Response of the coccolithophores Emiliania huxleyi and Coccolithus braarudii to changing seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca ratios and δ44/40Ca, δ26/24Mg of coccolith calcite

Müller, Marius N., Kısakürek, Basak, Buhl, Dieter, Gutperlet, Ruth, Kolevica, Ana, Riebesell, Ulf, Stoll, Heather and Eisenhauer, Anton (2011) Response of the coccolithophores Emiliania huxleyi and Coccolithus braarudii to changing seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca ratios and δ44/40Ca, δ26/24Mg of coccolith calcite Geochimica et Cosmochimica Acta, 75 (8). pp. 2088-2102. DOI 10.1016/j.gca.2011.01.035.

[img] Text
Response.pdf - Published Version
Restricted to Registered users only

Download (664Kb) | Contact
[img] Text
Müller_Suppl.pdf - Supplemental Material
Restricted to Registered users only

Download (11Kb) | Contact

Supplementary data:


Calcium and magnesium concentrations in seawater have varied over geological time scales. On short time scales, variations in the major ion composition of seawater influences coccolithophorid physiology and the chemistry of biogenically produced coccoliths. Validation of those changes via controlled laboratory experiments is a crucial step in applying coccolithophorid based paleoproxies for the reconstruction of past environmental conditions. Therefore, we examined the response of two species of coccolithophores, Emiliania huxleyi and Coccolithus braarudii, to changes in the seawater Mg/Ca ratio (≈0.5 to 10 mol/mol) by either manipulating the magnesium or calcium concentration under controlled laboratory conditions. Concurrently, seawater Sr/Ca ratios were also modified (≈2 to 40 mmol/mol), while keeping salinity constant at 35. The physiological response was monitored by measurements of the cell growth rate as well as the production rates of particulate inorganic and organic carbon, and chlorophyll a. Additionally, coccolithophorid calcite was analyzed for its elemental composition (Sr/Ca and Mg/Ca) as well as isotope fractionation of calcium and magnesium (Δ44/40Ca and Δ26/24Mg). Our results reveal that physiological rates were substantially influenced by changes in seawater calcium rather than magnesium concentration within the range estimated to have occurred over the past 250 million years when coccolithophores appear in the fossil record. All physiological rates of E. huxleyi decreased at a calcium concentration above 25 mmol L−1, whereas C. braarudii displayed a higher tolerance to increased seawater calcium concentrations. Partition coefficient of Sr was calculated as 0.36 ± 0.04 (±2σ) independent of species. Partition coefficient of Mg2+ increased with increasing seawater Ca2+ concentrations in both coccolithophore species. Calcium isotope fractionation was constant at 1.1 ± 0.1‰ (±2σ) and not altered by changes in seawater Mg/Ca ratio. There is a well-defined inverse linear relationship between calcium isotope fractionation and partition coefficient of Sr2+ in all experiments, suggesting similar controls on both proxies in the investigated species. Magnesium isotope ratios were relatively stable for seawater Mg/Ca ratios ranging from 1 to 5, with a higher degree of fractionation in Emiliania huxleyi (by ≈0.2‰ in Δ26/24Mg). Although Mg/Ca ratios in the calcite of coccolithophores and foraminifera are similar, the former have considerably higher Δ26/24Mg (by >+3‰), presumably due to differences in calcification mechanisms between the two taxa. These observations suggest, a physiological control over magnesium elemental and isotopic fractionation during the process of calcification in coccolithophores.

Document Type: Article
Keywords: Biological Oceanography; Meeresgeologie; Emiliania huxleyi; Coccolithus braarudii
Research affiliation: OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-MG Marine Geosystems
OceanRep > Leibniz Institute of Marine Sciences
OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-ME Maritime Meteorology
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-BI Biological Oceanography
Refereed: Yes
DOI etc.: 10.1016/j.gca.2011.01.035
ISSN: 0016-7037
Date Deposited: 30 Nov 2011 16:04
Last Modified: 27 Sep 2017 08:30

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...