Atacamite and paratacamite from the ultramafic-hosted Logatchev seafloor vent field (14°45′N, Mid-Atlantic Ridge)

Dekov, Vesselin, Boycheva, Tanya, Hålenius, Ulf, Petersen, Sven, Billström, Kjell, Stummeyer, Jens, Kamenov, George and Shanks, Wayne (2011) Atacamite and paratacamite from the ultramafic-hosted Logatchev seafloor vent field (14°45′N, Mid-Atlantic Ridge) Chemical Geology, 286 . pp. 169-184. DOI 10.1016/j.chemgeo.2011.05.002.

[img] Text
2011_DekovPetersen_etal_ChemGeol.pdf - Published Version
Restricted to Registered users only

Download (3149Kb) | Contact

Supplementary data:

Abstract

Atacamite and paratacamite are ubiquitous minerals associated with Cu-rich massive sulfides at the Logatchev hydrothermal field (Mid-Atlantic Ridge). In this work we provide new details on the mineralogy and geochemistry of these basic cupric chlorides. Our data support the notion that atacamite and paratacamite formation at submarine vent fields is an alteration process of hydrothermal Cu-sulfides. Secondary Cu-sulfides (bornite, covellite) are unstable at ambient seawater conditions and will dissolve. Dissolution is focused at the sulfide–seawater contact, leading to release of Fe2+ and Cu+ and formation of residual chalcocite through an intermediate Cu5S4 phase. Most of the released Fe2+ oxidizes immediately and precipitates as FeOOH directly on the chalcocite rims whereas Cu as chloride complexes (CuCl2−, CuCl32−) remains in solution at the same Eh. Cuprous–chloride complexes migrate from the reaction zone and upon increasing Eh precipitate as Cu2Cl(OH)3. As a consequence of this, the sulfide–seawater reaction interface is clearly marked by thin chalcocite–FeOOH bands and the entire assemblage is mantled by atacamite (or paratacamite). Our mineralogical, petrographic, geochemical and isotopic studies suggest that there are two types of atacamite (and/or paratacamite) depending on their mode of precipitation. Type 1 atacamite precipitated directly on the parent sulfides as evidenced by mantling of the sulfides, absence of detrital mineral grains, a preserved conspicuous positive Eu anomaly and a negligible negative Ce anomaly similar to those of the parent sulfide. In addition, Au concentrations are slightly lower than those of the parent sulfides, which suggest minimal transport of Au-ions after their release from the sulfides. Furthermore, the low content of the rare earth elements implies short contact time with the ambient seawater. The Sr–Nd–Pb-isotopic signatures of type 1 atacamite confirm the genetic association with the parent sulfides and indicate formation spatially very close to the latter. Type 2 atacamite precipitated at some distance from the parent sulfides, which means that the cuprous–chloride complexes have moved away from the sulfide alteration zone before precipitation. The evidence for this is absence of direct association of atacamite with sulfides. In addition, this atacamite contains a substantial proportion of detrital minerals, which implies precipitation in the sediments, distal to the parent sulfides. As a consequence of the detrital impurities the contents of elements like Cr, Cs, Hf, Nb, Rb, Th and Zr are higher than in type 1 atacamite (and/or paratacamite). Au contents are lower than those of type 1 atacamite (and/or paratacamite) which implies prolonged Au transport in solution before precipitation. Furthermore, the rare earth element distribution patterns have no positive Eu anomaly suggesting that the positive Eu anomaly of the parent sulfide has been erased after dissolution and prolonged contact of the fluid with ambient seawater (with negative Eu anomaly). Finally, the Sr–Nd-isotope signature differs from that of the parent sulfide and indicates a considerable terrigenous input.

Document Type: Article
Keywords: Meereswissenschaften; Volcanology; Geochemistry; Atacamite; Au; Logatchev hydrothermal field; Mid-Atlantic Ridge; O–Sr–Nd–Pb isotopes; Paratacamite
Research affiliation: OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-MUHS Magmatic and Hydrothermal Systems
Refereed: Yes
DOI etc.: 10.1016/j.chemgeo.2011.05.002
ISSN: 0009-2541
Projects: Future Ocean
Date Deposited: 27 Jul 2011 08:58
Last Modified: 06 Dec 2017 13:07
URI: http://eprints.uni-kiel.de/id/eprint/11989

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...