON, POC : POP and PON : POP increased with abundance of Nodularia filaments ($R^2 = 0.751, 0.795$ and 0.789, respectively, $p \leq 0.01, n = 12$, Supplement Table S1), chlorophyll a ($R^2 = 0.823, 0.883$ and 0.829, respectively, $p < 0.01, n = 12$, Supplement Table S1) and pH ($R^2 = 0.529, 0.556$ and 0.529, respectively, $p \leq 0.01, n = 12$, Supplement Table S1).

Fig. 2. Changes in abundance with time for the three pCO_2 treatments labelled with the partial pressure of premixed gas with which the cultures were aerated (low pCO_2 – white bars; medium pCO_2 – grey bars; high pCO_2 – black bars). Bars represent mean values of three replicates with respective standard deviation.
Fig. 3. Time depended variation in particulate organic carbon (POC), particulate organic nitrogen (PON), particulate organic phosphorous (POP) per volume (a, c, e) and per filament (b, d, f) for the three pCO$_2$ treatments (low pCO$_2$, white circles; medium pCO$_2$, grey circles; high pCO$_2$, black circles). Values are means and standard deviations of three replicates.

3.4.4 Growth rates

Growth rates calculated for the exponential growth phase (days 0–9) from changes in POC and PON were lower than growth rates derived from abundance and chlorophyll a in the low pCO$_2$ treatment, while they were equal in the mid and high pCO$_2$ treatment (Fig. 5). Compiled growth rates based on all parameters were significantly different between the pCO$_2$ treatments ($p < 0.05$ and $p = 0.001$, $n = 12$, Supplement Table S2), with the highest growth rate at high pCO$_2$ ($0.212 \pm 0.018 \text{d}^{-1}$).

3.4.5 C and N$_2$ fixation

Biomass specific C and N$_2$ fixation rates decreased with incubation time in all pCO$_2$ treatments (Fig. 6). Mean values of C fixation averaged over the sampling period of 15 days were $21 \pm 15 \text{nmol C\, \mu mol POC}^{-1}\text{h}^{-1}$ at low pCO$_2$, $30 \pm 19 \text{nmol C\, \mu mol POC}^{-1}\text{h}^{-1}$ at mid pCO$_2$ and $35 \pm 31 \text{nmol C\, \mu mol POC}^{-1}\text{h}^{-1}$ at high pCO$_2$. Mean values of N$_2$ fixation, excluding day 3, were $0.32 \pm 0.18 \text{nmol N\, \mu mol POC}^{-1}\text{h}^{-1}$ at low pCO$_2$, $0.36 \pm 0.21 \text{nmol N\, \mu mol POC}^{-1}\text{h}^{-1}$ at mid pCO$_2$ and $0.48 \pm 0.20 \text{nmol N\, \mu mol POC}^{-1}\text{h}^{-1}$ at high pCO$_2$. Mean values of N$_2$ fixation of day 3 were $2.56 \pm 0.44 \text{nmol N\, \mu mol POC}^{-1}\text{h}^{-1}$ at low pCO$_2$, $3.89 \pm 0.12 \text{nmol N\, \mu mol POC}^{-1}\text{h}^{-1}$ at mid pCO$_2$ and $5.36 \pm 0.32 \text{nmol N\, \mu mol POC}^{-1}\text{h}^{-1}$ at high pCO$_2$. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO$_2$ treatment was elevated compared to the other two treatments by 97 % (high vs. low) and 44 % (high vs. mid) at day 0 and day 3, but this effect diminished afterwards.

Statistically significant differences between pCO$_2$ treatments according to ANOVA and Tukey’s post hoc test were observed for biomass specific C and N$_2$ fixation.
Fig. 4. Box plot (n = 12) of particulate organic matter stoichiometry and stoichiometry of carbon to nitrogen fixed for the three pCO$_2$ treatments (low pCO$_2$, medium pCO$_2$, high pCO$_2$). (a) Molar ratio of particulate organic carbon to particulate organic nitrogen (POC : PON), (b) atom percent ratio of carbon and nitrogen fixed, (c) molar ratio of particulate organic carbon to particulate organic phosphorous (POC : POP), (d) molar ratio of particulate organic nitrogen to particulate organic phosphorous (PON : POP). Dotted lines represent Redfield stoichiometry. Dashed dotted line represents mean values.

Fig. 5. Calculated growth rates (μ) per day based on changes in abundance, chlorophyll a (Chl a), particulate organic nitrogen (PON) and particulate organic carbon (POC) for the three pCO$_2$ treatments (low pCO$_2$, open circles; medium pCO$_2$, grey circles; high pCO$_2$, black circles). Symbols represent means of 12 values with standard deviations.

rates ($p \leq 0.05$ and $p \leq 0.001$, Supplement Table S2). C and N$_2$ fixation increased significantly with pCO$_2$ ($R^2 = 0.747$ and 0.362, $p \leq 0.01$ and $p \leq 0.05$, n = 12, Supplement Table S1). Ratios of $C_{\text{fixed}} : N_{\text{fixed}}$ were higher than the Redfield ratio and yielded maximum values at mid pCO$_2$ (C : N = 16:1) and lowest values at high pCO$_2$ (C : N = 9.6) (Fig. 4).

4 Discussion

4.1 Growth and production under different pCO$_2$ conditions

In this study we assessed the response of Nodularia spumigena to changes in pCO$_2$. Growth rates in terms of biomass increase calculated for days 0 to 9 were highest in the high pCO$_2$ scenario (508 ± 89 µatm). They were statistically significant elevated by 40 ± 25 % relative to mid pCO$_2$ (398 ± 104 µatm) and by even 84 ± 38 % relative to low pCO$_2$ (340 ± 80 µatm) ($p = 0.001$, n = 12). In the same time period (days 0–9), N$_2$ fixation seemed to be more stimulated by high pCO$_2$ than C uptake (Fig. 6). Biomass specific C fixation at high pCO$_2$ increased by 9 ± 44 % compared to mid pCO$_2$ and by 60 ± 60 % relative to low pCO$_2$. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO$_2$ treatment was elevated compared to the other two treatments by 97 % (high vs. low) and 44 % (high vs. mid) at day 0 and day 3, but this effect diminished afterwards.
Elevation in N₂ fixation at the highest pCO₂ was accompanied by a higher number of heterocysts per filament. This went along with a shortening of filaments towards the end of the experiment (not statistically significant), because filaments tend to become more instable, fragile and break more easily. Nevertheless, heterocyst frequency declined over the course of the incubation in all treatments. Heterocyst frequency in *Nodularia* (Lindahl et al., 1980) and *Aphanizomenon* (Riddolls, 1985) has been shown to correlate with N₂ fixation rate, suggesting that it could be used as an indicator for N₂ fixation capacity.

If this tendency in morphology is repeatedly observed in future studies, it might have implications for grazing on filamentous cyanobacteria by zooplankton. Shorter filaments might not provide sufficient morphological grazing resistance, apart from chemical resistance. Moreover, Chan et al. (2004) demonstrated that in the presence of grazers, heterocysts showed a decline in N₂ fixation rates by 40%. By reducing filament length, zooplankton grazing may act to preempt cyanobacteria blooms by suppressing N₂ fixation and cyanobacterial growth.

The simulative effect of high pCO₂ disappeared during the time course of our experiment from day 9 onwards, along with a complete exhaustion of the inorganic P pool. Nevertheless, the DOP pool was exhausted to a greater proportion in the high pCO₂ treatment along with a higher P concentration per filament, indicating a more efficient P usage at high pCO₂. Further investigation of the different DOP components and P turnover will be discussed in two companion manuscripts (Endres et al., 2012; Unger et al., 2012).

In our study growth rates increased with increasing pCO₂, despite DIP limitation, indicating a stimulating effect of DIC availability. This suggests a co-limitation by C and P in our experimental set-up at low and mid pCO₂ conditions, which might be applied to the Baltic Sea in summer, as well. A deficiency in DIP seems to be partly counter-balanced by excess C, which is opposing the concept of Liebig’s law of only one limiting nutrient, which has already been noted by, e.g. Arrigo (2005) and Hutchins et al. (2007).

The first and only study available so far reporting the response of *Nodularia* growth and primary production to changing pCO₂ conditions was published by Czerny et al. (2009), who hypothesized a detrimental effect of high pCO₂ on *Nodularia* growth.

Both studies investigating *Nodularia* performance, Czerny et al. (2009) and ours used culture conditions that favoured the formation of single filaments without visible formation of larger aggregates. Czerny et al. continuously rotated their incubation bottles using a plankton wheel, representing a closed DIC manipulation set-up. We used slight agitation by manually rotating the bottles once a day and aeration at a low flow-rate, representing an open DIC manipulation. The different methods used might partly explain the observed opposing trends. Czerny et al. (2009) adjusted the pH by acid/base manipulation, which changes total alkalinity (TA) at constant dissolved inorganic carbon (DIC). Concentrations of DIC, HCO₃⁻, and CO₃²⁻ in their study might have been lower than their actual target values, because seawater pH controls the relative proportion of the carbonate species and induces a lower percentage increase in HCO₃⁻ compared to a reduction of pH achieved by, e.g. aeration or by co-adding carbonate ions along with acid (e.g. NaHCO₃, e.g. Gattuso and Lavigne, 2009). This fact might have dampened a possible positive pCO₂ effect.
Additionally, it has been shown that light intensity strongly influences the magnitude of stimulation of growth and production by pCO₂ (e.g. Kranz et al., 2010), with significantly elevated rates at high pCO₂ and light conditions. Light intensity in our experiment was higher by a factor of 2.4 compared to those given by Czerny et al. (2009) (200 vs. 85 μmol photons m⁻² s⁻¹, respectively). Experimental temperature differed by a factor of 1.3 with higher incubation temperatures in our study. Furthermore, DIC concentrations were non-limiting in the Czerny et al. (2009) study with 5 μmol l⁻¹, while reaching limiting conditions in our study after 3 days with DIC values near the detection limit. Czerny and co-workers hypothesized that the negative effect of high pCO₂ on N₂ fixation and growth occurred, because translocation of amino acids from heterocysts to vegetative cyanobacteria cells was restrained by a reduction in extracellular pH. However, intracellular amino acid translocation is not necessarily directly dependent on the external pH, because ionic exchange between adjacent cells takes place through the microplasmodesmata. These are intercellular channels linking cytoplasm of cells where intracellular pH is kept constant (Mullineaux, 2008; Flores and Rivero, 2010). Therefore, it is unlikely that amino acids will pass the outer and inner layers of the heterocyst envelope, but they will diffuse within a continuous periplasm and are re-imported into the cytoplasm of vegetative cells (Flores et al., 2006). Furthermore, Nicolaïsen et al. (2009) showed that the outer membrane in heterocystous cyanobacteria is an efficient permeability barrier for glutamate and retains this metabolite within the filament. Nevertheless, a lower extracellular pH might hypothetically explain the reduction in N₂ fixation in the Czerny study by restraining the transport of nitrogenous metabolites, but it cannot explain the pronounced decrease in growth rate detected in parallel to a relative small reduction in N₂ fixation rate.

Supporting evidence towards a stimulation of growth and production at high pCO₂ has been shown previously for non-heterocystous cyanobacteria of the genus *Trichodesmium* both by adjustment of pCO₂ by aeration with pre-mixed gases (Hutchins et al., 2007; Kranz et al., 2009) or acid/base accomplished with DIC addition (Barcelos e Ramos et al., 2007). In these experiments, growth rates increased from present day to future pCO₂ levels by 34 to 38 % and decreased by 30 to 50 % when comparing the glacial vs. the present day pCO₂ levels (Levitan et al., 2007; Barcelos e Ramos et al., 2007). Furthermore, Hutchins et al. (2007) detected no growth in *Trichodesmium* cultures at pCO₂ conditions below 150 ppm.

Several researchers observed an elevation of N₂ fixation rates by approximately 35 to 40 % (with a maximum of even 400 %) over the respective pCO₂ range (Barcelos e Ramos et al., 2007; Levitan et al., 2007; Hutchins et al., 2007; Kranz et al., 2009). So far, all experiments were done with laboratory cultures, while field measurements are still scarce. Until today, there is only one publication, Hutchins et al. (2009), which reports a stimulation of cyanobacterial N₂ fixation rates by pCO₂ during three experimental runs (6, 21 and 41 %) in a field population of the Gulf of Mexico.

The underlying molecular and cell-physiological mechanisms of the beneficial effect of a high pCO₂ environment, however, is still speculative. Levitan et al. (2010a, b) and Kranz et al. (2009, 2010) assume energy savings achieved by down-regulating carbon concentration mechanisms (CCM). The acquisition of carbon in cyanobacteria involves the use of CCM to compensate for a low pCO₂ in aqueous environments, which are typically lower than the half saturation constant of RUBISCO, the major enzyme involved in C fixation. These CCMs often include bicarbonate transporter that allow access to the larger DIC reservoir (Tortell and Morel, 2002). *Trichodesmium*, as well as *Nodularia*, both belong to the β-group of cyanobacteria, classified based on the structural differences in RUBISCO (Badger et al., 2002). Both cyanobacteria share CCM components and possess a surplus of one DIC and CO₂ uptake system compared to α-cyanobacteria (BCT1, NADH-I₄). The operation of CCMs is energetically expensive and, because cell membranes are freely permeable for CO₂, additional metabolic costs are incurred in limiting the efflux of CO₂ from the cell. It has been proposed that CCM regulation might occur by changing the gene expression level, but studies by Levitan et al. (2010a, b) and Kranz et al. (2009, 2010) do not support this hypothesis in long-term studies. On the other hand, the discrepancy between CCM gene expression, CCM activity and stimulation of growth and production at high pCO₂, may be due to a modulation of the CCM activity at the translational and post-translational level or alteration of the transporter activity (Levitan et al., 2010b; Kranz et al., 2009, 2010). Within this line of arguments, Kranz et al. (2009) demonstrate an increase in activity of a special CCM transporter component at high pCO₂, the NDH-I₄ transporter, a low affinity transporter avoiding efflux of CO₂ from the cytosol by converting CO₂ to HCO₃⁻. This elevated activity might lead to enhanced ATP production yielding in an energetic surplus available to fuel N₂ fixation. Regardless of the underlying molecular and cell physiological processes, C and N₂ fixation mechanisms compete for photo-generated reductants and any reduction in energy demand of the C fixation apparatus can be allocated to other metabolic processes including N₂ fixation and would explain the effect of CO₂ availability on potential C as well as N₂ fixation. A high plasticity of CCM regulation in *Trichodesmium* under different pCO₂, but also under variable light and temperature conditions and, moreover, in relation to the current N supply (Giordano et al., 2005), has emerged. This may modulate N and corresponding C demands to keep the respective C : N ratio at a constant level.

Overall, our results suggest a stimulating effect of high pCO₂ on *Nodularia*, which may be broadly applicable to non-heterocystous and heterocystous diazotrophic cyanobacteria of group β, unless no other growth factor becomes limiting.
4.2 Nitrogen and carbon turnover and elemental stoichiometry under different pCO₂ conditions

Total nitrogen (TN) within our experimental system increased over 9 days by \(\sim 10 \mu mol l^{-1} \) at low pCO₂, by \(\sim 20 \mu mol l^{-1} \) at mid pCO₂ and by \(\sim 25 \mu mol l^{-1} \) at high pCO₂. On a daily basis, N₂ fixation provided sufficient N to explain the build up of PON and POC. Nevertheless, a discrepancy occurred, because N₂ fixation per day was higher by 0.3 to 1.2 \(\mu mol l^{-1} d^{-1} \) than the build up of PON and thus lead to a surplus of \(N_{fixed} \) compared to the build up of PON. Still, one has to keep in mind that N₂ fixation was measured for a period of 6h at the sampling day, while accumulation of PON was determined for a longer period of 3 and 6 days, which might introduce errors and makes it inadequate for comparison.

Differences in DON between the mid and low pCO₂ scenarios, as well as mid and high pCO₂ levels, were not statistically significant according to ANOVA, but overall a statistically significant positive correlation of DON concentration and pCO₂ was found. This presumes a tendency to elevated exudation of DON at high pCO₂, but caution has to be taken because of the different sampling intervals (3, 6 and 6 days). Moreover, the differences between replicate DOM were in the same concentration range as differences in concentration from one sampling day to the next. Thus, a significant accumulation of DIN due to exudation was not detectable. Again, our sampling interval and method chosen (sampling after 3, 9 and 15 days, exudation calculated from differences in concentration) made it difficult to directly determine exudation, which might indicate a faster cycling of N compounds than could be detected by our experimental approach. There was a constant although low number of heterotrophic bacteria in our incubation bottle, but our measurements revealed that active growth of bacteria did not occur. Therefore, this bacterial contamination might have resulted from a background of non-viable, but SYBR green stainable bacteria since also extracellular nucleic acids and dead, DNA containing, cells will be stained by the dye. In conclusion, uptake of DON by heterotrophic bacteria should have been negligible. Apart of such potential methodological constrains, some studies have shown that N₂ fixation and subsequent release of DON are possible mechanisms to dissipate excess light energy on a short term scale (Lomas et al., 2000; Wannicke et al., 2009), while no previous report on the effect of pCO₂ on DON release exists.

There are several studies showing indirectly via TEP and exudate formation (Engel et al., 2002) or directly (Kim et al., 2011) that DOC production is sensitive to changes in pCO₂. This lack of significant tendencies presumably results from a rapid response of the microbial food web superimposing short term trends of autotrophic processes which might have been significant. On the other hand, Borchard and Engel (2012) recently demonstrated a stimulating effect of greenhouse conditions (high pCO₂ and high temperature) on exudation processes in a laboratory study using Emilia huxleyi. Ratios of newly fixed C : N were above the Redfield ratio and significantly higher than molar C : N ratios of cyanobacteria growing at low and mid pCO₂ (\(p = 0.03 \) and \(< 0.001 \), respectively, \(n = 12 \), data not shown), whereas ratios of newly fixed C : N and molar C : N did not change at high pCO₂ (\(p = 0.08 \), \(n = 12 \), data not shown).

At high pCO₂, a higher N₂ fixation rate along with a higher C fixation rate and a more balanced growth in terms of POC to PON suggests synchronic ammonium incorporation into the carbon skeletons (2-oxoglutarat) through the GS–GOGAT (glutamine synthetase–glutamine oxoglutarate aminotransferase) cycle synthesizing glutamate.

POC : POP, as well as PON : POP in this study, were elevated relative to the Redfield ratios in all treatments and deviated significantly between low vs. mid and low vs. high pCO₂ treatments. The positive correlation between POC : POP and PON : POP ratios and biomass (chlorophyll a and abundance) presumes a higher C accumulation relative to N and P and of N relative to P.

In terms of trend and magnitude, our measured elemental ratios are comparable with those given by Hutchins et al. (2007) and Barcelos e Ramos et al. (2007), indicating constant C : N ratios, but an increase in N : P and C : P ratios at high pCO₂. This opposes the trend observed by Levitan et al. (2007), Czerny et al. (2009) and Kranz et al. (2009), who found an increase in C and N quota as well as the ratio at elevated pCO₂.

In general, to date there is no consensus on whether phytoplankton elemental ratios are likely to be altered in a systematic manner in a future acidified ocean.

Elemental ratios of most of eukaryotic phytoplankton investigated so far either remained near Redfield values, or were increased in some species (Hutchins et al., 2009; Liu et al., 2010 and references therein).

Similarly, natural populations display no clear trend in POM stoichiometry either with increased C : N ratios in some studies (Riebesell et al., 2007; Engel et al., 2005) and a decrease in N : P in others (Tortell et al., 2002; Bellerby et al., 2008).

4.3 Biogeochemical and ecological implications

Seasonally, cyanobacteria in the Baltic Sea exhibit pCO₂ fluctuations with minimum values close to or below glacial pCO₂ values (\(< 180 \mu atm \)). In the Gulf of Finland, pCO₂ drops from winter time until May from atmospheric equilibrium values of \(\sim 350 \mu atm \) to \(\sim 150 \mu atm \) due to warming of water and increased sequestration by photosynthetic activity (Schneider et al., 2006). This corresponds to a decline in pCO₂ of 60 %. In July, pCO₂ concentrations rise slightly up to \(\sim 200 \mu atm \) and level off again to a minimum of 100 \(\mu atm \) with the onset of the cyanobacteria bloom.

Thus, the natural cyanobacteria community of the Baltic Sea seems to be periodically exposed to glacial like pCO₂.
conditions. If we apply rate measurements obtained in our study at low \(p\text{CO}_2 \), growth rates, \(\text{N}_2 \) and \(\text{C} \) fixation at mid \(p\text{CO}_2 \) would be lower by up to 34 ± 29 %, 30 ± 29 % and 44 ± 8 %, respectively.

Nevertheless, this \(\text{C} \) limitation is balanced periodically by upwelling and turbulent mixing of \(\text{CO}_2 \) and nutrient rich intermediate winter water (Gidhagen, 1987) with \(p\text{CO}_2 \) up to 800 µatm (Schneider et al., 2006; Beldowski et al., 2010; Schneider, 2011).

Our results suggest that, as long as growth and production of cyanobacteria in the Baltic Sea are not limited by other factors, e.g. nutrients and light, maximum growth rates of \textit{Nodularia} could potentially rise by 84 ± 38 % due to the predicted increase in \(p\text{CO}_2 \) throughout the next 100 yr.

\(\text{N}_2 \) fixation by \textit{Nodularia} might be elevated by 67 ± 50 % in the next 100 yr, if we extrapolate rates we determined in our study.

\(\text{N}_2 \) fixation by \textit{Nodularia} might be elevated by 67 ± 50 % in the next 100 yr, if we extrapolate rates we determined in our study (Levitan et al., 2007; Barcelos e Ramos et al., 2007). Current estimates of \(\text{N}_2 \) fixation by cyanobacteria are about 136 mmol N m\(^{-2}\) yr\(^{-1}\) for the Baltic Proper (Wasmund et al., 2001a, 2005b). If we assume that our experimental results can also be extrapolated to the field, this rate could rise to 227 ± 68 mmol N m\(^{-2}\) yr\(^{-1}\), caused by the expected increases in \(p\text{CO}_2 \) alone. Nevertheless, this projected increase remains within the natural variability of rate measurements. Subsequently, \(p\text{CO}_2 \) induced increase in \(\text{N}_2 \) fixation would elevate the amount of bioavailable nitrogen by the release of dissolved nitrogenous compounds (DIN and DON) corresponding to a release rate of 113 ± 34 mmol N m\(^{-2}\) yr\(^{-1}\) or 182 ± 54 mmol N m\(^{-2}\) yr\(^{-1}\), if we assume that 50 % or 80 % of total nitrogen fixed by cyanobacteria is exudedated (Glibert and Bronk, 1994; Ohlendieck, 2000). However, to date it is not known whether DON exudation will be affected by an increase in \(p\text{CO}_2 \) itself. In comparison, atmospheric N input to the Baltic Sea accounts for ∼ 80 mmol N m\(^{-2}\) yr\(^{-1}\) (Larsson et al., 2001; Rolff et al., 2008), while 45 % of the total N input derives from \(\text{N}_2 \) fixation. Riverine N load is higher and adds up to 76 × 10\(^3\) mmol N m\(^{-2}\) yr\(^{-1}\) (HELCOM, 2005).

Since diazotrophic cyanobacteria can exploit elemental \(\text{N}_2 \), as well as organic N sources, they do not solely rely on dissolved inorganic nitrogen sources like nitrate and ammonia. Moreover, they still can exploit inorganic phosphorous, as well as organic phosphorous, although dissolved inorganic nitrogen is already limiting. As a result, they drive the ecosystem towards P instead of N limitation. Recently, this phenomenon has been described for the Atlantic Ocean by Moore et al. (2009) and Fernández et al. (2010). Our results suggest that this phenomenon will be amplified in the future ocean when rate and extent of mass occurrences of diazotrophs develop, in particular when temperature increases at the same time. Cyanobacteria mass developments not only impact N and P cycling in the phototrophic zone, but also reduce oxygen concentrations in the deeper water layers and on the sediment when their biomass settles out. This will increase oxygen consumption and hence expand hypoxia in the Baltic Sea, which are known to release large quantities of inorganic P (Mohr et al., 2010).

In addition to this, we have detected an increase in C : P and N : P ratios at high \(p\text{CO}_2 \). Extrapolating our results to a potential Baltic Sea in 2100 suggests that the nutritional value of organic matter produced in the euphotic zone will decrease in the future ocean. This could impact the efficiency of bacterial degradation on the one hand, and zooplankton production on the other hand, affecting the remineralisation potential in deep water layers. Overall, the environmental significance of diazotrophic blooms in the Baltic Sea goes far beyond the detrimental effects of changes in stoichiometry and quantity of degradable biomass to the point of recreational issues. Eutrophication might play a substantial role in the expansion of cyanobacterial blooms (e.g. O’Neil et al., 2012). The future N input into the Baltic Sea, caused by a \(p\text{CO}_2 \) induced stimulation of cyanobacteria, might counteract the nitrogen load reductions aimed to mitigate eutrophication (e.g. Vahtera et al., 2007; Voss et al., 2011) and in the worst case impair the socio-economic value of the Baltic Sea.

Supplementary material related to this article is available online at: http://www.biogeosciences.net/9/2973/2012/bg-9-2973-2012-supplement.pdf.

Acknowledgements. We are thankful to Bernd Schneider and Hildegard Kubisch for assistance in measuring carbon chemistry parameters. The skilful technical support of Iris Liskow and Birgit Sadkowiak is gratefully acknowledged. This study was financially supported by the BMBF project BIOACID (Biological impacts of ocean acidification, 03F0608A, 03F0608B, 03F0608E, 03F0608F).

Edited by: E. Marañón

References

www.biogeosciences.net/9/2973/2012/

Biogeosciences, 9, 2973–2988, 2012

