Kurilien-Kamtschatka und randliche Aleuten Inselbogen Systeme: Geodynamische und klimatische Wechselwirkungen in Raum und Zeit:
Überblick über die Ausfahrten SO201-KALMAR

Dullo C¹, Baranov B², Bogaard Cvd¹ und shipboard scientific party.

¹ Leibniz Institute of Marine Sciences, IFM-GEOMAR, Wischhofstr. 1-3, 24114 Kiel, Germany
² P.P.Shirov Institute of Oceanology, Nakhimovski Prospekt 36, 117997 Moscow, Russia

Im Rahmen des deutsch-russischen Forschungsprojektes KALMAR wurden drei marine Expeditionen mit R/FSonne durchgeführt: SO201 Leg 1a (16.05. - 09.06.2009), Leg 1b (10.06. - 06.07.2009) und Leg 2 (30.08. - 08.10.2009). Die Ausfahrten SO201-KALMAR sind ein integrativer Teil eines amphibisch angelegten Projektes im Rahmen der deutsch russischen Kooperation und umfassten multidisziplinäre Untersuchungen im NW-Pazifik und der Bering Sea mit dem Ziel das Geosystems „Kurile-Kamtschatka Bogen“ mit den angrenzenden Gebieten besser verstehen zu lernen. In diesem Gebiet ist das Zusammenspiel zwischen Astenosphäre, Lithosphäre, Hydrosphäre, Atmosphäre und Biosphäre extrem ausgeprägt. Leg 1a konzentrierte sich auf geophysikalische Untersuchungen der subduzierenden pazifischen Platte vor Kamtschatka (s. Beiträge Freitag et al., Gaedcke et al., in diesem Band) während Leg 1b und Leg 2 sich vulkanologischen, petrologischen, tektonischen und paläozoogenographischen Fragen widmeten (s. Beiträge Gottschalk et al., Krasnova et al., Portnyagin et al., Portnyagin et al., Riedhof et al., Wanke et al. in diesem Band) (Abb. 1). Während SO201 Leg 2 wurden darüber hinaus Messungen zur Wärmestromverteilung der subduzierenden Platte vor Kamtschatka durchgeführt (Deslisle, in diesem Band). Während der SONNE Ausfahrt SO201 Leg 2 wurden insgesamt 31 Dredgezüge ausgeführt, wurden 14 Multicorer für Sedimentprobenahme, 15 Kolbenlot e und ein Schwerelot aus Wassertiefen zwischen < 3500 und 630 Meter Wassertiefe Tiefe geborgen.

Zwei Hauptthemen bildeten das wissenschaftliche Rückgrat der Ausfahrten: Der erste Schwerpunkt fokussiert auf die geodynamische und vulkanologisch-magmatische Entwicklung des Kurilen-Kamtschatka Inselbo-
gens und die Kamtschatka Aleuten Insel Triple Junktion. Über die Zusammensetzung des Mantels und die Ozeanische Kruste sowie über die Seamounts und ihre Alter ist sehr wenig bekannt. Ein Hauptziel der Ausfahrt SO201 Leg 2 war mehr Informationen zur Zusammensetzung der NW Pazifischen Ozeanischen Kruste und deren Entwicklung zu erlangen.

Abb. 1: Untersuchungsgebiete der SO201-KALMAR Ausfahrten. SONNE-KALMAR Leg 1a Geodynamik, Tektonik - SONNE-KALMAR Leg 1b Vulkanologie, Petrologie, SONNE-KALMAR Leg 2 Vulkanologie, Petrologie, Geochemie, Wärmemessungen und Paleooceanographie.

Die am besten untersuchte Lokalität ist das Vulkanologen Massiv zwischen der Bering- und Alpha Fracture Zone die strukturell zum Kommandorsky Becken gehört. Die ältesten Gesteine des Vulkanologen Massif zeigen sehr ähnliche Spuren Elemente und Isotopen Signaturen wie die Gesteine auf Kamtschatka in der Verlängerung der Alpha Fracture Zone und deuten damit auf ähnliche Bedingungen für die Magmenentstehung (Portnyagin et al., in diesem Band).
Der zweite Schwerpunkt lag auf den paleo-ozeanographischen Untersuchungen der Sedimente entlang des Kontinentalhangs vor Kamtschatka, im Komandorsky Becken und auf dem Shirshov Rücken um die paläoklimatischen Archive zu untersuchen und den subpolaren Wassermassen-Transfer und die ozeanographische und klimatische Entwicklung im subarktischen NW-Pazifik besser zu verstehen.


Zitierte Literatur

Delisle G. (2011) Positive Wärmestromanomalie in der subduzierenden Platte vor Kamtschatka (this volume)


Portnyagin M., Hauff F., Hoernle K., et al. (2011) Geochemistry of primitive glasses from the Volcanologists Massif (Far Western Aleutian Arc) obtained during SO201-KALMAR (this volume).

