High predictability of spring phytoplankton biomass in mesocosms at the species, functional group and community level

Bauer, Barbara, Sommer, Ulrich and Gaedke, Ursula (2013) High predictability of spring phytoplankton biomass in mesocosms at the species, functional group and community level Freshwater Biology, 58 (3). pp. 588-596. DOI 10.1111/j.1365-2427.2012.02780.x.

bauer_fwb_proof.pdf - Accepted Version

Download (360Kb)
[img] Text
Baueretal_FWB2012_high_predictability_of_spring_phytoplankton-1.pdf - Published Version
Restricted to Registered users only

Download (340Kb) | Contact

Supplementary data:


1. Models aim to predict phytoplankton dynamics based on observed initial conditions and a set of equations and parameters. However, our knowledge about initial conditions in nature is never perfect. Thus, if phytoplankton dynamics are sensitive to small variations in initial conditions, they are difficult to predict.

2. We used time-series data from indoor mesocosm experiments with natural phyto- and zooplankton communities to quantify the extent to which small initial differences in the species, functional group and community biomass in parallel treatments were amplified or buffered over time. We compared the differences in dynamics between replicates and among all mesocosms of 1 year.

3. Temperature-sensitive grazing during the exponential growth phase of phytoplankton caused divergence. In contrast, negative density dependence caused convergence.

4. Mean differences in biomass between replicates were similar for all hierarchical levels. This indicates that differences in their initial conditions were amplified to the same extent. Even though large differences in biomass occasionally occurred between replicates for a short time, dynamics returned to the same path at all hierarchical levels. This suggests that internal feedback mechanisms make the spring development of phytoplankton highly predictable.

Document Type: Article
Keywords: Food Webs; divergence; hierarchical level; mesocosms; predictability; replicates
Research affiliation: OceanRep > GEOMAR > FB3 Marine Ecology > FB3-EOE-N Experimental Ecology - Food Webs
OceanRep > The Future Ocean - Cluster of Excellence
Refereed: Yes
DOI etc.: 10.1111/j.1365-2427.2012.02780.x
ISSN: 0046-5070
Projects: Future Ocean
Date Deposited: 11 Apr 2012 10:55
Last Modified: 16 Jan 2017 10:59
URI: http://eprints.uni-kiel.de/id/eprint/14193

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...