
INSTITUT FÜR INFORMATIK

Continuous Monitoring of Software
Services: Design and Application of

the Kieker Framework

André van Hoorn, Matthias Rohr, Wilhelm Hasselbring,
Jan Waller, Jens Ehlers, Sören Frey, Dennis Kieselhorst

Bericht Nr. 0921
November 2009

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 1

Continuous Monitoring of Software Services:
Design and Application of the Kieker Framework

André van Hoorn1,3, Matthias Rohr1,2, Wilhelm Hasselbring1,3, Jan Waller3,

Jens Ehlers3, Sören Frey3, and Dennis Kieselhorst4

1 Graduate School TrustSoft, University of Oldenburg, D-26111 Oldenburg. Germany
2 BTC AG – Business Technology Consulting AG, D-26121 Oldenburg, Germany

3 Software Engineering Group, University of Kiel, D-24098 Kiel, Germany
4 EWE TEL GmbH, D-26133 Oldenburg, Germany

Abstract— In addition to studying the construction and
evolution of software services, the software engineering
discipline needs to address the operation of continuously
running software services. A requirement for its robust
operation are means for effective monitoring of software
runtime behavior. In contrast to profiling for construc-
tion activities, monitoring of operational services should
only impose a small performance overhead. Furthermore,
instrumentation should be non-intrusive to the business
logic, as far as possible.

We present the Kieker framework for monitoring
software runtime behavior, e.g., internal performance or
(distributed) trace data. The flexible architecture allows to
replace or add framework components, including monitor-
ing probes, analysis components, and monitoring record
types shared by logging and analysis. As a non-intrusive
instrumentation technique, Kieker currently employs, but
is not restricted to, aspect-oriented programming. An ex-
tensive lab study evaluates and quantifies the low overhead
caused by the framework components. Qualitative eval-
uations provided by industrial case studies demonstrate
the practicality of the approach with a telecommunication
customer self service and a digital photo submission
service. Kieker is available as open-source software, where
both the academic and industrial partners contribute
to the code. Our experiment data is publicly available,
allowing interested researchers to repeat and extend our
lab experiments.

Keywords: D.2.2.c Distributed/Internet based software engi-
neering tools and techniques; D.2.7.m Restructuring, reverse
engineering, and reengineering; D.2.8.b Performance mea-
sures; D.4.8.a Measurements; D.4.8.c Monitors

I. INTRODUCTION

Traditionally, software engineering primarily ad-
dresses the construction and evolution of software.
In addition, means for efficient and robust opera-
tion are critical for software services. Continuous

monitoring may enable early detection of quality-of-
service problems, such as performance degradation,
and may deliver usage data for resource manage-
ment. Such monitoring information is also required
to check the fulfillment of service level agreements
(SLAs). Therefore, a system’s runtime behavior
should be monitored and analyzed continuously.

Monitoring can be performed on all layers of a
software system, e.g., regarding hardware, operating
system, middleware, and application state. In this
paper, we focus on monitoring of software runtime
behavior, particularly addressing middleware and
application-level. This can be the basis for run-
time failure detection and diagnosis for software
services [1], reverse engineering of design models
from program execution [2, 3], and approaches for
self-adaptive software [4, 5]. Moreover, it provides
valuable data for dynamic analysis [6] and model
calibration [7].

In this paper, we present the object-oriented
Kieker monitoring framework, which has been de-
signed for continuous monitoring of software ser-
vices. The framework components for software
instrumentation, logging, and analysis/visualization
are extensible and may easily be replaced to ful-
fill the requirements of specific project contexts.
For instance, as a non-intrusive instrumentation
technique, we employ aspect-oriented program-
ming (AOP) [8]. Kieker currently provides sample
instrumentations utilizing the popular AOP inter-
ception frameworks AspectJ [9], Spring AOP [10]
and Apache CXF [11], which may be extended or
replaced by other framework users.

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 2

Kieker uses a common data structure for mon-
itoring records in all components that produce or
consume monitoring data. For analysis of moni-
toring data, Kieker provides several visualizations
of a system’s runtime behavior, such as UML se-
quence diagrams, dependency graphs, and Markov
chains. These models are extracted from recorded
application-internal traces originating from system-
provided services. The analysis may be performed
online or offline. Kieker supports distributed request
tracing, since the service-providing components of
large-scale software systems are usually distributed
across several execution containers on physical or
virtual server nodes.

We employ Kieker for various research purposes,
e.g., fault localization based on timing behavior
anomaly detection [12], architecture-based runtime
adaptation/reconfiguration [13, 14], visualization of
software runtime behavior [15], application-level in-
trusion detection [16], and trace-based performance
analysis [17, 18].

Continuous monitoring has to be distinguished
from profiling activities, which are employed when
a software service is under development in a test
environment. Profiling offers advanced debugging
functions, whereby considerable runtime overhead
is usually accepted for obtaining detailed data for
program analysis. Such an overhead is not ac-
ceptable for the continuous operation of software
services.

In addition to the presentation of Kieker’s archi-
tecture, this paper includes a quantitative and qual-
itative evaluation of the framework and the mon-
itoring methodology. Lab experiments, employing
micro benchmarks, quantify the small overhead that
is introduced per activated monitoring probe and
break down the cause of overhead to the framework
components. In order to investigate the applicabil-
ity to real environments, we conducted industrial
case studies with operational software services of
a telecommunication customer self service and a
digital photo submission service. Kieker is available
as open-source software,1 where both the academic
and industrial partners contribute to the code. Along
with the code, our experiment data is available such
that interested researchers can repeat and extend our
lab experiments.

1http://kieker.sourceforge.net/

To summarize, the original contributions of this
paper are

1) the presentation of Kieker’s flexible frame-
work architecture,2

2) a quantitative evaluation of Kieker’s runtime
overhead in extensive lab experiments,

3) a qualitative evaluation of Kieker’s runtime
overhead and the practicality of fine-grained
(distributed) monitoring in industrial case
studies, and

4) a summary of design recommendations for
the construction and evolution of software
services, which emerged from our lab experi-
ments and industrial case studies, to achieve
an efficient and robust operation of these
software services.

The remainder of this paper is structured as follows:
Section II describes the architecture of the Kieker
framework. Section III presents the methodology
to monitor and reconstruct (distributed) traces, and
shows analysis and visualization examples. The
systematic assessment of the overhead using bench-
marks in lab experiments is presented in Section IV.
In Section V, we report on the application of the
framework in industrial systems. Our experience
and the emerged design knowledge from using
Kieker are discussed in Section VI. Related work
follows in Section VII. Section VIII draws our
conclusions and indicates areas for future work.

II. FRAMEWORK ARCHITECTURE

This section provides an overview of Kieker’s
framework architecture. The outstanding features of
Kieker may be summarized as follows:

• A common, extensible monitoring record
model that is shared among the logging and
analysis component: in this paper, we use
record types for storing response times (in
this section), and (distributed) trace informa-
tion (Sections III and V).

• An extensible reader/writer model: the moni-
toring records may be written to and being read
from relational databases, to the file system or
to JMS queues; additional data sinks may be
added.

2An initial version of Kieker has been presented in [15]; meanwhile
major revisions for enhanced flexibility have been added.

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 3

Kieker.Tpmon

<<component>>

TpmonController

<<component>> <<component>>

<<storage>>

Kieker.Tpan
<<component>> <<component>>

<<component>>
Monitoring Probe

<<component>>
Monitoring Record

Consumer

Monitoring Log

Monitoring Log
Reader

Monitoring Log
Writer

IKiekerMonitoring
RecordConsumer

IKiekerMonitoring
LogReader

IKiekerMonitoring
LogWriter

IKiekerMonitoring
Probe

<<component>>

TpanInstance

Fig. 1

TOP-LEVEL VIEW ON KIEKER’S ARCHITECTURE

• An extensible monitoring record consumer
model: the monitoring records may be analyzed
and visualized for various purposes. If the mon-
itoring log is based on a messaging middle-
ware, continuous online analysis is supported.

The Unified Modeling Language (UML) [19] is em-
ployed for describing the architecture, independent
of the programming language (which is Java for
Kieker).

At the top-level, Kieker is partitioned into the two
components Kieker.Tpmon and Kieker.Tpan with the
Monitoring Log in between, as illustrated in Figure 1.
Kieker.Tpmon provides a reusable infrastructure for
collecting application-level monitoring data in Mon-
itoring Probes and writing this monitoring data to the
Monitoring Log, e.g., the local file system, a database,
or a messaging queue, using a Monitoring Log Writer.
The TpmonController is responsible for initializing
and controlling a Kieker.Tpmon instance. The Mon-
itoring Log contains Monitoring Records, as defined in
Figure 2. Each record holds the monitoring data of a
single measurement created by the Monitoring Probes.
Kieker.Tpan provides the infrastructure for analyzing
the Monitoring Log: a Monitoring Log Reader (Fig-
ure 1) reads Monitoring Records from the Monitor-
ing Log and delivers these to registered Monitoring
Record Consumers, according to the observer design
pattern [20]. Monitoring Record Consumers perform
the actual analysis or visualization functionality. A
Kieker.Tpan instance is initialized and controlled by
a TpanInstance instance (Figure 1).

Figure 3 shows the core Kieker framework
classes and interfaces with their associations in a
UML Class Diagram notation. Kieker offers dif-

AbstractKiekerMonitoringRecord

#registerMonitoringRecordType()
+get/setLoggingTimestamp(..)

+getRecordTypeId()
+initFromStringArray(..)

<<abstract>>

+loggingTimestamp:long

+toStringArray()

MyRTMonitoringRecord

+getRecordTypeId()
+initFromStringArray(..)

+rt:long

+toStringArray()

+service:String
+component:String

<<storage>>

Monitoring Log

* 1

Fig. 2

ABSTRACT KIEKER MONITORING RECORD STORED IN THE

MONITORING LOG, WITH A CONCRETE MONITORING RECORD AS

EXAMPLE.

TpmonController

+getInstance()
+logMonitoringRecord(..)
+enable/disable/terminateMonitoring()
+getTime()

IKiekerMonitoringLogWriter

+init(..)
+registerMonitoringRecordType(..)
+writeMonitoringRecord(..)

ctrlInst
1

*

writer
1

1

IKiekerMonitoringProbe
<<interface>>

<<interface>>

AbstractKiekerMonitoringLogWriter
<<abstract>>

<<singleton>>

(a) Kieker.Tpmon

TpanInstance

+setLogReader(..)
+addConsumer(..)
+run()

IKiekerMonitoringRecordConsumer

+getRecordTypeSubscriptionList()
+consumeMonitoringRecord(..)
+execute()
+terminate()

consumers

1..*

1

consumers
*

1

IKiekerMonitoringLogReader
<<interface>>

+addConsumer(..)
+execute()
+terminate()

reader
1

1

<<interface>>

AbstractKiekerMonitoringLogReader
<<abstract>>

(b) Kieker.Tpan

Fig. 3

CLASSES AND INTERFACES OF THE FRAMEWORK COMPONENTS

(A) KIEKER.TPMON AND (B) KIEKER.TPMON.

ferent implementations for the Monitoring Record,
Monitoring Probe, Monitoring Log Writer, Monitoring Log
Reader, and Monitoring Record Consumer components
and allows to use customized components created
by implementing or extending the interfaces or
abstract classes of the framework corresponding to
these components, as described below.

Figure 4 illustrates a Monitoring Record’s life cy-
cle. It shows the sequence of interactions among
instances of the Kieker components in a UML Com-
munication Diagram notation, whereby the numbers
at the operation calls, which are attached to the

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 4

: MonitoringLogWriterImpl : MonitoringLogReaderImpl

: MonitoringRecordImpl

: TpanInstance: TpmonController

record = getInstance(...)1.1:

1

1

consumeMonitoringRecord(record)4.2:

record = initFromStringArray(...)4.1:

1

logMonitoringRecord(record)1.2:

1
toStringArray()3:

1

1

writeMonitoringRecord(record)2:
1

1

*

1

*
*

*
: MonitoringRecordConsumerImpl

*

: MonitoringProbeImpl

*

*

Fig. 4

COMMUNICATION AMONG FRAMEWORK COMPONENTS FOR CREATING AND WRITING A MONITORING RECORD IN

KIEKER.TPMON (1.1–3) AS WELL AS READING AND USING THIS MONITORING RECORD IN KIEKER.TPAN (4.1, 4.2).

links, define the order. The multiplicities at the links
indicate the possible number of these links among
respective object instances.

A. Monitoring Record
A Monitoring Record holds the measurement data
collected in a single measurement. Different types
of Monitoring Records can be used together in
one Kieker.Tpmon instance. Figure 2 shows a con-
crete Monitoring Record type MyRTMonitoringRecord
which can be used to store response times of ser-
vices provided by software components. As required
by all Monitoring Record types, it extends the abstract
framework class AbstractKiekerMonitoringRecord.

B. Monitoring Probe
A Monitoring Probe (Figure 1) contains the mea-
surement logic which collects and possibly pre-
processes measurement data from the application.
A Monitoring Probe creates an instance of a Monitor-
ing Record and sends this Monitoring Record to the
TpmonController by calling the method logMonitor-
ingRecord(..) of the TpmonController, as shown in
Figure 4. All Monitoring Probe types must implement
the interface IKiekerMonitoringProbe (Figure 3).

Monitoring Probes of different types can be used
together in a single Kieker.Tpmon instance and are
typically tightly bound to middleware underlying
the application. For example, the interception APIs
of Java middleware technologies provided by the
Spring framework, the Java Servlet specification,
and the Apache CXF Web service framework can
be used to implement and integrate Monitoring Probes
into an application. In Section V, we demonstrate
how different technology-specific types of Monitoring

Listing 1

EXAMPLE ASPECTJ RESPONSE TIME MONITORING PROBE

1 @Aspect
2 public class MyRTMonitoringProbe
3 implements I K i e k e r M o n i t o r i n g P r o b e {
4
5 static final TpmonCon t ro l l e r CTRL =
6 TpmonCon t ro l l e r . g e t I n s t a n c e () ;
7
8 @Around
9 (v a l u e =” e x e c u t i o n (@MyRTProbe ∗ ∗ . ∗ (. .)) ”)

10 public O b j e c t p robe (P r o c e e d i n g J o i n P o i n t j)
11 throws Throwable {
12 MyRTMonitoringRecord r e c o r d =
13 new MyRTMonitoringRecord () ;
14 r e c o r d . component = j . g e t S i g n a t u r e ()
15 . ge tDec la r ingTypeName () ;
16 r e c o r d . s e r v i c e = j . g e t S i g n a t u r e () . getName () ;
17 O b j e c t r e t v a l ;
18 long t i n = CTRL . getTime () ;
19 try { r e t v a l = j . p r o c e e d () ; }
20 catch (E x c e p t i o n e) { throw e ; }
21 finally {
22 r e c o r d . r t = CTRL . getTime () − t i n ;
23 CTRL . l o g M o n i t o r i n g R e c o r d (r e c o r d) ;
24 }
25 return r e t v a l ;
26 }
27 }

Probes can be used in combination to monitor
distributed traces.

As an example, Listing 1 shows an AspectJ-
based Monitoring Probe which measures response
times of Java methods and stores this data as
Monitoring Records of the previously introduced
type MyRTMonitoringRecord (Figure 2). In
this example, all Java methods annotated with
MyRTProbe are instrumented, as follows for the
method searchBook() via Java annotation:

@MyRTProbe()
public static void searchBook() { .. }

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 5

IKiekerMonitoringLogWriter
<<interface>>

AbstractKiekerMonitoringLogWriter
<<abstract>>

AsyncJMSConnectorAsyncDbConnectorAsyncFsConnector

JMSWriterThreadDbWriterThreadFsWriterThread

SyncFsWriter SyncDbWriter

−workers
1..*

1
−workers

1..*

1
−workers

1..*

1

(a) Implemented writers

IKiekerMonitoringLogReader
<<interface>>

AbstractKiekerMonitoringLogReader
<<abstract>>

−subScribedToAllList
−subscribedToTypesMap

+addConsumer(..)
#deliverRecordToConsumer(..)
+execute()
+terminate()

−delegate
1

JMSReaderFSReader

FSReaderRealtime

(b) Implemented readers

Fig. 5

IMPLEMENTED MONITORING LOG WRITERS AND READERS. THE

ABSTRACT CLASSES HAVE BEEN INTRODUCED IN FIGURE 3.

Calls to an instrumented method are intercepted
and the execution proceeds with the method
probe(..) (lines 10–26) containing the response time
measurement logic of the Monitoring Probe. Be-
fore the execution is delegated to the intercepted
method (line 19), a Monitoring Record instance is cre-
ated and initialized (lines 13–16) and the timestamp
before the execution is taken (line 18). After this
execution returns, the response time is calculated
and stored in the Monitoring Record (line 22) which is
then passed to the TpmonController instance (line 23).

C. Monitoring Log Writer

A Monitoring Log Writer is responsible for writing/se-
rializing the Monitoring Records to the Monitoring Log.
For each Monitoring Record to be logged, the writer

is invoked by the TpmonController and writes the
data contained in the retrieved Monitoring Record
by calling the Monitoring Record’s toStringArray()
method, as illustrated in Figure 4. Figure 5(a) shows
the Monitoring Log Writers which are already included
in the Kieker framework, supporting the file system,
relational databases, and JMS queues. The prefixes
Sync/Async in Figure 5(a) indicate whether the I/O
operation required to log the Monitoring Record is
performed within the Monitoring Probe’s thread of
control (synchronously) or by one or more asyn-
chronous writer thread(s) using an internal buffer.
The filesystem writer stores Monitoring Records rep-
resented as comma-separated values (CSV). List-
ing 2 shows a sample filesystem Monitoring Log
containing entries of the MyRTMonitoringRecord
Monitoring Record type. Each line contains the Moni-
toring Record type identifier, as well as the values of
the record fields loggingTimestamp (cropped in the
listing), component, service, and rt (response time
in nanoseconds). A mapping file is used to store the
mapping between a Monitoring Record type identifier
and its implementing class, as shown in Listing 3.

Listing 2

FILESYSTEM MONITORING LOG WITH MONITORING RECORDS

OF TYPE MYRTMONITORINGRECORD

$1;..267737726;Catalog;getBook;2104283
$1;..268321753;Catalog;getBook;2679347
$1;..324713919;Catalog;getBook;20082302
$1;..324780416;CRM;getOffers;20164491
$1;..324787610;Bookstore;searchBook;93795571
$1;..325166071;Catalog;getBook;20568496
$1;..325180972;CRM;getOffers;20612072
$1;..325186824;Bookstore;searchBook;94195055

Listing 3

MAPPING OF MONITORING RECORD TYPE IDENTIFIER TO

IMPLEMENTING CLASS

$1=MyRTMonitoringRecord

D. Monitoring Log Reader
A Monitoring Log Reader is used to create Monitor-
ing Record instances from a Monitoring Log writ-
ten by a corresponding Monitoring Log Writer (by
calling a Monitoring Record’s initFromStringArray(..)
method), see Figure 2. As shown in Figure 5(b),
Kieker includes Monitoring Log Readers correspond-
ing to the included writers for the filesystem and
for JMS queues. Monitoring Log Readers extend the

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 6

:TpanInstance

:MonitoringLogReaderImpl

for (c : consumers)
{ c.execute(); }

6.2:

:MonitoringRecordConsumerImpl

new TpanInstance()1:

run()6:

new MonitoringRecordConsumerImpl(..)
consumer =3:

r = new MonitoringLogReaderImpl(..)2:

for (c : consumers)
{ addConumer(c); }

5:

setLogReader(r)4:

execute()6.3:

for (c : consumers)
{ addConsumer(c); }

6.1:

consumeMonitoringRecord(..)
7..:

Fig. 6

KIEKER.TPAN COMMUNICATION DIAGRAM

abstract class AbstractKiekerMonitoringLogReader,
which already provides convenient functionality for
handling the subscription of Monitoring Record Con-
sumers to Monitoring Records of specific types as well
as the delivery of records to the subscribers.

Additionally, Kieker includes the Monitoring Log
Reader FSReaderRealtime which can be used to
replay Monitoring Records from a filesystem-based
Monitoring Log in the original timescale. This has
proven to be very helpful for debugging purposes
and for simulating continuously incoming monitor-
ing data while developing online analysis compo-
nents.

E. Monitoring Record Consumer
Analysis or visualization components are inte-
grated into Kieker.Tpan by implementing the IKieker-
RecordConsumer interface (see Figure 3). A Monitor-
ing Record Consumer is registered to the TpanInstance
as a subscriber for Monitoring Records of selected
or all Monitoring Record types (as returned by the
getRecordTypeSubscriptionList() method, see Fig-
ure 3). The TpanInstance delegates the subscrip-
tion list to the Monitoring Log Reader, which di-
rectly delivers newly incoming records of interest
to the consumers by calling their consumeMonitor-
ingRecord(..) method, as illustrated in Figure 6.

Listing 4 shows an example response time mon-
itor for MyRTMonitoringRecord that we use as
an example in the present section. The monitor
compares (line 19) incoming response time values
with a threshold value stored in the object’s vari-
able rtSlo (response time service level objective),

Listing 4

EXAMPLE RESPONSE TIME MONITOR

1 public class RTMonitor
2 implements IKiekerRecordConsumer {
3
4 private final long r t S l o ;
5 public RTMonitor (long r t S l o) {
6 this . r t S l o = r t S l o ;
7 }
8
9 public S t r i n g [] g e t R e c o r d T y p e S u b s c r i p t i o n L i s t () {

10 return new S t r i n g [] {
11 MyRTMonitoringRecord .class . getName ()
12 } ;
13 }
14
15 public void consumeMoni to r ingRecord
16 (A b s t r a c t K i e k e r M o n i t o r i n g R e c o r d r) {
17 MyRTMonitoringRecord r t R e c =
18 (MyRTMonitoringRecord) r ;
19 if (r t R e c . r t > this . r t S l o) {
20 /∗ SLO v i o l a t i o n ! ∗ /
21 }
22 }
23
24 public boolean e x e c u t e () { return true ; }
25 public void t e r m i n a t e () { }
26 }

which is specified on object creation (line 6). By
returning the classname of the Monitoring Record
type MyRTMonitoringRecord in line 10, the monitor
only receives Monitoring Records of this type. Please
remind that Kieker allows to use the same data
structures (Monitoring Records) in analysis compo-
nents as used in the Monitoring Probes, in this case
the Monitoring Probe measuring the response times
(Listing 1) and the Monitoring Record Consumer (List-
ing 4) implementing the response time monitor.

When a TpanInstance is started by calling its
run() method, the execute() methods of all registered
Monitoring Record Consumers are called. This allows
the implementation of an asynchronous event-based
architecture, which is particularly useful for on-
line analysis components. Such an online analysis
component spawns a thread in its execute() method
implementing the analysis tasks based on asyn-
cronously incoming Monitoring Records.

III. DYNAMIC TRACE ANALYSIS

For dynamic trace analysis, Kieker records informa-
tion about operation executions and about control
flow traces. We first introduce Kieker’s approach to
logging and reconstructing trace information before
example analyses and visualizations are presented
in Section III-B.

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 7

:CRM

getBook(...)

getOffers(...)

getBook(...)

searchBook(...)

:Bookstore :Catalog

Legend:

= trace
= call message

= return message
= execution with eoi i and ess j

0;0

i;j

1;1

2;1

3;2

Fig. 7

UML SEQUENCE DIAGRAM ILLUSTRATING OUR TRACE-RELATED

TERMINOLOGY

AbstractKiekerMonitoringRecord
<<abstract>>

KiekerExecutionRecord

+component
+operation

+traceId

+eoi
+ess
+tin
+tout

+compareTo()

+host

+sessionId

ExecutionTrace

+traceId

+toMessageTrace()

Message

+timestamp
+isCallMessage

MessageTrace

+traceId

messages

{ordered}1..*

1

11executions

{ordered}1..* 1

1 1

+sender

+compareTo()
1 1

+receiver

Fig. 8

UML CLASS DIAGRAM DEFINING THE TRACE-RELATED

INFORMATION IN KIEKER.TPAN

A. Logging and Reconstructing Trace Information

According to the UML [19], an operation is a behav-
ioral feature of a classifier. Examples are methods
associated to classes in object-oriented applications
and services provided by components. In our termi-
nology, operations are features of components that
implement provided services. An execution of such
an operation denotes the execution of the associated
behavior by the corresponding component instance at
runtime. The UML Sequence Diagram in Figure 7
includes four executions of three different operations
(getBook() is called twice).

Kieker includes the Monitoring Record type Kiek-
erExecutionRecord which can be used to write exe-
cution information into the Monitoring Log. As shown
in Figure 8, a KiekerExecutionRecord contains in-
formation about the executed operation, the corre-
sponding component, the hostname on which the

execution was performed, as well as timestamps, typ-
ically with nanosecond resolution, for the start (tin)
and end (tout) of an execution. Kieker includes
different Monitoring Probe types for logging Kiek-
erExecutionRecords within an application, which
look similar to the Monitoring Probe in Listing 1.

A request to a system-provided service results in
a nested control flow of corresponding executions,
referred to as a trace. Kieker provides efficient
facilities for attaching a unique trace identifier to
the thread executing a service request, which is
then contained in any KiekerExecutionRecord of
that trace (see Figure 8).

If the reconstruction of traces from a Monitoring
Log containing KiekerExecutionRecords would only
include the trace information presented so far, we
would require the following assumptions: (a) no two
execution start or end time events (tin/tout) within
the same trace occur at the same time; and (b) clocks
in a distributed system are perfectly synchronized
(both with respect to the respective time resolution).
Since both assumptions cannot be guaranteed in re-
alistic environments, Kieker includes efficient facili-
ties to attach two additional parameters to any Kiek-
erExecutionRecord in order to log the information
needed to reconstruct (distributed) traces from the
Monitoring Log reliably: an execution order index eoi
and an execution stack size ess (see Figure 8).

eoi: An execution with an execution order index
value i denotes the i-th execution started
within a trace (starting with the value 0).

ess: An execution with an execution stack size
value j denotes an execution that was
started when the depth of the calling stack
for the corresponding trace was j.

The executions shown in the example trace in Fig-
ure 7 are annotated with the corresponding execution
order index (eoi) and execution stack size (ess) values.
Note, that while an execution order index is unique
within a trace, an execution stack size value can, and
usually does, occur more than once.

In Kieker.Tpan, two equivalent representations of
traces are used internally: execution traces and mes-
sage traces. An execution trace representation of a
trace is simply the ordered (by execution order index
values) sequence of executions (stored as KiekerEx-
ecutionRecords, see Figure 8). A message trace
describes a trace in terms of an ordered sequence
of messages instead of executions. Each execution
can be described by a corresponding call message,

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 8

Listing 5

KIEKER.TPAN OUTPUT OF EXECUTION TRACE REPRESENTATION

TraceId 8430034814995791873 (NOSESSION):
<[0,0] 1257440666759412388-1257440666841265860 srv0::Bookstore.searchBook(..)>
<[1,1] 1257440666805601818-1257440666807695902 srv0::Catalog.getBook(..)>
<[2,1] 1257440666820790063-1257440666841169272 srv0::CRM.getOffers(..)>
<[3,2] 1257440666820839575-1257440666840922990 srv0::Catalog.getBook(..)>

Listing 6

KIEKER.TPAN OUTPUT OF MESSAGE TRACE REPRESENTATION

TraceId 8430034814995791873 (NOSESSION):
<SND 1257440666759412388 $-->srv0::Bookstore.searchBook(..)[0,0]>
<SND 1257440666805601818 srv0::Bookstore.searchBook(..)[0,0]-->srv0::Catalog.getBook(..)[1,1]>
<RVC 1257440666807695902 srv0::Catalog.getBook(..)[1,1]-->srv0::Bookstore.searchBook(..)[0,0]>
<SND 1257440666820790063 srv0::Bookstore.searchBook(..)[0,0]-->srv0::CRM.getOffers(..)[2,1]>
<SND 1257440666820839575 srv0::CRM.getOffers(..)[2,1]-->srv0::Catalog.getBook(..)[3,2]>
<RVC 1257440666840922990 srv0::Catalog.getBook(..)[3,2]-->srv0::CRM.getOffers(..)[2,1]>
<RVC 1257440666841169272 srv0::CRM.getOffers(..)[2,1]-->srv0::Bookstore.searchBook(..)[0,0]>
<RVC 1257440666841265860 srv0::Bookstore.searchBook(..)[0,0]-->$>

representing an operation call which starts the exe-
cution, and a return message, representing the end of
an execution returning the control flow to the calling
execution, as illustrated in Figure 7. For more de-
tails, refer to the associations sender and receiver in
Figure 8. Listings 5 and 6 show text representations
of the corresponding execution trace and a message
trace stored by Kieker.Tpan, respectively.

Figure 8 shows the relations among execu-
tions, messages, execution traces, and message traces.
While it is straightforward to derive execution traces
from the Monitoring Log, for later analysis it is usu-
ally easier to derive analysis models from message
traces. In Kieker.Tpan, execution traces are derived
from the Monitoring Log and then transformed into
equivalent message trace representations from which
analysis models and diagrams, as described in the
following Section III-B, are created.

B. Analysis and Visualization of Trace Information
As described in the previous Section III-A,
Kieker.Tpmon allows to log (distributed) trace infor-
mation to the Monitoring Log which can then be trans-
formed into two equivalent trace representations
using Kieker.Tpan, i.e., execution traces and message
traces. These representations constitute the basis for
trace-based analysis and visualization functionality
which can be integrated into the Kieker.Tpan compo-
nent. This section gives an overview of some of the
trace-based analysis and visualization functionality
which have been integrated into Kieker.Tpan so far:

$ DispatcherServlet CatalogBean CatalogService

doGet(HttpServletRequest, HttpServletResponse)

process(HttpServletRequest, HttpServletResponse)

viewCategory()

getProductListByCategory(String)

getCategory(String)

Fig. 9

UML SEQUENCE DIAGRAM GENERATED BY KIEKER.TPAN

sequence diagrams, dynamic call trees, dependency
diagrams, and Markov chains. By implementing a
Monitoring Record Consumer, as described in Sec-
tion II, it is easy to implement custom components
for analyzing and visualizing trace information em-
ploying the Kieker framework.

1) UML sequence diagrams: UML sequence di-
agrams provide a dynamic architectural viewpoint
in terms of interactions among runtime objects im-
plementing software services. In Figure 7 of the pre-
vious section, we used a sequence diagram to illus-
trate the trace-related terminology needed to define

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 9

Dynamic Call Tree: ’61’ 6410 occurrences

$

DispatcherServlet.doPos(.)

DispatcherServlet.proces(.)

AccountBean.signon() DispatcherServlet.doPos(.)

AccountService.getAccoun(.) Cat.getProductListByCategor(.) DispatcherServlet.proces(.)

Fig. 10

CALL TREE CORRESPONDING TO A TRACE EQUIVALENCE CLASS

GENERATED BY KIEKER.TPAN

execution traces and message traces. Message traces
can be transformed to UML sequence diagrams in
a straightforward way. Figure 9 shows such a UML
sequence diagram generated by a Kieker visualiza-
tion component for the iBATIS JPetStore which is a
demo Java Web application implementing an online
store scenario.3 We employ this case study to give
examples for visualizations in the present section.
Given the timing information included in the exe-
cution traces, the sequence diagrams could easily be
augmented with this additional data, e.g., observed
response times. The UML specification [19] and
the UML profiles for performance [21, 22] suggest
appropriate notations for performance annotations.

2) Dynamic call trees: Figure 10 shows an al-
ternative representation of a trace, called dynamic
call tree [23], generated by Kieker.Tpan. A dynamic
call tree contains the calling relations (call messages)
among operations, in contrast to a sequence diagram
which also includes the corresponding return mes-
sages. A dynamic call tree is an ordered graph,
where the order (left to right) corresponds to the
execution order of the nodes. In [17], we use the
control flow information contained in a dynamic
call tree to analyze the recorded response times
of operations based on the call tree position of the
corresponding executions.

When analyzing traces from the Monitoring Log,
a valuable initial analysis is to determine the trace
equivalence classes. Informally, a trace equivalence
class contains all traces which are equal in terms of
the control flow, i.e., the sequence diagrams of all

3The case study iBATIS JPetStore from http://ibatis.apache.org/ is
available as an instrumented version on the Kieker web page http:
//kieker.sourceforge.net/.

traces in an equivalence class are identical. Based on
the message traces this analysis can be implemented
efficiently. Figure 10 shows the dynamic call tree
common to all 6 410 traces in a trace equivalence
class extracted from the monitoring data of the
JPetStore example.

3) Dependency graphs: While sequence dia-
grams, or execution traces, provide a view on the
sequence of interactions among objects in a single
trace (or scenario/use case), it is often desirable
to analyze this information in an aggregated form.
Interactions among objects constitute runtime de-
pendencies among these system entities, which can
be described using weighted directed dependency
graphs: each entity is assigned a node and each
dependency relation an edge; the edge is directed
from an entity using a particular service to the entity
providing that service; the edges are augmented with
the total number of call actions among the respective
entities observed in the considered set of traces.

We implemented a Kieker.Tpan component which
computes dependency graphs, represented in ad-
jacency matrices, from a set of message traces.
These dependency graphs are then available for
further analysis or visualization. Figure 11 shows
a dependency graph generated by Kieker.Tpan, vi-
sualizing calling dependencies among classes of
the partly-instrumented JPetStore application. The
figure provides an aggregated view of the runtime
dependencies observed in 236 719 traces, resulting
from 250 concurrent users simulated by probabilis-
tic workload generation [24].

Dependency graphs are employed by some ap-
proaches to runtime reconfiguration [14] or fail-
ure diagnosis [12]. Figure 12 shows a dependency
graph that has been enhanced with anomaly score
information to support failure diagnosis. In this
visualization, three architectural levels (operation,
component, and deployment context) are displayed
and small histograms show the distribution of the
anomaly scores for each operation. Please refer
to [12] for a detailed discussion; in the present paper
this figure just serves as an illustration of possible
visualizations.

4) Markov chains: Markov chains are a com-
mon formalism used in reliability and performance
theory (see e.g. [25, 26]) to describe and analyze
random processes, such as system and user behavior.
A discrete-time Markov chain describes a process in
terms of a discrete number of states and probabilis-

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 10

$

com.ibat is . jpetstore.web.DispatcherServlet

2 3 6 7 1 9

2 6 1 0 2 1

com.ibat is . jpets tore .presentat ion.CatalogBean

1 5 4 2 3 1

com.ibat is . jpets tore.presentat ion.AccountBean

1 2 1 5 1

com.ibat is . jpets tore .presentat ion.CartBean

2 1 1 1 7

com.ibat is . jpets tore .presentat ion.OrderBean

2 3 0 0 9

com.ibatis. jpetstore.service.CatalogService

2 7 2 1 8 4 6 4 1 0

com.ibatis.jpetstore.service.AccountService

6 4 1 02 5 0 4 8

com.ibatis. jpetstore.service.OrderService

5 7 4 4

Fig. 11

COMPONENT DEPENDENCY GRAPH VISUALIZATION GENERATED BY KIEKER.TPAN

$

40912

Virtual Machine ’tier’
[41472/61098 | 0,03 | 25,90%]

43498

Virtual Machine ’scooter’
[818/2176 | 0,07 | 23,43%]

088

V rtual Machine ’puck’
[1447/2943 | 0,03 | 24,48%]

981

Virtual Machine ’klotz’

org apache struts action ActionServlet
[41827/85960 | 0 190 | 7 81%]

40912

presentation AccountBean
[494/1088 | 0 062 | 6 16%]

1088

presentation CartBean
[1107/2170 | 0 087 | 5 99%]

2170

presentation CatalogBean
[18138/26837 | 0 048 | 6 88%]

26837

presentation OrderBean
[1454/3917 | 0 094 | 7 18%]

3917

service hessian client OrderService
[484/981 | 0 057 | 6 19%]

981

1088

service hessian client AccountService
[523/1088 | 0 033 | 6 35%]

10884224 47353981

43498 1088

service hessian client CatalogService

getProductListByCategory(String
[6365/12437 | 0 161 | 0 006 | 3 14%]

1088

getCategory(String)
[6309/11349 | 0 216 | 0 037 | 3 04%

11349

getItemListByProduct(String)
[9167/9167 | 0 995 | 0 406 | 4 43%]

getItemListByProduct(String,int,int)
[9167/9167 | 0 995 | 0 488 | 4 69%]

9167

getProduct(String)
[3629/9167 | 0 046 | 0 281 | 2 27%]

9167

getProductL stByCategory(String nt int)
[6402 12437 | 0 161 | 0 106 | 2 82%]

12437

12437

91679167 1134911349

Deployment Context Level
Component Level

Component Level
Operation Level

Fig. 12

VISUALIZED HIERARCHICAL DEPENDENCY GRAPH [12]

R,ActionServlet.doGet(...),$

R,CatalogService.getItem(...),

CartBean.addItemToCart(...)

R,CartBean.add temToCart(...),

ActionServlet.doGet(...)

1.0

C,$,ActionServlet.doGet(...)

0.5

R,CatalogBean.viewItem(...),

ActionServlet.doGet(...)

R,CatalogService.getItem(...),

CatalogBean.viewItem(...)

1.0

C,CartBean.addItemToCart(...),
CatalogService.getItem(...)

0.5

C,ActionServlet.doGet(...),

CartBean.addItemToCart(...)

C,CatalogBean.viewItem(...),

CatalogService.getItem(...)

C,ActionServlet.doGet(...),

CatalogBean.viewItem(...)

1.0

1.0

1.0

1.0

1.0

1.0

Fig. 13

OPERATION-LEVEL MARKOV CHAIN FOR TWO

MESSAGE TRACES [15]

tic transitions–in discrete time steps–among these.
The characteristic property of a Markov chain is
that the next state of a process solely depends on the
process’s current state. An often used representation
of Markov chains are (finite) state machines.

As illustrated in Figure 13, Kieker can gener-
ate finite state machine representations of Markov
chains derived from a set of execution traces, where
the states represent the creation of a message within
a message trace and the edges connect subsequent
messages. The edges are labeled with the relative

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 11

frequencies, derived from the monitoring data, that
messages follow each other. A missing edge be-
tween two messages expresses that the monitoring
data analyzed contains no trace with a sub-sequence
containing only these two messages. Figure 19 in
Appendix I shows a single Markov chain generated
from the 236 719 traces of the JPetStore example.

Our method used to compute Markov chains from
execution traces is described in [16]. In that work,
we present an application-level intrusion detection
system by comparing execution traces with normal
behavior learned from monitoring data and modeled
as Markov chains.

IV. QUANTITATIVE OVERHEAD EVALUATION

This section provides a detailed quantitative assess-
ment of Kieker’s monitoring overhead using two
micro benchmarks. Based on the framework’s archi-
tectural description (see Section II), the goals are to
quantify (1) the overhead caused by Kieker.Tpmon’s
components and to quantify (2) the framework’s
scalability with respect to monitoring traces.

First, a short overview of possible causes for
overhead is given (IV-A), then the experiment de-
sign (IV-B) and the results of the two micro bench-
marks are presented (IV-C).

A. Causes of Overhead
Figure 14 presents a UML sequence diagram of
the typical framework-internal control flow for an
operation measurement with Kieker. Before any of
the actual operation code of the monitoredOpera-
tion in the MonitoredClass object is executed, the
triggerProbeBefore part of the KiekerMonitoring-
ProbeImpl is activated. Inside this probe, Kieker
collects data, such as the current time and operation
signature, before proceeding with the real operation
code of the monitoredOperation. After the actual
operation is finished, the triggerProbeAfter part of
the KiekerMonitoringProbeImpl is activated. There,
Kieker collects some additional data, such as the
response time of the execution or the return values
of the monitored operation. Finally, a Monitoring
Record (see Section II-A) is prepared and added
to an internal buffer by the KiekerMonitoringWri-
terImpl. This buffer is processed asynchronously
by one or more AsyncWriterThreads. To keep the
sequence diagram simple, the buffer is omitted in
Figure 14.

Listing 7

SINGLE CLASS APPLICATION

1 public class M o n i t o r e d C l a s s {
2 public void m o n i t o r e d O p e r a t i o n () {
3 /∗ spend 100 m i c r o s e c o n d s on c o m p u t a t i o n s ∗ /
4 }
5
6 public void m o n i t o r e d R e c u r s i v e O p e r a t i o n
7 (int r e c D e p t h) {
8 if (r e c D e p t h > 1) {
9 m o n i t o r e d R e c u r s i v e O p e r a t i o n (r e c D e p t h − 1) ;

10 } else {
11 m o n i t o r e d O p e r a t i o n ()
12 }
13 }
14 }

Furthermore, the sequence diagram is annotated
at the bottom with four different execution times,
i.e., the time spent executing the actual code of
the monitoredOperation (ΔA); the time spent while
triggering the probe before and after the actual
operation (ΔB); the time spent on collecting data
about the monitored operation (ΔC); and the time
spent writing the data (ΔD). The actual writing of
data by the asynchronous writer thread will also
have some impact on the overhead of Kieker and
will be accounted for in ΔD.

Thus, there may be three causes for overhead
introduced by Kieker in addition to the execution
time of the monitored service: (1) triggering of
the probe (ΔB), (2) collecting the data (ΔC), and
(3) writing the data (ΔD). Section IV-C describes
two lab experiments to quantify this overhead.

B. Experiment Design

The monitored application for the experiments con-
sists of a single Java class MonitoredClass, as
displayed in Listing 7, with two operations moni-
toredOperation and monitoredRecursiveOperation.

The experiments are performed on a modern
enterprise server machine in our Software Perfor-
mance Engineering Lab, in this case a X6270 Blade
Server with two Intel Xeon 2.53GHz E5540 Quad-
core processors and 24GB RAM running Solaris 10
and a SUN Java 64-bit Server VM in version
1.6.0 16-b01. Furthermore, AspectJ 1.6.6 with load-
time weaving is utilized to insert the particular
Monitoring Probes into the Java bytecode. Aside from
the experiment, the server machine is held idle and
not utilized.

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 12

�� �� ������

��������	
���������

�������	�����	
�����

������������	

������������	

����������	�
�����

����������	������������������	��
������

��������	
���� ���������	�
���	��������� ���������	�
���	���������	
 ���������	
����
�

�������
���������		�
�

��������������������	���
	

�����������		
��

���������	
�
����

�

Fig. 14

UML SEQUENCE DIAGRAM FOR OPERATION MONITORING WITH KIEKER

Each experiment consists of four runs, one run
for each measurement configuration. Thus, in the
first experiment run only the execution time of
the monitored operation (or chain of operations) is
determined (ΔA). In the second run, each monitored
operation is instrumented with an empty AspectJ-
based Monitoring Probe, thus the durations ΔA + ΔB

are measured. The third run adds the collection
of data with an AspectJ-based Monitoring Probe
capable of monitoring traces (see Section III-A)
(ΔA + ΔB + ΔC), while the fourth run finally re-
presents the measurement of full monitoring with
the addition of the asynchronous filesystem Monitor-
ing Log Writer (AsyncFSConnector) (see Section II-
C) (ΔA + ΔB + ΔC + ΔD). With this experiment
design, we can incrementally measure the three
causes for monitoring overhead.

Each experiment run consists of two phases, a
warm-up phase and a measurement phase. Both
phases are, in principle, identical, but only measure-
ments of the measurement phase are recorded for
later analysis, since measurements taken during the
warm-up phase are subject to significant variance
in the timing behavior due to class loading, just-
in-time compilation, etc. After each run, there is a

short idle time to allow the system to calm down
and to finish any open tasks.

The experiment code is available on Kieker’s web
page, such that interested researchers may repeat
and extend our experiments.

C. Experiment Results
We report on the experiment results concerning the
overhead caused by Kieker’s components and the
scalability of monitoring traces.

1) Overhead of Kieker’s Components: This first
experiment is designed to determine the overhead
caused by Kieker.Tpmon’s components when mon-
itoring individual operations, here a call to moni-
toredOperation. The normal execution time of this
operation (ΔA) is about 100 microseconds. In each
run of this experiment, a total of 100 000 000 oper-
ation calls is performed, but only the last 1 000 000
(i.e., after the warm-up phase) are recorded and
analyzed.

The results of this experiment are displayed in
Tables I and II, and in Figure 15. In addition to
the box-and-whisker plot [27] of the experiment
results, the particular mean values with their 95%
confidence intervals (CI) are included. Furthermore,

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 13

1. No instr. 2. Empty probe 3. Data collection 4. Writing to disk

10
0.

5
10

1.
0

10
1.

5
10

2.
0

10
2.

5
10

3.
0

R
es

po
ns

e
tm

e
(m

cr
os

ec
on

ds
)

ΔA ΔA + ΔB ΔA + ΔB + ΔC ΔA + ΔB + ΔC + ΔD

Measurement configuration

95% CI

M
ea

n
ex

ec
ut

on
 t

m
e

(m
cr

os
ec

on
ds

)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.043

0.982

1.286 DΔ

CΔ

BΔ

Fig. 15

RESULTS OF THE EXPERIMENT ON OVERHEAD OF KIEKER COMPONENTS ON A SINGLE MONITORED OPERATION

1st run 2nd run 3rd run 4th run

1. Quartile 100.53 100.54 101.52 102.73
Median 100.53 100.58 101.54 102.78

3. Quartile 100.53 100.58 101.56 102.85
LCL Mean 100.54 100.58 101.55 102.84

Mean 100.54 100.58 101.56 102.85
UCL Mean 100.54 100.58 101.57 102.86

Std. dev. 0.59 1.85 4.26 5.65

TABLE I

RESULTS OF THE EXPERIMENT ON OVERHEAD OF KIEKER

COMPONENTS ON A SINGLE MONITORED OPERATION (ALL

VALUES ARE RESPONSE TIMES IN MICROSECONDS)

ΔB ΔC ΔD Σ
Mean 0.043 0.982 1.286 2.311

Median 0.044 0.968 1.241 2.253

TABLE II

MEAN AND MEDIAN VALUES (IN MICROSECONDS) OF ΔB , ΔC ,

AND ΔD AS RESULTS OF THE EXPERIMENT ON OVERHEAD OF

KIEKER COMPONENTS ON A SINGLE MONITORED OPERATION

a staple diagram of the mean values of ΔB, ΔC , and
ΔD illustrates on the right hand side in Figure 15 the
proportions of the overhead caused by the particular
Kieker.Tpmon components.

The measured execution time ΔA is, as expected,
just about 100 microseconds. The addition of the
empty Monitoring Probe (ΔA + ΔB) has a negligible

effect of just about 40 additional nanoseconds. The
collection of data with the trace-capable Monitoring
Probe (ΔA + ΔB + ΔC) adds another microsecond,
while recording monitoring data to the disk with the
Monitoring Log Writer (ΔA + ΔB + ΔC + ΔD) costs
another 1.3 microseconds. The offset of the mean
value of ΔD over the median of ΔD hints at
a greater variability of measured execution times,
particularly higher execution times, due to hard disk
access. In summary, the total, constant overhead
for monitoring an operation with Kieker is under
2.5 microseconds on the X6270 Blade Server.

2) Scalability of Monitoring Traces: The second
experiment is designed to assure that the measured
overhead scales linearly with additional operation
calls. A recursive operation call (monitoredRecur-
siveOperation in Listing 7) is used to simulate a
chain of nested operation calls, typically occurring
in traces. Each execution of monitoredOperation
takes about 100 microseconds and each additional
recursion step in monitoredRecursiveOperation adds
only a few additional nanoseconds. To simulate
different depths of traces, the experiment is repeated
with recursion depths from 1 to 10. In each run of
each repetition, a total of 100 000 000 recursive op-
eration calls is performed, but only the last 100 000
are recorded and analyzed, as before.

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 14

10
0

10
5

11
0

11
5

Recursion depth

R
es

po
ns

e
tm

e
(m

cr
os

ec
on

ds
)

1 2 3 4 5 6 7 8 9 10

95% CI

Fig. 16

RESULTS OF THE EXPERIMENT ON SCALABILITY OF MONITORING TRACES WITH KIEKER ON A MONITOREDRECURSIVEOPERATION()

CALL. FOR EACH RECURSION DEPTH, THE RESULTS OF THE FOUR CONFIGURATIONS ARE SHOWN (ACCORDING TO FIGURE 15).

Recursion depth 1st run 2nd run 3rd run 4th run

1 100.68 100.75 102.84 104.63
2 100.82 100.87 103.86 106.49
3 100.69 100.91 104.85 106.83
4 101.05 101.01 106.20 108.35
5 100.69 101.07 107.02 109.26
6 100.67 101.25 108.03 111.49
7 100.69 101.26 109.18 112.89
8 100.80 101.30 110.21 115.07
9 100.70 101.86 111.39 116.50

10 100.82 101.51 112.38 117.86

correlation coefficient -0.02 0.92 0.99 0.99

TABLE III

LINEAR DEPENDABILITY: CORRELATION OF RECURSION DEPTH

AND RESPONSE TIME (ALL VALUES ARE MEAN RESPONSE TIMES

IN MICROSECONDS) AS RESULTS OF THE EXPERIMENT ON

SCALABILITY OF MONITORING TRACES

The recorded results of this experiment are dis-
played in Table III and Figure 16. Again, the mea-
sured execution time of ΔA is just about 100 mi-
croseconds, the effect of additional recursion steps is
negligible. The empty Monitoring Probe (ΔA + ΔB)
and the collection of data with the trace-capable
Monitoring Probe (ΔA + ΔB + ΔC) scale linearly
(correlation coefficient is 92% and 99% respec-
tively) with increasing recursion depths. Finally,
the full instrumentation of the Kieker monitoring

framework, including the recording of monitor-
ing data to the hard disk with the Monitoring Log
Writer (ΔA + ΔB + ΔC + ΔD), scales linearly as
well (correlation coefficient is 99%), but there is
a higher variance due to hard disk access, as can be
seen in the box plot.

Furthermore, we were able to assure the linear
scalability of monitoring traces with additional oper-
ation calls up to a recursion depth of 128, but we had
to increase the monitoredOperation’s execution time
to 1 millisecond. Additionally, the internal buffer
used by the Monitoring Log Writer had to be increased
significantly. Since monitoring a trace of operations
up to a depth of 128 nested operations, taking a total
response time of 1 millisecond, is not a realistic
setting, we omitted the detailed results.

V. INDUSTRIAL EVALUATION

In the context of two case studies, a first with a
digital photo service provider (CS-1) and a sec-
ond with a telecommunication company (CS-2),
the Kieker framework was evaluated by continu-
ously monitoring operational software services in
real-world systems. Both case study systems were
enterprise-scale Web-based customer portals em-
ploying Java technology. This enabled an integration

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 15

of the Kieker.Tpmon component to monitor service-
internal traces, as described in Section III. The
goals of both case studies were to evaluate the
practicality of such fine-grained monitoring under
real workload conditions. In each case, the analysis
of the filesystem Monitoring Log using Kieker.Tpan
was performed offline.

In CS-1, Kieker.Tpmon was used during one week
to log traces inside a single node of a load-balanced
cluster of homogenous application servers. 161 op-
erations were instrumented, covering a subset of the
provided software services for ordering digital photo
prints and other photo products. No observable
overhead was reported comparing the performance
of the instrumented node with the performance of
the other cluster nodes which were exposed to the
same workload conditions. CS-1 is not discussed in
the present paper. Performance evaluation results of
this case study can be found in [18].

The remainder of this section describes how
Kieker.Tpmon is being used in the context of CS-2
to monitor distributed traces in a customer portal
provided by the EWE TEL GmbH, one of the largest
regional telecommunication providers in the north
of Germany. The customer portal provides services
such as account configuration to the customers.
Section V-A describes the case study system’s archi-
tecture; Section V-B describes how the system was
instrumented using Kieker.Tpmon to log distributed
trace information; and Section V-C presents some
results of the analysis employing Kieker.Tpan.

A. System Architecture

Figure 17 illustrates the four-tier system architecture
consisting of client, web server, application server
and database sources. Front-end server nodes in
the web presentation tier handle Web-based service
requests. The front-end nodes request services from
two application server nodes in the business-tier via
SOAP Web service calls. The business-tier nodes
access a replicated cluster of database servers as
well as various services from the back-end tier, e.g.,
via SOAP or EJB calls.

The dashed rectangle in Figure 17 highlights the
four server nodes that have been instrumented using
Kieker.Tpmon: two front-end server nodes, referred
to as FE0 and FE1 in this paper, as well as the
two business-tier application server nodes, referred
to AS0 and AS1. A hardware load balancer (H/W

LB) distributes incoming HTTP requests to the
homogeneous (in terms of hardware and software)
replicated front-end nodes FE0 and FE1. Both FE0
and FE1 host three parallel customer portal instances
and serve static and dynamic Web content. The por-
tal instances are Java EE Web applications jointly
deployed into an Apache Web Server/Java EE con-
tainer installation. Both front-end nodes distribute
the Web service calls to the homogeneous business-
tier nodes AS0 and AS1 in a round-robin fashion
(using Apache’s mod proxy balancer module4). The
Java application logic on all four nodes is imple-
mented using the Spring framework5 and employing
Apache CXF6 for calling and, respectively, provid-
ing Web services.

B. Instrumentation
Six Kieker.Tpmon instances on the front-end nodes
(one for each portal) in addition to one Kieker.Tpmon
instance per business-tier node, result in a total
number of eight concurrent Kieker.Tpmon instances
distributed over the four server nodes. Each in-
stance is configured to use an asynchronous file
system writer, as described in Section II, writing
the Monitoring Log to the the local file system. Six
different Monitoring Probe types are integrated on
three layers of the software architecture to jointly
monitor distributed execution traces across the server
nodes of the front-end and business-tier. KiekerExe-
cutionRecords are used as the Monitoring Record type
representing the data of an execution, as described
in Section III,

1) A Monitoring Probe on the front-end nodes
intercepts incoming HTTP service requests
and initializes the trace and session informa-
tion for this request, including a unique trace
identifier, as well as the initialization of the
execution order index and execution stack size
values (see Section III). After the execution of
the actual request, the Monitoring Probe resets
the trace information and logs the execution on
the HTTP request level.

2) Two CXF Monitoring Probes on the front-end
nodes are used to intercept outgoing Web
service calls as well as the corresponding
responses to and from the business-tier. For

4http://httpd.apache.org/docs/2.2/mod/mod proxy balancer.html
5http://www.springsource.org/
6http://cxf.apache.org/

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 16

<<device>>
Front−End Server

(on−site)

<<execution environment>>
Web Server/

<<artifact>>
PortalServiceB

<<artifact>>
PortalServiceC

<<artifact>>
PortalServiceA

<<device>>
Application Server

<<execution environment>>
Java EE Container

<<artifact>>
BusinessServices

<<device>>
Front−End Server

(off−site)

<<device>>
Back−End
System

<<device>>
DB Cluster

Client

<<device>>

H/W LB

<<device>>

0..1

*

12

M2

N2

22

2

K

0..1

*

21

<<device>>
3rd Party
System

Java EE Container

instrumented subsystem

Fig. 17

FOUR-TIER ARCHITECTURE OF THE INDUSTRIAL CASE STUDY SYSTEM (CS-2).

each outgoing Web service call, the trace and
session identifiers, as well as the execution
order index value are integrated into the corre-
sponding SOAP message. A trace’s execution
order index value is updated according to the
value contained in the response message sent
by the business-tier node.
Two corresponding CXF Monitoring Probes are
integrated into the business-tier nodes to
manage the trace and session information of
incoming and outgoing SOAP messages.
A Web service call results in a logged execu-
tion on the calling front-end node and a logged
execution on the called business-tier node.

3) A Spring-based Monitoring Probe intercepts and
logs executions of the business service imple-
mentations on the business-tier nodes.

C. Trace Reconstruction Results
Figure 18 shows a sequence diagram of a distributed
trace from the case study system. It was recon-
structed and visualized by Kieker.Tpan, according
to Section III. Here, it has been slightly shortened
to fit on the page. It was possible to perform the
analyses and to create the visualizations presented
in Section III, since we used the same Monitor-

ing Record type KiekerExecutionRecord to record
the executions including the trace information. The
trace in Figure 18 originates from a portal request
dispatched by the load balancer to front-end node
FE0. The trace is initiated by a call message to
the operation doFilter(..) which is the Monitoring
Probe intercepting the incoming HTTP request and
initializing the trace and session information for this
trace in the Kieker.Tpan instance on node FE0. The
visualized part of the trace contains eight recorded
remote calls from the front-end to the application
server nodes AS0 and AS1. Each of these calls
results in the same nesting of executions contained
in the Monitoring Log: the recorded Web service call
on the front-end and the corresponding Web service
request on the application servers, followed by the
execution of the requested business service on the
respective application server.

Due to Kieker’s distributed tracing functionality
it is now possible to perform distributed tracing
among front-end and business-tier nodes in the case
study system, which is helpful for failure diagnosis.
Moreover, the session information which was only
available on the front-end nodes before, is now
available to analyses regarding the business-tier.

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 17

$

doFilter()

handleMessage()

handleMessage()

checkLogin()

handleMessage()

handleMessage()

ge AccountInfos()

handleMessage()

handleMessage()

getCustomerAccount()

handleMessage()

handleMessage()

getCustomerAccount()

handleMessage()

handleMessage()

getCustomerAccount()

handleMessage()

handleMessage()

getCustomerAccount()

handleMessage()

handleMessage()

getCustomerAccount()

handleMessage()

handleMessage()

getPac ageConfiguration()

FE0

:KiekerRequest
Registrat onAnd
LoggingFilter

:KiekerTpmon
ResponseIn
Probe

AS1

:AccountService
:KiekerTpmon
ResponseOut
Probe

AS0

:AccountService
:KiekerTpmon
ResponseOut
Probe

Fig. 18

RECONSTRUCTED SEQUENCE DIAGRAM OF A DISTRIBUTED

TRACE SPANNING THREE SERVER NODES

In the previous Section IV, we present a de-
tailed quantitative overhead evaluation of monitor-
ing with Kieker in the controlled environment of
our Software Performance Engineering Lab. In the
industrial case studies, such controlled, quantitative
measurements were not possible, since the load
of these systems is out of our control. However,
as a qualitative evaluation we can report that our
industrial partners in both case studies could not
observe any perceivable runtime overhead.

VI. REQUIRED DESIGN DECISIONS FOR

MONITORING

From our experience with engineering of lab experi-
ments and, particularly, industrial case studies, we
observed that the integration of monitoring features
into software services should be considered early in
the engineering process [28]. In the following para-
graphs we discuss several required design decisions
concerning continuous monitoring.

Selection of Monitoring Probes: A monitoring
probe contains the logic which collects and possibly
pre-processes the data of interest of the application.
Probes can measure externally visible behavior, e.g.,
service response times, but also application-internal
behavior, such as calling dependencies between
components. In practice, new application-internal
monitoring probes are often only introduced in an
ad-hoc manner, as a result of a system failure.
For example, a probe for monitoring the number
of available database connections in a connection
pool may have been introduced. The selection of
the types of monitoring probes must be driven by
the goal to be achieved by the gathered monitoring
data and depends on the analysis goals.

Number and Position of Monitoring Points: In
addition to the above-mentioned decision of what
types of monitoring probes are integrated into the
system, important and highly challenging decisions
concern the number and the exact locations of
monitoring points. This decision requires a trade-
off between the information quality available to
the analysis tasks and the overhead introduced by
possibly too fine-grained instrumentation yielding
an extensive size of the monitoring log. The number
and position of monitoring points also depend on the
goal of monitoring. Additionally, the different usage
scenarios of the application must be considered,
since an equally distributed coverage of activated

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 18

monitoring points during operation is desirable. For
instance, for failure diagnosis, the instrumentation
is guided by the desired granularity of fault local-
ization.

Intrusiveness of Instrumentation: A major
maintainability aspect of application-level moni-
toring is how monitoring logic is integrated into
the business logic. Maintainability is reduced if
the monitoring code is mixed with the source
code of the business logic, because this reduces
source code readability. We consider the use of the
AOP (Aspect-Oriented Programming) paradigm [8]
as an extremely suitable means to integrate monitor-
ing probes into an application. A popular Java-based
AOP implementation is AspectJ. Many middleware
technologies provide similar concepts, often based
on interception. Examples are the definition of filters
for incoming Web requests in the Java Servlet API,
the method invocation interceptors in the Spring
framework, or handlers for incoming and outgoing
SOAP messages in different Web service frame-
works. Kieker currently supports AOP-based mon-
itoring probes with AspectJ, Spring, Servlets, and
SOAP.

Physical Location of the Monitoring Log:
The monitoring data collected within the moni-
toring probes is written to the so-called monitor-
ing log. The monitoring log is typically located
in the filesystem or in a database. The decision
which medium to use depends on the amount of
monitoring data generated at runtime, the required
timeliness of analysis, and possibly restricted access
rights or policies. A filesystem-based monitoring log
is fast, since usually no network communication
is required. The drawback is that online analysis
of the monitoring data is not possible or at least
complicated in a distributed setting. A database
brings the benefit of integrated and centralized
analysis support such as convenient queries but
is slower than a file system log due to network
latencies and the overhead introduced by the DBMS.
Moreover, the monitoring data should not be written
to the monitoring log synchronously since this has
a considerable impact on the timing behavior of
the executing business service. For online analysis,
communication of monitoring data via messaging
queues is required. Kieker includes different syn-
chronous and asynchronous monitoring log writers
for file system, database, and for message queues.
Customized writers can be integrated into Kieker.

Monitoring Overhead: It is clear that contin-
uous monitoring introduces a certain overhead to
the running system. Of course, the overall overhead
depends on the number of activated monitoring
points and its activation frequency. The overhead
for a single activated monitoring point depends on
the delays introduced by the resource demand and
process synchronizations in the monitoring probes,
the monitoring control logic, and particularly I/O
access for writing the monitoring data into the mon-
itoring log. It is a requirement that the monitoring
framework is as efficient as possible and that the
overhead increases only linearly with the number
of activated monitoring points, i.e., each activation
of a monitoring point should add the same constant
overhead. Of course, this linear scaling is only
possible up to a certain point and depends on the
average number of activated monitoring points, i.e.,
the granularity of instrumentation. In Section IV,
we provide a detailed evaluation of Kieker’s runtime
overhead.

VII. RELATED WORK

Related work includes monitoring frameworks and
tracing in distributed systems (VII-A), dynamic
analysis and architecture discovery (VII-B), and
approaches for instrumentation with monitoring
probes (VII-C).

A. Monitoring Frameworks and Tracing in Dis-
tributed Systems
An integrated monitoring framework considers two
aspects: (1) instrumentation and logging of moni-
toring data, and (2) its subsequent analysis. Such
an integrated approach for tracing runtime paths in
Java EE systems is provided by the COMPAS JEEM
tool [29]. With COMPAS, probes are inserted at
deployment time as a proxy layer to the target com-
ponents (e.g., EJBs at the business tier, Servlets or
JSPs at the Web tier). The approach is non-intrusive
and portable across any Java EE application server,
but interception is limited to a level specified by the
component interfaces.

Magpie [30, 31] monitors request resource con-
sumption and component interactions on the soft-
ware component level in distributed systems. Early
versions of Magpie [31] used unique tokens to
distinguish requests from each other. These tokens
are propagated from one component to the next

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 19

to reconstruct traces. A later implementation of
Magpie [30] replaced the token passing to a method
based on events and timestamps in order to distin-
guish concurrent requests. In distributed systems,
Magpie uses synchronization events between trans-
mitted and received packets to connect request data
spanning multiple system nodes. For non-distributed
systems, Kieker supports both timestamp-based and
token-based trace distinction, and in distributed
systems, Kieker depends on token-passing while
Magpie uses cross-machine synchronization events.
Magpie has been implemented for Microsoft tech-
nology, while Kieker has been implemented for Java
technology.

Basic principles of message tracking in dis-
tributed systems based on Web Service calls are
in [32]. A more general algorithm called SAMEtech
for merging traces in distributed systems is de-
scribed by Israr et al. [33]. Similar to Kieker, it can
connect traces in distributed systems independently
from local clocks. SAMEtech reconstructs compo-
nent interaction trees by correlating recorded event
messages of method calls and returns. A limitation
is that component internal parallelism (forking) is
not supported. To be able to distinguish concurrent
processes across nodes, specific requirements on the
timestamp mechanisms, on message delivery, or on
the message inherent information (particularly caller
and callee references) have to be fulfilled. SAME-
tech can derive Layered Queueing Networks from
monitoring data. Israr et al. [33] assume that a tool
provides traces, and outline how trace monitoring
has to be performed in distributed systems. Kieker
could be used to monitor such traces for distributed
and non-distributed systems.

The Rainbow project [5] utilizes model-based
monitoring in the context of architecture-based
adaptation of software systems. Low level system
information such as load or response time is mea-
sured by probes and can be published or queried.
The system’s architectural model is kept up-to-
date at runtime applying the concept of so called
gauges [34]. A gauge aggregates low level system
information delivered by probes and interprets them
in the context of higher-level models. Appropriate
self-adaptation steps are determined and executed
once a constraint violation is detected.

The dynamic analysis approach Pinpoint and
follow-up publications [35–37] for problem de-
termination perform runtime monitoring for fail-

ure diagnosis. Pinpoint tags client requests moving
through the system and uses data mining techniques
to correlate probable failures of these requests to
determine which components are most likely to be
faulty. Anomaly detection is an actual application
of Kieker as well [12]. Pinpoint has no focus on
performance analysis, in contrast to Kieker.

A recent survey [38] indicates that software en-
gineers consider performance as a highly critical
requirement, but at the same time monitoring tools
that may be applied at the application level are
seldom used in practice; particularly no open-source
monitoring tools. Nagios,7 for instance, is a popular
monitoring tool for infrastructure monitoring, but
it is not intended for application-level monitoring.
Example commercial products are DynaTrace,8 and
JXInsight.9

B. Dynamic Analysis and Architecture Discovery
Related work in this section covers approaches
for reconstructing dynamic as well as structural
architecture views from runtime information. Stud-
ies concerning the execution of software services,
known as dynamic analysis, have recently been
surveyed by Cornelissen et al. [6]. Ducasse and
Pollet [39] survey software architecture reconstruc-
tion methodologies including approaches exploiting
runtime information.

Briand et al. [3] present an approach for re-
verse engineering of UML sequence diagrams from
distributed Java software. Similar to our approach,
AspectJ is suggested for instrumentation. The gen-
erated sequence diagrams are more detailed than
in our approach: different object instances of one
class are distinguished from each other and, beyond
method entry and exit points, conditions and loops
are instrumented manually. Kieker could easily be
extended to gain comparable results by adding suit-
able probe and record types. In [3], instrumentation
of remote calls is limited to RMI, while Kieker also
supports Web services.

The tool VET [40] allows the visualization of
previously recorded execution traces. Traces and
dependencies are depicted in sequence and so-called
class association diagrams. The latter are basically
matrix views of the Markov Chains which can be
generated by Kieker.

7http://www.nagios.org
8http://www.dynatrace.com/en/
9http://jinspired.com/products/jxinsight

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 20

Another reverse engineering environment for Java
software systems called Shimba has been published
by Systä et al. [41]. In contrast to the previous and
our approach, Shimba combines static and dynamic
analysis to achieve better reverse engineering re-
sults. It requires to run the target software under
a customized debugger and is consequently not
intended for continuous operation. Shimba allows
to synthesize statechart diagrams automatically from
sequence diagrams, which is not yet a capability, but
a possible extension of Kieker.

Different perspectives on an application’s runtime
behavior have been proposed by de Pauw et al. [42].
The implementation of their former tool Jinsight has
influenced parts of Eclipse’s Test & Performance
Tools Platform.10 Several prior approaches, provid-
ing similar visualizations as Kieker, are surveyed
in [43].

Two novel trace visualization techniques, called
massive sequence and circular bundle view, are
introduced with the Extravis tool by Cornelissen
et al. [44]. These visualization techniques emphasize
scalability assuming that vast amounts of data are
collected at runtime.

Besides deriving dynamic lower level system
views, several approaches consider static system
properties and interpretation of system events at
more abstract architectural level. Schmerl et al. [45]
propose the approach DiscoTect for bridging the ab-
straction gap. DiscoTect applies a language for map-
ping implementation conventions to architectural
styles. The mapping is translated to state machines,
which are processed at runtime. Monitored system
events serve as state machine triggers and initiate
the construction of architectural model elements.
Architectures are represented using the Acme ar-
chitecture description language [46]. Monitoring in
DiscoTect employs JPDA [47], which causes the
target system to run 10 times slower compared to the
non-instrumented system (see [45]) and is therefore
not suitable for continuous operation, as Kieker is.

Walker et al. [48] include a mapping step for dis-
covering architectures. They propose mapping soft-
ware system traces to architectural views. The focus
lies on providing an efficient encoding technique
for dynamic trace information and the flexibility
for manipulating traces from a variety of different
architectural viewpoints.

10 http://www.eclipse.org/tptp/

C. Monitoring Instrumentation

To observe and analyze the runtime behavior of
a software system during operation, it has to be
instrumented with monitoring probes. The probes
collect information about the system’s control and
data flow at application level which is used for
analysis. As monitoring is a cross-cutting concern,
techniques that do not require source code intrusion,
but inject monitoring aspects during the building
process, are appropriate. There exists several related
work concerning probe instrumentation techniques
at application level.

The open source projects Glassbox11 and In-
fraRED12 use AspectJ for aspect-oriented instru-
mentation, as Kieker does. Both tools do not aim
at tracing of requests across distributed Java EE
application servers. Govindraj et al. [49] report that
the performance overhead with InfraRED is usually
between 1-5% of response times for a variety of
enterprise Web applications and up to 10% if call
trees are traced. As these numbers are very vague,
we decided to quantify the monitoring overhead
concerning Kieker with high precision, see Sec-
tion IV.

AspectJ utilizes BCEL [50] for bytecode instru-
mentation. The InsECTJ project13 [51], which is
also based on BCEL, provides a generic instrumen-
tation framework for collecting application runtime
information. InsECTJ is implemented as an Eclipse
plug-in, through which probes from a delivered
catalog can be re-used to instrument an existing ap-
plication. Another AOP framework is GluonJ [52],
which is built on the Javassist bytecode manipu-
lation library [53] and claims to be more suitable
for expressing inter-component dependencies than
AspectJ.

Alternative instrumentation approaches besides
AOP, which have usually to be disposed at design
time, are performance management specifications
like JMX [54] or ARM [55]. Both specify a method
and provide APIs for integrating enterprise appli-
cations as manageable entities, including means to
measure performance and usage metrics.

Several approaches address the application of
monitoring by means of integrating software sys-
tem instrumentation into a model-driven engineer-

11 http://www.glassbox.com/
12 http://infrared.sourceforge.net/
13 http://insectj.sourceforge.net/

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 21

ing (MDE) process. These approaches automati-
cally generate instrumentation code from applica-
tion models. Early work in this field is contributed
by Klar et al. [56] who propose separate program
models such as a functional program model, a
functional implementation model, and a monitoring
model. A number of tools have been developed
to support the construction of graph models and
automatic instrumentation of programs written in C.
For instance, Huang and Steigner [57] consider the
utilization of separate measurement models for C
as an approach to model-driven instrumentation of
parallel programs.

Approaches to model-driven instrumentation
for monitoring SLAs employing standard meta-
models [58, 59]), have been proposed for the do-
mains of component-based [60] and service-based
systems [61].

A model-based approach for semi-automatically
generating probes and enforcing policies on services
in a SOA environment is presented by Bai et al.
[62]. MoDePeMART [63] is an approach for model-
driven performance measurement and assessment.
It suggests a domain specific language (DSL) for
metrics specification. Instrumented code for data
collection and storage is generated from models
annotated with the DSL. The DSL has been realized
as a UML profile for class and state diagrams.

Schaefer et al. [64] present an approach for
model-driven instrumentation of distributed sys-
tems. Several instrumentation patterns specify roles,
positioning, and dependencies of monitoring points
and have been implemented as a UML profile. It
should be possible to integrate such model-driven
approaches with Kieker, such that Kieker’s instru-
mentation code would be generated from design
models.

VIII. CONCLUSIONS

In this paper, we present the Kieker framework for
continuous monitoring of software services. Kieker
provides a common monitoring record model for
data collection and subsequent analyses. Distributed
environments are supported, such that service re-
quests, which cross different execution containers,
can be traced. The framework provides an extensible
architecture and supports the construction of ad-
ditional monitoring record types, probes, analyses,
and visualizations.

We report on extensive lab studies as well as
on industrial case studies with operational software

services of a telecommunication customer self ser-
vice and a digital photo submission service. The
investigation of Kieker’s runtime overhead has been
a specific focus in our qualitative and quantitative
evaluation. The experimental evaluation showed that
Kieker imposes only a small linear overhead, and
that it is applicable in industrial settings. Together
with the source code, our experiment data is avail-
able such that interested researchers can repeat and
extend our lab experiments.14

In addition to the presented micro benchmarks,
we are currently analyzing the overhead of monitor-
ing for the industrial standard SPECjAppServer2004
benchmark.15 SPECjAppServer2004 is a Java EE
benchmark, meant to measure the performance and
scalability of Java EE application servers. Usually,
two or more different application server configura-
tions run the benchmark suite and are compared.
Conversely, we intend to deploy a fixed configu-
ration and modify the benchmark, first the normal
benchmark is executed and its throughput perfor-
mance is recorded, then we instrument the bench-
mark application to various degrees with monitoring
probes and analyze the performance overhead in that
setting.

As future work we also intend to address the
following issues:

• Model-driven instrumentation: We will inves-
tigate the combination of Kieker with model-
driven instrumentation [63].

• Architecture compliance checking: We intend
to compare prescriptive architectural models,
which are designed in forward engineering,
with architectural models reconstructed based
on monitored runtime information [65].

• Business activity monitoring: So-called key
performance indicators (KPIs) are monitored
for continuous business activity monitor-
ing [66]. In collaboration with a local soft-
ware company, we are currently investigating
how monitoring probes for such KPIs may
be integrated into Kieker for business activity
monitoring.

• Interactive visualization: As existing visualiza-
tions, such as hierarchical dependency graphs,
tend to become complex for real systems, we
intend to extend their visual tools with interac-
tive features.

14http://kieker.sourceforge.net/
15http://www.spec.org/osg/jAppServer2004

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 22

ACKNOWLEDGMENT

This work is supported by the German Research Foundation (DFG), grant GRK 1076/1. In addition, the
authors would like to thank Thilo Focke for implementing and deploying the first version of Kieker at
EWE TEL, Marco Lübcke for deploying a later version of Kieker at CeWe Color, and Sergej Alekseev
for providing us with monitoring data from Nokia Siemens Networks for analysis with Kieker. Thanks to
Nils Sommer, Lena Stöver, Robert von Massow, and Nina Marwede for contributing various code parts
to Kieker.

APPENDIX I
OPERATION CALL GRAPH AND MARKOV CHAIN

Operation call probability graph generated by Kieker
Edges represent ca ls (subcalls, no returns) labeled by probability, states operation executions
image created on 2009 11 09 21 46 37

0−18

0−4

0−17

0.5

0−16

0.5

0−15

0−2

1 0.0370.0570.028

0−12

0.051

0−14

0.051

0−8

0.292

0−20

0.028

0−11

0.236

0−1

0.162

0−3

0.025

0−5

0.025

0−13

1

0−7

0.5

0−6

0.5

0−19

0.50.5

0−9

0.5

0−10

0.51

1

Op 0−1 com.ibatis.jpetstore.presentation.CatalogBean.viewItem()
Op 0−2 com.ibatis.jpetstore.web.DispatcherServlet.process(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Op 0−3 com.ibatis.jpetstore.web.DispatcherServlet.doGet(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Op 0−4 com.ibatis.jpetstore.service.CatalogService.getItem(java.lang.String)
Op 0−5 com.ibatis.jpetstore.presentation.AccountBean.signoff()
Op 0−6 com.ibatis.jpetstore.service.CatalogService.getProductListByCategory(java.lang.String)
Op 0−7 com.ibatis.jpetstore.service.CatalogService.getCategory(java.lang.String)
Op 0−8 com.ibatis.jpetstore.presentation.CatalogBean.viewCategory()
Op 0−9 com.ibatis.jpetstore.service.CatalogService.getItemListByProduct(java.lang.String)
Op 0−10 com.ibatis.jpetstore.service.CatalogService.getProduct(java.lang.String)
Op 0−11 com.ibatis.jpetstore.presentation.CatalogBean.viewProduct()
Op 0−12 com.ibatis.jpetstore.presentation.OrderBean.newOrderForm()
Op 0−13 com.ibatis.jpetstore.service.OrderService.insertOrder(com.ibatis.jpetstore.domain.Order)
Op 0−14 com.ibatis.jpetstore.presentation.OrderBean.newOrder()
Op 0−15 com.ibatis.jpetstore.web.DispatcherServlet.doPost(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
Op 0−16 com.ibatis.jpetstore.service.CatalogService.isItemInStock(java.lang.String)
Op 0−17 com.ibatis.jpetstore.presentation.CartBean.addItemToCart()
Op 0−18 com.ibatis.jpetstore.presentation.CartBean.viewCart()
Op 0−19 com.ibatis.jpetstore.service.AccountService.getAccount(java.lang.String,java.lang.String)
Op 0−20 com.ibatis.jpetstore.presentation.AccountBean.signon()

Markov Chain generated by Kieker
Edges: control flow (calls or returns) abe ed by probab lity s ates: operation execu ions
image created on 2009 11 09 21:46:35

0 18

0 2

1

0 4

0 17

0.256

0 1

0.743

0.3

0.338

0 16

0.3

0 15

1

0.017

0.0270.052

0 12

0.024

0 14

0.024

0 8

0.138

0 20

0.013

0 11

0.111

0.076

0 3

0.5

0 5

0.0121 0.666

0 13

0.333

0.333

0 7

0.333

0 6

0.3330.333

0 19

0.333

0.333

1

0.333

0 9

0.333

0 10

0.333

0.5

0.5

1

1 11

1 1

1 0.9

0.089

Fig. 19

OPERATION CALL GRAPH AND MARKOV CHAIN CONSTRUCTED FROM 236 719 TRACES OF AN INSTRUMENTED IBATIS JPETSTORE.

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 23

REFERENCES

[1] M. K. Agarwal, K. Appleby, M. Gupta, G. Kar,
A. Neogi, and A. Sailer. Problem determi-
nation using dependency graphs and run-time
behavior models. In 15th IFIP/IEEE Inter-
national Workshop on Distributed Systems:
Operations and Management (DSOM 2004),
volume 3278 of Lecture Notes in Computer
Science, pages 171–182. Springer, 2004.

[2] T. Parsons, A. Mos, M. Trofin, T. Gschwind,
and J. Murphy. Extracting interactions in
component-based systems. IEEE Transac-
tions on Software Engineering, 34(6):783–799,
Nov.-Dec. 2008.

[3] L. C. Briand, Y. Labiche, and J. Leduc. Toward
the reverse engineering of UML sequence di-
agrams for distributed Java software. IEEE
Transactions on Software Engineering, 32(9):
642–663, September 2006.

[4] A. Diaconescu and J. Murphy. Automating
the performance management of component-
based enterprise systems through the use of
redundancy. In Proceedings of the IEEE/ACM
International Conference on Automated Soft-
ware Engineering (ASE 2005), pages 44–53.
ACM, 2005.

[5] D. Garlan, S.-W. Cheng, A.-C. Huang,
B. Schmerl, and P. Steenkiste. Rain-
bow: Architecture-based self-adaptation with
reusable infrastructure. Computer, 37(10):46–
54, 2004.

[6] B. Cornelissen, A. Zaidman, A. van Deursen,
L. Moonen, and R. Koschke. A systematic
survey of program comprehension through dy-
namic analysis. IEEE Transactions on Soft-
ware Engineering, 35(5):684–702, 2009.

[7] I. Epifani, C. Ghezzi, R. Mirandola, and
G. Tamburrelli. Model evolution by run-
time parameter adaptation. In Proceedings of
the 31st International Conference on Software
Engineering (ICSE ’09), pages 111–121. IEEE
Computer Society, 2009.

[8] G. Kiczales, J. Lamping, A. Menhdhekar,
C. Maeda, C. Lopes, J.-M. Loingtier, and J. Ir-
win. Aspect-oriented programming. In Pro-
ceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP ’97),
volume 1241 of Lecture Notes in Computer
Science, pages 220–242. Springer, 1997.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Ker-
sten, J. Palm, and W. G. Griswold. An
overview of AspectJ. In Proceedings of the
15th European Conference on Object-Oriented
Programming (ECOOP ’01), pages 327–353.
Springer, 2001.

[10] M. Dessi. Spring 2.5 Aspect Oriented Pro-
gramming. Packt Publishing, 2009.

[11] FUSE Open Source Community. FUSE Ser-
vice Framework Documentation (Apache CXF
Documentation). http://www.fusesource.com,
2009.

[12] N. S. Marwede, M. Rohr, A. van Hoorn, and
W. Hasselbring. Automatic failure diagno-
sis support in distributed large-scale software
systems based on timing behavior anomaly
correlation. In Proceedings of the 13th Eu-
ropean Conference on Software Maintenance
and Reengineering (CSMR 2009), pages 47–
57. IEEE Computer Society, March 2009.

[13] A. van Hoorn, M. Rohr, A. Gul, and W. Has-
selbring. An adaptation framework enabling
resource-efficient operation of software sys-
tems. In Proceedings of the 2nd Warm-
Up Workshop for ACM/IEEE ICSE 2010
(WUP ’09), pages 41–44. ACM, April 2009.

[14] J. Matevska and W. Hasselbring. A scenario-
based approach to increasing service availabil-
ity at runtime reconfiguration of component-
based systems. In Proceedings of 33rd Euromi-
cro Conference on Software Engineering and
Advanced Applications (SEAA), pages 137–
144. IEEE Computer Society, August 2007.

[15] M. Rohr, A. van Hoorn, J. Matevska, N. Som-
mer, L. Stöver, S. Giesecke, and W. Hassel-
bring. Kieker: Continuous monitoring and
on demand visualization of Java software be-
havior. In Proceedings of the IASTED Inter-
national Conference on Software Engineering
2008 (SE 2008), pages 80–85. ACTA Press,
February 2008.

[16] I. A. Gul, N. Sommer, M. Rohr, A. van Hoorn,
and W. Hasselbring. Evaluation of control flow
traces in software applications for intrusion
detection. In Proceedings of the 12th IEEE
International Multitopic Conference (IEEE IN-
MIC 2008), pages 373–378. IEEE, 2008.

[17] M. Rohr, A. van Hoorn, S. Giesecke, J. Mat-
evska, W. Hasselbring, and S. Alekseev. Trace-
context sensitive performance profiling for en-

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 24

terprise software applications. In Proceedings
of the SPEC International Performance Eval-
uation Workshop 2008 (SIPEW ’08), volume
5119 of Lecture Notes in Computer Science,
pages 283–302. Springer, June 2008.

[18] M. Rohr, A. van Hoorn, W. Hasselbring,
M. Lübcke, and S. Alekseev. Workload-
intensity-sensitive timing behavior analysis
for distributed multi-user software
systems. In 1st Joint WOSP/SIPEW
International Conference on Performance
Engineering (WOSP/SIPEW 2010). ACM,
January 2010. To appear.

[19] Object Management Group (OMG). OMG
Unified Modeling Language Superstructure
Version 2.2. http://www.omg.org/spec/UML/
2.2/Superstructure/PDF/, February 2009.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley,
1995.

[21] Object Management Group (OMG). UML
Profile for Schedulability, Performance, and
Time. http://www.omg.org/cgi-bin/doc?
formal/2005-01-02, January 2005.

[22] Object Management Group (OMG). UML
Profile for Modeling and Analysis of Real-
time and Embedded Systems (MARTE),
Beta 2. OMG adopted specification ptc/08-
06-08. http://www.omg.org/cgi-bin/doc?ptc/
2008-06-08, June 2008.

[23] G. Ammons, T. Ball, and J. R. Larus. Exploit-
ing hardware performance counters with flow
and context sensitive profiling. In Proceedings
of the Conference on Programming Language
Design and Implementation (PLDI ’97), pages
85–96. ACM, 1997.

[24] A. van Hoorn, M. Rohr, and W. Hassel-
bring. Generating probabilistic and intensity-
varying workload for Web-based software sys-
tems. In Proceedings of the SPEC Interna-
tional Performance Evaluation Workshop 2008
(SIPEW ’08), volume 5119 of Lecture Notes in
Computer Science, pages 124–143. Springer,
June 2008.

[25] K. S. Trivedi. Probability and Statistics with
Reliability, Queueing, and Computer Science
Applications. Wiley & Sons, 2nd edition,
2001.

[26] D. A. Menascé, V. A. F. Almeida, and L. W.

Dowdy. Performance by Design: Computer
Capacity Planning By Example. Prentice Hall,
2004.

[27] D. C. Montgomery and G. C. Runger. Applied
Statistics and Probability for Engineers. Wi-
ley & Sons, 4th edition, 2006.

[28] A. van Hoorn, W. Hasselbring, and M. Rohr.
Engineering and continuously operating self-
adaptive software systems: Required design
decisions. In Proceedings of the 1st Work-
shop “Design for Future Workshop” (L2S2),
volume 537 of CEUR Workshop Proceedings,
pages 52–63, November 2009.

[29] T. Parsons, A. Mos, and J. Murphy. Non-
intrusive end to end run-time path tracing for
J2EE systems. In IEE Proceedings-Software,
2006.

[30] P. T. Barham, A. Donnelly, R. Isaacs, and
R. Mortier. Using Magpie for request extrac-
tion and workload modelling. In 6th Sym-
posium On Operating Systems Design and
Implementation (OSDI ’04), pages 259–272,
2004.

[31] P. Barham, R. Isaacs, R. Mortier, and
D. Narayanan. Magpie: Online modelling and
performance-aware systems. In Proceedings of
the 9th conference on Hot Topics in Operating
Systems (HOTOS ’03), pages 85–90. USENIX
Association, 2003.

[32] A. Sahai, V. Machiraju, J. Ouyang, and
K. Wurster. Message tracking in SOAP-based
Web services. In Network Operations and
Management Symposium, pages 33–47. IEEE,
2002.

[33] T. Israr, M. Woodside, and G. Franks. In-
teraction tree algorithms to extract effective
architecture and layered performance models
from traces. Journal of Systems and Software,
80(5):474–492, 2007.

[34] D. Garlan and B. Schmerl. Using architectural
models at runtime: Research challenges. In
Software Architecture – Proceedings of the
1st European Workshop on Software Architec-
ture (EWSA 2004), volume 3047 of Lecture
Notes in Computer Science, pages 200–205.
Springer, May 2004.

[35] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox,
and E. Brewer. Pinpoint: Problem determina-
tion in large, dynamic internet services. In
Proceedings of the 2002 International Con-

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 25

ference on Dependable Systems and Networks
(DSN ’02), pages 595–604. IEEE Computer
Society, 2002.

[36] E. Kiciman and A. Fox. Detecting application-
level failures in component-based internet ser-
vices. IEEE Transactions on Neural Networks,
16(5):1027–1041, September 2005.

[37] G. Candea, E. Kiciman, S. Kawamoto, and
A. Fox. Autonomous recovery in componen-
tized internet applications. Cluster Computing,
9(2):175–190, 2006.

[38] R. G. Snatzke. Performance survey 2008.
http://www.codecentric.de/export/sites/www/
resources/pdf/performance-survey-2008-web.

pdf, 3 2009.
[39] S. Ducasse and D. Pollet. Software architec-

ture reconstruction: A process-oriented taxon-
omy. IEEE Transactions on Software Engi-
neering, 35(4):573–591, 2009.

[40] M. McGavin, T. Wright, and S. Marshall.
Visualisations of execution traces (VET): An
interactive plugin-based visualisation tool. In
Proceedings of the 7th Australasian User In-
terface Conference (AUIC ’06), pages 153–
160. Australian Computer Society, Inc., 2006.

[41] T. Systä, K. Koskimies, and H. Müller. Shimba
– an environment for reverse engineering Java
software systems. Softw. Pract. Exper., 31(4):
371–394, 2001.

[42] W. de Pauw, E. Jensen, N. Mitchell, G. Sevit-
sky, J. M. Vlissides, and J. Yang. Visualizing
the execution of Java programs. In Revised
Lectures on Software Visualization, pages 151–
162. Springer, 2002.

[43] A. Hamou-Lhadj and T. C. Lethbridge. A sur-
vey of trace exploration tools and techniques.
In Proceedings of the 2004 Conference of the
Centre for Advanced Studies on Collaborative
Research, pages 42–55. IBM, 2004.

[44] B. Cornelissen, A. Zaidman, D. Holten,
L. Moonen, A. van Deursen, and J. J. van
Wijk. Execution trace analysis through mas-
sive sequence and circular bundle views. The
Journal of Systems and Software, 81(12):
2252–2268, 2008.

[45] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman,
and H. Yan. Discovering architectures from
running systems. IEEE Transactions on Soft-
ware Engineering, 32(7):454–466, July 2006.

[46] D. Garlan, R. T. Monroe, and D. Wile. Acme:

Architectural description of component-based
systems. In Foundations of Component-Based
Systems, pages 47–68. Cambridge University
Press, 2000.

[47] Sun Microsystems, Inc. Java platform debug-
ger architecture. http://java.sun.com/javase/
technologies/core/toolsapis/jpda/, 2009.

[48] R. J. Walker, G. C. Murphy, J. Steinbok,
and M. P. Robillard. Efficient mapping of
software system traces to architectural views.
In Proceedings of the 2000 Conference of the
Centre for Advanced Studies on Collaborative
Research (CASCON ’00), page 12. IBM Press,
2000.

[49] K. Govindraj, S. Narayanan, B. Thomas,
P. Nair, and S. P. On using AOP for application
performance management. In Proceedings
of the 5th Internation Conference on Aspect-
Oriented Software Development (AOSD 2006),
Industry Track, pages 18–30, March 2006.

[50] M. Dahm. Byte code engineering. In Java-
Information-Tage (JIT ’99), pages 267–277.
Springer, 1999.

[51] A. Seesing and A. Orso. Insectj: A generic
instrumentation framework for collecting dy-
namic information within Eclipse. In Pro-
ceedings of the 2005 OOPSLA workshop on
Eclipse technology eXchange, pages 45–49.
ACM, 2005.

[52] S. Chiba and R. Ishikawa. Aspect-oriented
programming beyond dependency injection.
In Proceedings of the 19th European Con-
ference on Object-Oriented Programming
(ECOOP 2005), pages 121–143. Springer,
2005.

[53] S. Chiba. Load-time structural reflection in
Java. In Proceedings of the 14th European
Conference on Object-Oriented Programming
(ECOOP 2000), pages 313–336. Springer,
2000.

[54] Sun Microsystems, Inc. Java management
extensions (JMX) technology. http://java.sun.
com/products/JavaManagement/, 2009.

[55] M. W. Johnson. Monitoring and diagnosing
application response time with ARM. In Pro-
ceedings of the IEEE 3rd International Work-
shop on Systems Management (SMW ’98),
page 4. IEEE Computer Society, 1998.

[56] R. Klar, A. Quick, and F. Sötz. Tools for a
model-driven instrumentation for monitoring.

VAN HOORN et al.: CONTINUOUS MONITORING OF SOFTWARE SERVICES: DESIGN AND APPLICATION OF THE KIEKER FRAMEWORK 26

In Proceedings of the 5th International Con-
ference on Modelling Techniques and Tools
for Computer Performance Evaluation, pages
165–180. Elsevier, 1991.

[57] X. Huang and C. Steigner. A model-driven
tool for performance measurement and analy-
sis of parallel programs. In Proceedings of the
International Conference and Exhibition on
High-Performance Computing and Networking
(HPCN Europe ’95), pages 612–617, 1995.

[58] Object Management Group (OMG). UML
Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mecha-
nisms. http://www.omg.org/spec/QFTP/, April
2008.

[59] Distributed Management Task Force. Common
Information Model (CIM) standard. http://
www.dmtf.org/standards/cim/, May 2009.

[60] K. Chan and I. Poernomo. QoS-aware model
driven architecture through the UML and
CIM. Information Systems Frontiers, 9(2-3):
209–224, 2007.

[61] C. Momm, T. Detsch, and S. Abeck. Model-
driven instrumentation for monitoring the qual-
ity of web service compositions. In Pro-
ceedings of the 2008 12th Enterprise Dis-
tributed Object Computing Conference Work-
shops (EDOCW ’08), pages 58–67. IEEE
Computer Society, 2008.

[62] X. Bai, Y. Liu, L. Wang, and P. Zhong. Model-
based monitoring and policy enforcement of
services. Simulation Modelling Practice and
Theory, 17(8):1399–1412, 2009.

[63] M. Boskovic and W. Hasselbring. Model
driven performance measurement and assess-
ment with MoDePeMART. In Proceedings of
the 12th International Conference on Model
Driven Engineering Languages and Systems
(MODELS 2009), volume 5795 of Lecture
Notes in Computer Science, pages 62–76.
Springer, 2009.

[64] J. Schaefer, J. Stynes, and R. Kroeger. Model-
Based Performance Instrumentation of Dis-
tributed Applications. In Proceedings of
the 8th IFIP WG 6.1 International Confer-
ence Distributed Applications and Interoper-
able Systems (DAIS 2008), pages 210–223.
Springer, June 2008.

[65] D. Ganesana, T. Keulerb, and Y. Nishimura.
Architecture compliance checking at run-time.
Information and Software Technology, 51(11):
1586–1600, November 2009.

[66] B. Wetzstein, P. Leitner, F. Rosenberg,
I. Brandic, S. Dustdar, and F. Leymann. Moni-
toring and analyzing influential factors of busi-
ness process performance. In Proceedings of
the IEEE International Enterprise Distributed
Object Computing Conference (EDOC ’09),
pages 141–150, 2009.

