Outer rise seismicity related to the Maule, Chile 2010 mega-thrust earthquake and hydration of the incoming oceanic lithosphere

Moscoso, Eduardo and Contreras-Reyes, Eduardo (2012) Outer rise seismicity related to the Maule, Chile 2010 mega-thrust earthquake and hydration of the incoming oceanic lithosphere Andean Geology, 39 (3). pp. 564-572. DOI 10.5027/andgeoV39n3-a12.

Moscoso.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3754Kb) | Preview

Supplementary data:


Most of the recent published geodetic models of the 2010 Maule, Chile mega-thrust earthquake (Mw=8.8) show a pronounced slip maximum of 15-20 m offshore Iloca (similar to 35 degrees S), indicating that co-seismic slip was largest north of the epicenter of the earthquake rupture area. A secondary slip maximum 8-10 m appears south of the epicenter west of the Arauco Peninsula. During the first weeks following the main shock and seaward of the main slip maximum, an outer rise seismic cluster of >450 events, mainly extensional, with magnitudes Mw=4-6 was formed. In contrast, the outer rise located seaward of the secondary slip maximum presents little seismicity. This observation suggests that outer rise seismicity following the Maule earthquake is strongly correlated with the heterogeneous coseismic slip distribution of the main megathrust event. In particular, the formation of the outer-rise seismic cluster in the north, which spatially correlates with the main maximum slip, is likely linked to strong extensional stresses transfered from the large slip of the subducting oceanic plate. In addition, high resolution bathymetric data reveals that bending-related faulting is more intense seaward of the main maximum slip, where well developed extensional faults strike parallel to the trench axis. Also published seismic constraints reveal reduced P-wave velocities in the uppermost mantle at the trench-outer rise region (7.5-7.8 km/s), which suggest serpentinization of the uppermost mantle. Seawater percolation up to mantle depths is likely driven by bending related-faulting at the outer rise. Water percolation into the upper mantle is expected to be more efficient during the co-seismic and early post-seismic periods of large megathrust earthquakes when intense extensional faulting of the oceanic lithosphere

Document Type: Article
Additional Information: WOS:000313418600012
Keywords: Nazca plate hydration; Outer Rise; Maule earthquake; Seismic cycle; COUPLED SUBDUCTION ZONES; MANTLE; OFFSHORE; TRENCH; SLIP; GAP
Research affiliation: OceanRep > SFB 574
OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-GDY Marine Geodynamics
Refereed: Yes
DOI etc.: 10.5027/andgeoV39n3-a12
ISSN: 0718-7092
Contribution Number:
SFB 574234
Date Deposited: 31 Jan 2012 11:11
Last Modified: 05 Sep 2016 12:49
URI: http://eprints.uni-kiel.de/id/eprint/13612

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...