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Abstract—Software security has become an important re-
quirement, particularly for systems that are publicly accessible
through the Internet. Such systems can be equipped with intru-
sion detection systems to uncover security breaches.

In this paper, we present a novel application-level intrusion
detection approach. A normal behavior profile is created from
application-internal control flow in terms of operation execution
traces. Anomalous control flows indicative for intrusion attempts
are detected by continuously monitoring and analyzing the soft-
ware system. A case study demonstrates the intrusion detection
approach’s applicability in the context of a multi-user Java Web
application.
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I. INTRODUCTION

More and more financial and business services are provided
through the Internet. Since these services are publicly acces-
sible, this makes them attractive targets for cyber attacks. In
2007 it has been surveyed [1] that 46% of 494 companies
reported computer security incidents during the past 12 months
leading to a total estimated loss of 67 million US $ compared
to 52 million US $ in 2006.

Intrusion detection systems (IDS) are a means for increasing
security of Internet and network services. An intrusion can
be considered a breach of a computer system security policy
and IDSs gather information from within the system and the
network in order to uncover intrusions [2].

This paper introduces an IDS based on application control
flow analysis. First, the IDS learns a normal application be-
havior profile in terms of a Markov model. Possible intrusions
are then detected by comparing this profile with the current
application control flow. A case study demonstrates how the
IDS detects intrusions into a Web application.

Markov models have been proposed for normal behavior
profiles in intrusion detection approaches for a long time
(e.g., [3]). The main novelties of our approach are that the
control flow in the application layer is analyzed to detect
intrusions and that an additional behavior clustering step has
been introduced in the construction of the normal behavior
profile. The application layer refers to the software that runs
on top of general purpose middleware environments such as
application servers (see Schmidt [4]). The additional clustering
step creates multiple trace-specific Markov chains in contrast
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to just one more general Markov chain in order to improve
the intrusion detection quality.

The remainder of this paper is structured as follows. Sec-
tion II provides the basic concepts of IDSs. An outline of our
approach is given in Section III, followed by a description
of the normal application profile creation and the anomaly
detection procedure in Sections IV and V. Section VI provides
the case study. Related work follows in Section VII before the
conclusions are drawn in Section VIII.

II. BACKGROUND

Intrusion detection approaches can be classified into the fol-
lowing two categories:

1) Anomaly Detection. A normal behavior profile is auto-
matically created from monitoring data and any deviating
activity indicates a possible intrusion. A benefit of this
technique is that the profile is system-specific. However,
a common problem is to achieve sufficiently low false
alarm rates, as all behavior that was not part of the
monitoring data that was used to create the profile is
considered anomalous.

2) Misuse Detection. Intrusion are discovered by comparing
activities to a repository of patterns for known attacks.
This approach can reliably detect known intrusions but it
usually fails to detect new types of attacks.

Intrusion detection systems are not a replacement for pre-
ventive security mechanisms, such as access control and
authentication [5]. Moreover, the combination of IDSs and
proactive security mechanisms can achieve a better coverage
against security threats than one of these strategies alone.

Intrusion detection approaches can be futher categorized
based on what types of activities are monitored. A large
class of approaches focus on monitoring and analyzing net-
work packets (e.g., [6]), while other approaches analyze user
behavior (e.g., [3]), and system behavior (e.g., system calls
sequences by UNIX processes [7, 8]).

III. OUTLINE OF OUR INTRUSION DETECTION APPROACH

As depicted in Figure 1, our IDS has three major components:
Application Monitor, Control Flow Analyzer, and Anomaly
Detector. The Application Monitor records operation execu-
tions within the software application under supervision into
a repository. The Control Flow Analyzer and its plug-ins
synthesize the control flow, i.e., the execution sequences, of
each user request stored in the repository and generate the
normal application behavior profile using Markov chains. This
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Fig. 2. Data schema of the repository data.

profile is used by the Anomaly Detector to detect abnormal
behavior in newly incoming monitoring data.

Our intrusion detection approach is implemented as an ex-
tension of our monitoring and control flow analysis framework
Kieker1 [9].

We assume that software system under supervision is com-
posed of components. The components provide operations that
might be requested by other components, external users, or
systems. Primary artifacts of runtime behavior are executions
of the operations. A finite sequence of executions resulting
from a request is denoted a trace. We limit the scope to
synchronous communication between executions as defined in
the UML [10]: the caller of an operation is blocked and has to
wait until the callee returns a result before it continues its own
execution. A trace is a complete representation of the control
flow origination from a request.

We represent an execution as a tuple (traceid, o, tin, tout)
of an operation o, the start time tin, end time tout, and
a traceid which is a unique identifier for all executions
within the same trace. As mentioned above, traces are ordered
sequences of executions. The repository consists of all exe-
cutions monitored. Figure 2 shows the data schema of the
monitoring data and Table I lists an example.

IV. NORMAL APPLICATION BEHAVIOR PROFILE CREATION

The creation of the normal application behavior profiles
starts by constructing a Markov model from a sufficiently large
set of traces that can be considered to be representative for
normal behavior. Clustering is used to improve the intrusion
detection quality. The approach is detailed in the remainder of
this section.

A. Markov Chain Generation

Markov chains provide a common stochastic means to de-
scribe dynamic system behavior, for example in reliability
and performance engineering. A (first order) Markov chain
is a probabilistic finite state machine with a dedicated entry
and a dedicated exit state. Each transition is weighted by a
probability. For each state, the sum of all outgoing transition
probabilities must be 1. Given the current state, the next state is
randomly selected solely based on the probabilities associated
with the outgoing transition.

The algorithm to transform the monitoring data to Markov
chains involves two major steps. First, traces are synthesized
from the monitoring data. In a second step, these traces
are transformed into Markov chains. In the following the
procedure is explained in detail and demonstrated by a run-
ning example consisting of the three traces contained in the
monitoring data of Table I.

1http://kieker.sourceforge.net

TABLE I
MONITORING DATA EXAMPLE.

traceid operation tin tout
1 A.a() 0 150
1 C.c() 30 50
1 B.b() 60 140
1 C.c() 90 130
2 A.a() 310 460
2 C.c() 340 358
2 B.b() 370 450
2 C.c() 400 437
3 A.a() 480 535
3 C.c() 510 520

a) From Monitoring Data to Traces: Figure 3 lists the
three traces from Table I in a so-called message trace repre-
sentation [9]. Each message included in such a trace is a tuple
of a message type (call or return) and a pair of operation
executions, where the first execution is the message sender
and the second execution is its receiver. The $-sign stands for
the initial action. Multiple executions of the same operation
within a trace are distinguished (e.g., executions C.c() and
C.c()′ in traces 1 and 2). Message traces can be visualized
as UML Sequence Diagrams [10]. The traces 1 and 2 have
the same control flow; they only differ in the timing behavior.
The resulting UML Sequence Diagrams for the three example
traces are displayed in Figure 4.

Trace 1:
(C,$,A.a()) , (C,A.a(),C.c()) , (R,C.c(),A.a()) , (C,A.a(),B.b()),
(C,B.b(),C.c()′) , (R,C.c()′,B.b()) , (R,B.b(),A.a()) , (R,A.a(),$)

Trace 2:
(C,$,A.a()) , (C,A.a(),C.c()) , (R,C.c(),A.a()) , (C,A.a(),B.b()),
(C,B.b(),C.c()′) , (R,C.c()′,B.b()) , (R,B.b(),A.a()) , (R,A.a(),$)

Trace 3:
(C,$,A.a()) , (C,A.a(),C.c()) , (R,C.c(),A.a()) , (R,A.a(),$)

Fig. 3. Message trace representation of the monitoring data in Table I.

b) From Traces to Markov Chains: The traces are trans-
formed into Markov chains as follows. At first each mes-
sage trace is converted into a finite state machine that only
accepts this particular trace. Each message corresponds to
an individual state and therefore the number of messages is
equal to the number of states. The state corresponding to the
first message is the state machine’s entry state and the state
corresponding to the last message in the trace is the end state.
The transitions of the state machine are simply based on the
order of messages within the trace. Therefore, all states have
exactly one incoming transition and one outgoing transition,
except the start and end state which have no incoming or
no outgoing transaction, respectively. The result of this trace
transformation step is a set of finite state machines.
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Fig. 4. Sequence diagrams of the example traces.

Next, the state machines are combined into a Markov
chain. For this, a state machine union algorithm is used that
iteratively merges states until some stop criteria is fulfilled.
The resulting state machine is deterministic. There are var-
ious alternative algorithms for creating Markov chains from
single state machines in the classical literature on grammar
inference [11]. These differ in criteria such as whether the
resulting underlying state machine only accepts the traces that
are equivalent to the traces in the training data or whether
generalization operations (e.g., related to loops) are performed.
In our approach, we used a conservative strategy: the Markov
chain only models those traces which are exactly equivalent to
the traces captured in the learning phase. In order to prevent
that this leads to a too restrictive intrusion detection, a suffi-
ciently large amount of training data has to be provided, which
contains each non-malicious trace at least once. The Markov
chain’s transition probabilities are computed according to the
relative frequencies within the set of traces. A Markov chain
for the three test cases is shown in Figure 5.

B. Creation of the Final Application Behavior Profile

The Markov chain created by the approach above can be
considered a stochastic model for the normal application
control flow for user requests. However, for systems in which
much variance is possible within the traces, the resulting
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1.0
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0.33
___
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___

Fig. 5. Markov chain resulting from Traces 1, 2, and 3.

trace model can become very large. Therefore, a single huge
Markov chain can lead to the acceptance of too many traces
as normal behavior and to an unacceptable false negative
rate (undetected intrusions). In the following, two clustering
approaches are presented that both decrease the the size of
the Markov chains and improve the detection quality. Both
approaches are compared in the evaluation in Section VI.

The clustering works as follows. Agglomerative cluster-
ing [12] is used, i.e., the most similar trace clusters are itera-
tively merged until some similarity threshold is exceeded. The
Levenshtein distance [13] (also known as the edit distance) is
used to quantify the similarity between two traces. It is defined
as the minimal number of edit operations (e.g., delete, add,
replace element) that have to be performed to transform one
sequence (a trace in our case) into another. In the case study, a
second distance metric was used that clusters traces based on
the corresponding request URL (not shown in the data schema
here).

Equation 1 defines how the similarity between two traces t1
and t2 is computed based on the Levenshtein distance (Ld).
The value |t| denotes the length of a trace in terms of the
number of messages.
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similarity(t1 , t2 ) :=
max (|t1|, |t2|)− Ld(t1, t2)

max (|t1|, |t2|) (1)

For the running example, two additional traces (Figure 6)
are added to demonstrate the clustering. First, the similarities
between the traces are computed, as listed in Table II. Next, the
agglomerative clustering uses the similarities to form clusters.
For this example, the threshold λ is set to 0.65, which results
in the three clusters illustrated in Figure 7.

Trace 4:
(C,$,A.a()) , (C,A.a(),C.c()) , (R,C.c(),A.a()),
(C,A.a(),D.d()) , (R,D.d(),A.a()) , (R,A.a(),$)

Trace 5:
(C,$,A.a()) , (R,A.a(),$)

Fig. 6. Two additional example message traces.

TABLE II
EXAMPLE: TRACE SIMILARITY (AND LEVENSHTEIN DISTANCE).

1 2 3 4
5 0.25 (6) 0.25 (6) 0.5 (2) 0.3 (4)
4 0.5 (4) 0.5 (4) 0.6 (2)
3 0.5 (4) 0.5 (4)
2 1 (0)
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1
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Fig. 7. Three clusters are generated from the five example traces.

V. ANOMALY DETECTION

Anomaly detection is triggered, when newly completed traces
are discovered in the repository. The process of anomaly
detection can be described as follows.

Let t be a trace that corresponds to a new request re-
ceived by the Web application. Given the normal application

behavior profiles as the set of n Markov chains MC =
{m1,m2, ...,mn}, an anomaly is detected if there is no
m ∈ MC which accepts t with a probability higher than a
previously defined threshold τ . Formally, the maximal product
of the probabilities along the pathes corresponding to trace t
through each Markov chain has to be below τ to flag t an
intrusion. In other words, t is flagged an anomaly if the best
fitting Markov chain to t shows a probability below τ for
trace t.

Afterwards, the anomaly detector checks the incoming
traces against all Markov chains until a Markov chain with
a corresponding path of sufficient probability τ matching the
trace is found. If no such path can be found in all Markov
chains, a possible intrusion attempt is signaled. One Markov
chain for each cluster is generated. The Markov chain for
cluster 3 is shown in Figure 8.
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(a) Markov chain of cluster 3.

C,$,A.a()

C,A.a(),C.c()

1.0

R,C.c(),A.a()

R,D.d(),A.a()

C,A.a(),D.d()

R,A.a(),$

1.0
2

1.0
2
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* 0.5
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(b) Computation of the anomaly score
for trace 4

Fig. 8. Markov chain of cluster 3 (8(a)) and computation of trace 4’s anomaly
score (8(b)). For a threshold τ > 0.5, trace 4 is considered an intrusion.

VI. EVALUATION

An intrusion detection system has two important quality at-
tributes: the rate of false positives (false alarms) and the rate
of false negatives. The goal of this case study is to test the
general applicability of the approach and to study these both
quality attributes for several intrusion scenarios in the context
of a sample Web application.

The software system under supervision in the case study is
the iBATIS JPetStore2, which is a demo Java Web application
implementing an online store scenario. All 199 internal oper-
ations of the JPetStore were instrumented. In the following,

2http://ibatis.apache.org/
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first the creation of the normal behavior profile and the
trace clustering are described before the intrusion scenarios
are presented and used to evaluate the intrusion detection
approach.

A. Training Data for the Normal Application Behavior Profile

The training data consists of more than 1,000,000 executions
from 14,194 monitored traces. Most of these traces have been
generated automatically by using the probabilistic workload
generator Markov4JMeter3 [14], which is an extension of
Apache JMeter. Several hundred additional traces were gener-
ated by manual application usage.

B. Construction of the Normal Application Behavior Profile

Four different clustering variants have been used for creating
the normal behavior profile. Three of them use the similarity
metric given in Equation 1 that uses the Levenshtein distance
with different clustering thresholds. The fourth clustering
variant forms clusters based on the URL that corresponds to
the trace’s request. A brief description of the clusters is as
follows:
C000: No clustering (equivalent to clustering with threshold

λ = 0.0) results in a single large Markov chain.
C060: Clustering with threshold λ = 0.60 results in 30

Markov chains.
C080: Clustering with threshold λ = 0.80 results in 54

Markov chains.
CURL: Clustering based on the request URL results in 25

Markov chains.

C. Intrusion Scenarios

Intrusion scenarios were designed to find vulnerabilities, e.g.,
possible SQL injections in custom Web applications as at-
tackers would be interested in the information stored in the
database, e.g., credit card numbers and personal user informa-
tion. The procedure of an attacker would be to check the parts
of an application which takes user input for SQL injection
vulnerabilities. An intrusion was signaled each time an SQL
injection attempt was made.

We conducted a security audit of the iBATIS JPetStore to
discover intrusion scenarios. This resulted in five potential
vulnerabilities that could be used in an attack. The first
three of the vulnerabilities are due to the possibility to raise
unhandled exceptions, and the fourth is the possibility to order
a negative quantity of products, which also affects the total cost
calculation for an order. The last intrusion attempts a direct
access to user data in a way that tries to bypass a proper login.

The JPetStore uses an SQL database to store business
data and critical information such as credit card numbers.
Hence, SQL injection attacks might be possible. However, no
direct SQL injection vulnerabilities were discovered but SQL
injection attempts resulted in the three unhandled exception
scenarios.

3http://markov4jmeter.sourceforge.net

D. Intrusion Detection Results

Table III lists the intrusion detection quality results for the
experiments. The SQL injection attacks had enough effects on
the application control flow to allow our system to detect the
intrusion attempts.

The profiles C000 and C060 produced no false positives at
all, while C080 and CURL produced false alarms in 5.5% of
the runs. These 5.5% correspond to runs in which a user tried
to remove an item from an empty cart. This test case was not
covered by the automatic workload generation. Similar cases
were generated during the manual browsing of the system
for normal behavior creation. The 20% for C060, C080, and
CURL false negatives occur because the intrusion scenario
that represents an order of a negative quantity of products
does not effect the application control, and hence it is not
detectable by control flow analysis. The single Markov chain
for C000, fails both to detect the negative quantity order and
to detect the last intrusion scenario (direct data access), since
it tends to overgeneralize allowed behavior from the training
data. The anomaly detection threshold τ fixed to 0.025 in all
experiments.

TABLE III
INTRUSION DETECTION RESULTS.

False pos. False neg. Cluster
rate rate count

0.00 0% 40% 1
0.60 0% 20% 30
0.80 5.5% 20% 54
URL 5.5% 20% 25

VII. RELATED WORK

Denning [3] describes a model capable of detecting break-
ins and penetrations by monitoring system audit records for
abnormal behavior. The author suggests to monitor the system
using audit records which represent actions performed on
objects by subjects. Anomalies in this audit records indicate a
security breach.

Hofmeyr et al. [7] followed a similar approach by detecting
anomalies in UNIX system call traces for intrusion detection.
The classification of anomaly is made by means of string
comparisons of system call sequences.

Lane and Brodley [15] focus on four challenges of intrusion
detection: the classification of normal behavior is often user-
and site-dependent; the learning of the normal behavior must
happen on positive data only; the selection of the character-
istics that are used to build a model of normal behavior and
incorporation of changing user behavior.

ModSecurity4 is a freely available host-based intrusion
detection system for Web applications running in the Apache
Web server. It combines a pattern-based with an anomaly
detection based approach in order to cover a large variety of
attacks. It allows the administrator to define white list patterns

4http://www.modsecurity.org/
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and black list patterns for user input. White list patterns are the
preferred way of securing an application, because the evasion
of white list filter rules is not possible. Whereas with black
list filters it is always possible that the administrator misses
some corner cases or that new ways of attacks against systems
emerge [16].

Chari and Cheng [17] introduce the host-based intrusion
detection system BlueBoX. This system monitors the appli-
cation behavior and checks it against predefined rules. The
rules specify the actions which an application is allowed to
do. Attempts to violate this rules are denied and flagged as
an intrusion attempt. The effectiveness of this policy-based
approach depends on the definition of high quality rules by
the administrator. Though, it is hard to define good rules and
the task of defining this rules needs a precise understanding
of the expected system behavior.

Snort5 is a pure pattern-based approach to network-based
intrusion detection. It is described as a lightweight intrusion
detection, whereby lightweight means that this system can be
used cross-platform, with a small system footprint and that
it is easily configurable by the administrator. Since Snort is a
pattern-based intrusion detection system, it success depends on
the quality of the supplied rules. The rules have to be updated
regularly to detect new emerging attacks [18]. Snort is widely
used in productions environments. Anomaly detection can be
integrated into Snort by using the SPADE [6] plug-in.

VIII. CONCLUSIONS

In this paper, we presented a novel intrusion detection ap-
proach based on application-internal control flow analysis. It
was demonstrated that it can potentially detect attacks against
typical vulnerabilities, and therefore could provide a valuable
addition to the security of software systems. An additional
clustering step prevented that only a single, too general normal
behavior model was produced.

Future work includes to combine application behavior mon-
itoring with user behavior monitoring to create a normal
behavior profile. Additionally, instead of using only control
flow monitoring for every user request, the approach will be
extended to connect the sequence of all operation executions
within a complete user session. A case study in an industry
system is currently in preparation in order to determine the
intrusion detection quality in the field.
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